Trajectory planning in parallel kinematic manipulators using a constrained multi-objective evolutionary algorithm

Generating manipulator trajectories considering multiple objectives with kinematics and dynamics constraints is a non-trivial optimization. In this paper, a constrained multi-objective genetic algorithm (MOGA) based technique is proposed to address this problem for a general motor-driven parallel ki...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear dynamics Ročník 67; číslo 2; s. 1669 - 1681
Hlavní autoři: Chen, Chun-Ta, Pham, Hoang-Vuong
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.01.2012
Springer Nature B.V
Témata:
ISSN:0924-090X, 1573-269X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Generating manipulator trajectories considering multiple objectives with kinematics and dynamics constraints is a non-trivial optimization. In this paper, a constrained multi-objective genetic algorithm (MOGA) based technique is proposed to address this problem for a general motor-driven parallel kinematic manipulator. The planning process is composed of searching for a motion ensuring the accomplishment of the assigned task, minimizing the traverse time, and expended energy subject to various constraints imposed by the associated kinematics and dynamics of the manipulator. This problem is treated via an adequate parametric path representation in the task space of the moving platform, and then the use of the constrained MOGA for solving the resulted nonlinear multi-objective optimization problem. Simulation results are presented for the trajectories of the parallel kinematic manipulator, and a subsequent comparison with the weighted sum method is also carried out.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-011-0095-2