A Novel Hybrid Transform approach with integration of Fast Fourier, Discrete Wavelet and Discrete Shearlet Transforms for prediction of surface roughness on machined surfaces

•A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 164; S. 108011
Hauptverfasser: Prabhakar, D.V.N., Sreenivasa Kumar, M., Gopala Krishna, A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: London Elsevier Ltd 01.11.2020
Elsevier Science Ltd
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed methodology is within acceptable limits.•FFT_DWT_DST model showed better prediction accuracy than conventional methods. Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi’s L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy.
AbstractList Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi's L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy.
•A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed methodology is within acceptable limits.•FFT_DWT_DST model showed better prediction accuracy than conventional methods. Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi’s L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy.
ArticleNumber 108011
Author Sreenivasa Kumar, M.
Prabhakar, D.V.N.
Gopala Krishna, A.
Author_xml – sequence: 1
  givenname: D.V.N.
  surname: Prabhakar
  fullname: Prabhakar, D.V.N.
  email: dvnprabhakarvasavi@gmail.com
  organization: Department of Mechanical Engineering, Sri Vasavi Engineering College (JNTUK), Tadepalligudem, West Godavari Dist., 534101, India
– sequence: 2
  givenname: M.
  surname: Sreenivasa Kumar
  fullname: Sreenivasa Kumar, M.
  organization: Department of Mechanical Engineering, Narasaraopeta Engineering College, Narasaraopeta, Guntur Dist., 522601, India
– sequence: 3
  givenname: A.
  surname: Gopala Krishna
  fullname: Gopala Krishna, A.
  organization: Department of Mechanical Engineering, University College of Engineering, JNTUK, Kakinada, East Godavari Dist., 533001, India
BookMark eNqNkc1uUzEQhS1UJNLCOxix5Qb_3N6fFapC0yJVdEGkdmdNfMeNo1w7jJ2ivhTPWIdQQF11Y1vHM99ozjlmRyEGZOy9FFMpZPNpPR0R0o5wxJCnSqi93gkpX7GJ7Fpd1VLdHrGJUI2ulKrlG3ac0loI0ei-mbBfZ_xbvMcNv3xYkh_4giAkF2nksN1SBLviP31ecR8y3hFkHwOPjs8hZT6PO_JIH_kXnyxhRn4DBYWZQxj-id9XCLRX_7ITLyffEg7ePhHLDg4scoq7u1XAlHjRxzLfBxyeftNb9trBJuG7P_cJW8zPF7PL6ur64uvs7Kqyuu5z5TrAzsle9NANTreddOXVtFLBqV46rGuNGsXg4LTRUoolINq2R1Su63unT9iHA7ZY8GOHKZt12TWUiUbVddOqRum6VH0-VFmKKRE6Y33-bVEm8BsjhdlnZNbmv4zMPiNzyKgQ-meELfkR6OFFvbNDLxYf7ksOJlmPwRZTCW02Q_QvoDwCjhK64g
CitedBy_id crossref_primary_10_3390_inventions10040071
crossref_primary_10_3390_coatings14020210
crossref_primary_10_32604_cmes_2021_014489
crossref_primary_10_1080_10910344_2024_2324785
crossref_primary_10_1016_j_ymssp_2020_107474
crossref_primary_10_1007_s12008_023_01202_1
crossref_primary_10_3390_ma15249068
crossref_primary_10_3390_jmmp8060244
crossref_primary_10_3390_s21144728
crossref_primary_10_1016_j_ymssp_2023_110282
crossref_primary_10_1016_j_measurement_2020_108879
crossref_primary_10_1088_1742_6596_2785_1_012155
crossref_primary_10_1016_j_ceramint_2021_11_281
crossref_primary_10_1520_JTE20230775
crossref_primary_10_3390_en18133561
crossref_primary_10_1038_s41598_025_89228_1
crossref_primary_10_1088_1742_6596_2724_1_012011
crossref_primary_10_1016_j_measurement_2024_115862
crossref_primary_10_1016_j_mtcomm_2021_102984
crossref_primary_10_3390_en14061545
crossref_primary_10_1088_1361_6501_adeffe
crossref_primary_10_3390_ma16083167
crossref_primary_10_3390_app14188144
crossref_primary_10_1088_1361_6501_ac875b
crossref_primary_10_3390_s22051991
crossref_primary_10_1016_j_measurement_2021_109677
crossref_primary_10_1088_2051_672X_acce50
crossref_primary_10_1016_j_cirpj_2022_06_001
crossref_primary_10_1016_j_geoen_2024_212654
Cites_doi 10.1016/S0890-6955(03)00059-2
10.1007/s00170-010-2668-5
10.1007/s00170-014-5828-1
10.1109/TNN.2007.893088
10.1007/s00170-005-2538-8
10.1007/s00170-009-2297-z
10.1016/S0262-8856(02)00152-X
10.1016/S0957-4158(02)00096-X
10.1007/s40092-016-0146-x
10.1007/s00521-005-0468-x
10.1016/j.jmatprotec.2008.07.023
10.1016/j.triboint.2009.06.010
10.1007/s00170-010-3018-3
10.1177/0954408914540633
10.14743/apem2016.2.212
10.1016/j.measurement.2015.03.037
10.1016/j.ndteint.2004.03.004
10.1016/j.acha.2007.09.003
10.1007/s00170-004-2110-y
10.1016/j.precisioneng.2007.08.005
10.1007/s00170-009-2101-0
10.1016/j.proeng.2014.12.236
10.1002/9780470926994
10.1007/s00170-013-5075-x
10.1007/s00521-014-1696-8
10.1007/s12541-011-0050-7
10.1007/s00170-008-1763-3
10.17222/mit.2017.039
10.1016/j.measurement.2014.01.024
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Nov 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Nov 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.108011
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_108011
S0263224120305492
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-f8ae8f1909a8df3781f9a86712a53bfe443e3e0dfa563110baeec79ee2f899f3
ISICitedReferencesCount 33
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548658100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Mon Nov 10 02:55:56 EST 2025
Tue Nov 18 22:13:46 EST 2025
Sat Nov 29 07:24:28 EST 2025
Fri Feb 23 02:47:33 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid transform
Surface roughness
Machine vision
Artificial neural networks
Shearlets
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-f8ae8f1909a8df3781f9a86712a53bfe443e3e0dfa563110baeec79ee2f899f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2446726234
PQPubID 2047460
ParticipantIDs proquest_journals_2446726234
crossref_citationtrail_10_1016_j_measurement_2020_108011
crossref_primary_10_1016_j_measurement_2020_108011
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_108011
PublicationCentury 2000
PublicationDate November 2020
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: November 2020
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Gadelmawla (b0050) 2004; 37
Markopoulos, Georgiopoulos, Manolakos (b0165) 2016; 12
Yang, Natarajan, Sekar, Palani (b0115) 2010; 51
Samtas (b0155) 2014; 73
S. S. K, Estimation of Surface roughness parameter using Wavelets based feature extraction, IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(10) (2008) 282.
Gok (b0130) 2015; 70
Benardos, Vosniakos (b0070) 2003; 43
Karayel (b0125) 2009; 209
Sanjay, Jyothi (b0035) 2006; 29
Palani, Natarajan (b0080) 2011; 54
CMTI, “Machine Tool Design Handbook,” 2008, p. 955.
Raju, Janardhana, Kumar, Rao (b0015) 2011; 12
Acharya, Image Processing: Principles and Applications [book review], vol. 18, no. 2. 2007.
Dhanasekar, Mohan, Bhaduri, Ramamoorthy (b0045) 2008; 32
Seeman, Ganesan, Karthikeyan, Velayudham (b0025) 2010; 48
R.K. Beemaraj, Prediction of Surface Roughness in turning process by using artificial neural network model, no. March, 2018.
Reddy, Venkateswara Rao (b0020) 2005; 26
Gök, Demirci, Gök (b0135) 2014; 230
Lee, Yu, Juan (b0075) 2004; 14
Öktem (b0010) 2009; 43
Shahabi, Ratnam (b0060) 2010; 46
Kadirgama, Noor, Rahman, Rejab, Haron, Abou-El-Hossein (b0005) 2009; 25
Easley, Labate, Lim (b0095) 2008; 25
Malamas, Petrakis, Zervakis, Petit, Legat (b0065) 2003; 21
N. Arunachalam, B. Ramamoorthy, Vision based surface roughness evaluation of ground components using wavelet transform and neural network, in: 18th IMEKO World Congr. 2006 Metrol. a Sustain. Dev., vol. 3, no. September, 2006, pp. 2381–2385.
Venkata Rao, Murthy, Mohan Rao (b0160) 2014; 51
Nathan, Thanigaiyarasu, Vani (b0055) 2014; 97
Simunovic, Svalina, Simunovic, Saric, Havrlisan, Vukelic (b0120) 2016,; 11
Rafael C. Gonzalez, Richard E. Woods, Digital Image processing, 2nd ed., Pearson Publishers.
A.B.A. Hassanat, V.B.S. Prasath, K.I. Mseidein, M. Al-awadi, A.M. Hammouri, A hybrid wavelet-shearlet approach to robust digital image watermarking, 41 (2017) 3–24.
S.P.M.U.B.K. Vinayagam, Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process, (2015) 41–55.
.
Surjya, Chakraborty (b0030) 2005; 14
J.C. Goswami, A.K. Chan, Fundamentals of wavelets Fundam. Wavelets (2011).
GittaKutynoik, Wang-Q Lim, Rafael Reisenhofer, Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Transactions on Mathematical Software, www.shearlab.org.
Gok, Gologlu, Demirci (b0140) 2013; 69
Emily J. King, Rafael Reisenhofer, Johannes Kiefer, Wang-Q Lim, Zhen Li, Georg Heygster, Shearlet-Based Edge Detection: Flame Fronts and Tidal Flats, Applications of Digital Image Processing.
Gök, Gök, Bilgin, Alkan (b0145) 2017; 51
Kayahan, Oktem, Hacizade, Nasibov, Gundogdu (b0040) 2010; 43
Benardos (10.1016/j.measurement.2020.108011_b0070) 2003; 43
Lee (10.1016/j.measurement.2020.108011_b0075) 2004; 14
Kadirgama (10.1016/j.measurement.2020.108011_b0005) 2009; 25
Gadelmawla (10.1016/j.measurement.2020.108011_b0050) 2004; 37
Simunovic (10.1016/j.measurement.2020.108011_b0120) 2016; 11
Venkata Rao (10.1016/j.measurement.2020.108011_b0160) 2014; 51
10.1016/j.measurement.2020.108011_b0180
10.1016/j.measurement.2020.108011_b0085
Malamas (10.1016/j.measurement.2020.108011_b0065) 2003; 21
10.1016/j.measurement.2020.108011_b0100
Shahabi (10.1016/j.measurement.2020.108011_b0060) 2010; 46
Gok (10.1016/j.measurement.2020.108011_b0130) 2015; 70
Sanjay (10.1016/j.measurement.2020.108011_b0035) 2006; 29
Kayahan (10.1016/j.measurement.2020.108011_b0040) 2010; 43
10.1016/j.measurement.2020.108011_b0185
Seeman (10.1016/j.measurement.2020.108011_b0025) 2010; 48
Yang (10.1016/j.measurement.2020.108011_b0115) 2010; 51
Raju (10.1016/j.measurement.2020.108011_b0015) 2011; 12
10.1016/j.measurement.2020.108011_b0105
Gök (10.1016/j.measurement.2020.108011_b0145) 2017; 51
Dhanasekar (10.1016/j.measurement.2020.108011_b0045) 2008; 32
Palani (10.1016/j.measurement.2020.108011_b0080) 2011; 54
Samtas (10.1016/j.measurement.2020.108011_b0155) 2014; 73
Gök (10.1016/j.measurement.2020.108011_b0135) 2014; 230
Öktem (10.1016/j.measurement.2020.108011_b0010) 2009; 43
Surjya (10.1016/j.measurement.2020.108011_b0030) 2005; 14
Markopoulos (10.1016/j.measurement.2020.108011_b0165) 2016; 12
10.1016/j.measurement.2020.108011_b0190
10.1016/j.measurement.2020.108011_b0090
10.1016/j.measurement.2020.108011_b0195
10.1016/j.measurement.2020.108011_b0150
Karayel (10.1016/j.measurement.2020.108011_b0125) 2009; 209
Nathan (10.1016/j.measurement.2020.108011_b0055) 2014; 97
10.1016/j.measurement.2020.108011_b0170
Gok (10.1016/j.measurement.2020.108011_b0140) 2013; 69
10.1016/j.measurement.2020.108011_b0110
10.1016/j.measurement.2020.108011_b0175
Reddy (10.1016/j.measurement.2020.108011_b0020) 2005; 26
Easley (10.1016/j.measurement.2020.108011_b0095) 2008; 25
References_xml – reference: GittaKutynoik, Wang-Q Lim, Rafael Reisenhofer, Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Transactions on Mathematical Software, www.shearlab.org.
– volume: 11
  start-page: 93
  year: 2016,
  end-page: 104
  ident: b0120
  article-title: Surface roughness assessing based on digital image features
  publication-title: Adv. Product. Eng. Manage.
– volume: 46
  start-page: 275
  year: 2010
  end-page: 284
  ident: b0060
  article-title: Noncontact roughness measurement of turned parts using machine vision
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 73
  start-page: 353
  year: 2014
  end-page: 364
  ident: b0155
  article-title: Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: S. S. K, Estimation of Surface roughness parameter using Wavelets based feature extraction, IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(10) (2008) 282.
– volume: 54
  start-page: 1033
  year: 2011
  end-page: 1042
  ident: b0080
  article-title: Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 69
  start-page: 1063
  year: 2013
  end-page: 1078
  ident: b0140
  article-title: Cutting parameter and tool path style effects on cutting force and tool deflection in machining of convex and concave inclined surfaces
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 25
  start-page: 250
  year: 2009
  end-page: 256
  ident: b0005
  article-title: Surface roughness prediction model of 6061–T6 aluminium alloy machining using statistical method
  publication-title: Eur. J. Sci. Res.
– reference: A.B.A. Hassanat, V.B.S. Prasath, K.I. Mseidein, M. Al-awadi, A.M. Hammouri, A hybrid wavelet-shearlet approach to robust digital image watermarking, 41 (2017) 3–24.
– volume: 14
  start-page: 129
  year: 2004
  end-page: 141
  ident: b0075
  article-title: The model of surface roughness inspection by vision system in turning
  publication-title: Mechatronics
– volume: 26
  start-page: 1202
  year: 2005
  end-page: 1210
  ident: b0020
  article-title: Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: N. Arunachalam, B. Ramamoorthy, Vision based surface roughness evaluation of ground components using wavelet transform and neural network, in: 18th IMEKO World Congr. 2006 Metrol. a Sustain. Dev., vol. 3, no. September, 2006, pp. 2381–2385.
– volume: 209
  start-page: 3125
  year: 2009
  end-page: 3137
  ident: b0125
  article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network
  publication-title: J. Mater. Process. Technol.
– volume: 48
  start-page: 613
  year: 2010
  end-page: 624
  ident: b0025
  article-title: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 230
  start-page: 111
  year: 2014
  end-page: 119
  ident: b0135
  article-title: Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces
  publication-title: Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
– volume: 97
  start-page: 150
  year: 2014
  end-page: 157
  ident: b0055
  article-title: Study on the relationship between surface roughness of AA6061 alloy end milling and image texture features of milled surface
  publication-title: Procedia Eng.
– volume: 29
  start-page: 846
  year: 2006
  end-page: 852
  ident: b0035
  article-title: A study of surface roughness in drilling using mathematical analysis and neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
– reference: CMTI, “Machine Tool Design Handbook,” 2008, p. 955.
– volume: 51
  start-page: 957
  year: 2017
  end-page: 965
  ident: b0145
  article-title: Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling
  publication-title: Mater. Tehnol.
– volume: 14
  start-page: 319
  year: 2005
  end-page: 324
  ident: b0030
  article-title: Surface roughness prediction in turning using artificial neural networks
  publication-title: Neural Comput. Appl.
– reference: R.K. Beemaraj, Prediction of Surface Roughness in turning process by using artificial neural network model, no. March, 2018.
– volume: 70
  start-page: 100
  year: 2015
  end-page: 109
  ident: b0130
  article-title: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA
  publication-title: Meas. J. Int. Meas. Confed.
– volume: 12
  start-page: 383
  year: 2011
  end-page: 391
  ident: b0015
  article-title: Optimization of cutting conditions for surface roughness in CNC end milling
  publication-title: Int. J. Precis. Eng. Manuf.
– volume: 43
  start-page: 307
  year: 2010
  end-page: 311
  ident: b0040
  article-title: Measurement of surface roughness of metals using binary speckle image analysis
  publication-title: Tribol. Int.
– reference: Emily J. King, Rafael Reisenhofer, Johannes Kiefer, Wang-Q Lim, Zhen Li, Georg Heygster, Shearlet-Based Edge Detection: Flame Fronts and Tidal Flats, Applications of Digital Image Processing.
– volume: 32
  start-page: 196
  year: 2008
  end-page: 206
  ident: b0045
  article-title: Evaluation of surface roughness based on monochromatic speckle correlation using image processing
  publication-title: Precis. Eng.
– volume: 51
  start-page: 63
  year: 2014
  end-page: 70
  ident: b0160
  article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network
  publication-title: Meas. J. Int. Meas. Confed.
– volume: 43
  start-page: 852
  year: 2009
  end-page: 861
  ident: b0010
  article-title: An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 25
  start-page: 25
  year: 2008
  end-page: 46
  ident: b0095
  article-title: Sparse directional image representations using the discrete shearlet transform
  publication-title: Appl. Comput. Harmon. Anal.
– reference: Acharya, Image Processing: Principles and Applications [book review], vol. 18, no. 2. 2007.
– volume: 21
  start-page: 171
  year: 2003
  end-page: 188
  ident: b0065
  article-title: A survey on industrial vision systems, applications and tools
  publication-title: Image Vis. Comput.
– volume: 12
  start-page: 389
  year: 2016
  end-page: 400
  ident: b0165
  article-title: On the use of back propagation and radial basis function neural networks in surface roughness prediction
  publication-title: J. Ind. Eng. Int.
– reference: J.C. Goswami, A.K. Chan, Fundamentals of wavelets Fundam. Wavelets (2011).
– reference: .
– reference: S.P.M.U.B.K. Vinayagam, Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process, (2015) 41–55.
– volume: 37
  start-page: 577
  year: 2004
  end-page: 588
  ident: b0050
  article-title: A vision system for surface roughness characterization using the gray level co-occurrence matrix
  publication-title: NDT E Int.
– volume: 51
  start-page: 965
  year: 2010
  end-page: 971
  ident: b0115
  article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 43
  start-page: 833
  year: 2003
  end-page: 844
  ident: b0070
  article-title: Predicting surface roughness in machining: A review
  publication-title: Int. J. Mach. Tools Manuf.
– reference: Rafael C. Gonzalez, Richard E. Woods, Digital Image processing, 2nd ed., Pearson Publishers.
– volume: 43
  start-page: 833
  issue: 8
  year: 2003
  ident: 10.1016/j.measurement.2020.108011_b0070
  article-title: Predicting surface roughness in machining: A review
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/S0890-6955(03)00059-2
– volume: 51
  start-page: 965
  issue: 9–12
  year: 2010
  ident: 10.1016/j.measurement.2020.108011_b0115
  article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-2668-5
– volume: 73
  start-page: 353
  issue: 1–4
  year: 2014
  ident: 10.1016/j.measurement.2020.108011_b0155
  article-title: Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-014-5828-1
– ident: 10.1016/j.measurement.2020.108011_b0190
  doi: 10.1109/TNN.2007.893088
– volume: 29
  start-page: 846
  year: 2006
  ident: 10.1016/j.measurement.2020.108011_b0035
  article-title: A study of surface roughness in drilling using mathematical analysis and neural networks
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-2538-8
– volume: 48
  start-page: 613
  issue: 5–8
  year: 2010
  ident: 10.1016/j.measurement.2020.108011_b0025
  article-title: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2297-z
– volume: 21
  start-page: 171
  issue: 2
  year: 2003
  ident: 10.1016/j.measurement.2020.108011_b0065
  article-title: A survey on industrial vision systems, applications and tools
  publication-title: Image Vis. Comput.
  doi: 10.1016/S0262-8856(02)00152-X
– volume: 14
  start-page: 129
  issue: 1
  year: 2004
  ident: 10.1016/j.measurement.2020.108011_b0075
  article-title: The model of surface roughness inspection by vision system in turning
  publication-title: Mechatronics
  doi: 10.1016/S0957-4158(02)00096-X
– volume: 12
  start-page: 389
  issue: 3
  year: 2016
  ident: 10.1016/j.measurement.2020.108011_b0165
  article-title: On the use of back propagation and radial basis function neural networks in surface roughness prediction
  publication-title: J. Ind. Eng. Int.
  doi: 10.1007/s40092-016-0146-x
– ident: 10.1016/j.measurement.2020.108011_b0195
– volume: 14
  start-page: 319
  year: 2005
  ident: 10.1016/j.measurement.2020.108011_b0030
  article-title: Surface roughness prediction in turning using artificial neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-005-0468-x
– ident: 10.1016/j.measurement.2020.108011_b0105
– volume: 209
  start-page: 3125
  issue: 7
  year: 2009
  ident: 10.1016/j.measurement.2020.108011_b0125
  article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.07.023
– volume: 43
  start-page: 307
  issue: 1–2
  year: 2010
  ident: 10.1016/j.measurement.2020.108011_b0040
  article-title: Measurement of surface roughness of metals using binary speckle image analysis
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2009.06.010
– volume: 54
  start-page: 1033
  issue: 9–12
  year: 2011
  ident: 10.1016/j.measurement.2020.108011_b0080
  article-title: Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-010-3018-3
– volume: 230
  start-page: 111
  issue: 2
  year: 2014
  ident: 10.1016/j.measurement.2020.108011_b0135
  article-title: Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces
  publication-title: Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng.
  doi: 10.1177/0954408914540633
– ident: 10.1016/j.measurement.2020.108011_b0110
– volume: 11
  start-page: 93
  issue: 2
  year: 2016
  ident: 10.1016/j.measurement.2020.108011_b0120
  article-title: Surface roughness assessing based on digital image features
  publication-title: Adv. Product. Eng. Manage.
  doi: 10.14743/apem2016.2.212
– volume: 70
  start-page: 100
  issue: December
  year: 2015
  ident: 10.1016/j.measurement.2020.108011_b0130
  article-title: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2015.03.037
– ident: 10.1016/j.measurement.2020.108011_b0175
– volume: 37
  start-page: 577
  issue: 7
  year: 2004
  ident: 10.1016/j.measurement.2020.108011_b0050
  article-title: A vision system for surface roughness characterization using the gray level co-occurrence matrix
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2004.03.004
– ident: 10.1016/j.measurement.2020.108011_b0170
– volume: 25
  start-page: 25
  issue: 1
  year: 2008
  ident: 10.1016/j.measurement.2020.108011_b0095
  article-title: Sparse directional image representations using the discrete shearlet transform
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2007.09.003
– volume: 26
  start-page: 1202
  issue: 11–12
  year: 2005
  ident: 10.1016/j.measurement.2020.108011_b0020
  article-title: Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-004-2110-y
– ident: 10.1016/j.measurement.2020.108011_b0090
– volume: 32
  start-page: 196
  issue: 3
  year: 2008
  ident: 10.1016/j.measurement.2020.108011_b0045
  article-title: Evaluation of surface roughness based on monochromatic speckle correlation using image processing
  publication-title: Precis. Eng.
  doi: 10.1016/j.precisioneng.2007.08.005
– volume: 46
  start-page: 275
  issue: 1–4
  year: 2010
  ident: 10.1016/j.measurement.2020.108011_b0060
  article-title: Noncontact roughness measurement of turned parts using machine vision
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-009-2101-0
– volume: 97
  start-page: 150
  year: 2014
  ident: 10.1016/j.measurement.2020.108011_b0055
  article-title: Study on the relationship between surface roughness of AA6061 alloy end milling and image texture features of milled surface
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.12.236
– ident: 10.1016/j.measurement.2020.108011_b0085
– ident: 10.1016/j.measurement.2020.108011_b0185
  doi: 10.1002/9780470926994
– ident: 10.1016/j.measurement.2020.108011_b0100
– volume: 69
  start-page: 1063
  issue: 5–8
  year: 2013
  ident: 10.1016/j.measurement.2020.108011_b0140
  article-title: Cutting parameter and tool path style effects on cutting force and tool deflection in machining of convex and concave inclined surfaces
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-013-5075-x
– ident: 10.1016/j.measurement.2020.108011_b0150
  doi: 10.1007/s00521-014-1696-8
– volume: 12
  start-page: 383
  issue: 3
  year: 2011
  ident: 10.1016/j.measurement.2020.108011_b0015
  article-title: Optimization of cutting conditions for surface roughness in CNC end milling
  publication-title: Int. J. Precis. Eng. Manuf.
  doi: 10.1007/s12541-011-0050-7
– volume: 43
  start-page: 852
  issue: 9–10
  year: 2009
  ident: 10.1016/j.measurement.2020.108011_b0010
  article-title: An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-008-1763-3
– volume: 25
  start-page: 250
  issue: 2
  year: 2009
  ident: 10.1016/j.measurement.2020.108011_b0005
  article-title: Surface roughness prediction model of 6061–T6 aluminium alloy machining using statistical method
  publication-title: Eur. J. Sci. Res.
– volume: 51
  start-page: 957
  issue: 6
  year: 2017
  ident: 10.1016/j.measurement.2020.108011_b0145
  article-title: Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling
  publication-title: Mater. Tehnol.
  doi: 10.17222/mit.2017.039
– volume: 51
  start-page: 63
  issue: 1
  year: 2014
  ident: 10.1016/j.measurement.2020.108011_b0160
  article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network
  publication-title: Meas. J. Int. Meas. Confed.
  doi: 10.1016/j.measurement.2014.01.024
– ident: 10.1016/j.measurement.2020.108011_b0180
SSID ssj0006396
Score 2.4115884
Snippet •A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting...
Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108011
SubjectTerms Aluminum
Artificial neural networks
Cutting parameters
Directional sensitivity
Discrete element method
Discrete Wavelet Transform
End milling
Experimentation
Fast Fourier transformations
Fourier transforms
High speed tool steels
Hybrid transform
Machine vision
Neural networks
Numerical controls
Orthogonal arrays
Shearlets
Studies
Surface roughness
Wavelet transforms
Title A Novel Hybrid Transform approach with integration of Fast Fourier, Discrete Wavelet and Discrete Shearlet Transforms for prediction of surface roughness on machined surfaces
URI https://dx.doi.org/10.1016/j.measurement.2020.108011
https://www.proquest.com/docview/2446726234
Volume 164
WOSCitedRecordID wos000548658100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF21KSCQQNCCKBS0SIhLcJX4a9cSlwgSCmpDJQLkZq3tXZKSJiFOovKn-I3MftpFFIUDF8saxxtH8zz7dvJ2BqHnNBQRKUjohTD9yGwV9zJRFF4rzIKCRZFIeKaaTZB-nw6HyenW9m27F2Y9IdMpvbhI5v_V1WADZ8uts__gbjcoGOAcnA5HcDscN3J8p9mfrfmkefRDbsbS1cslM3Xlw3Xu1daJMISxx8ql7LEkG9ipODSGeAKEuvmFydYUWofujKoPtrS60VVZB1lxoBjndsxytRAslwrG1deRCqlgP1fqTaC55mpZp8cnVcZS5SpqdS0qladNX9Y_rDYuyiKidV3B6YJlI_ZNS8jffHZ_OjlZ-Unzo5QdjdesdLOTjHojvVGu03w7m7MJq2dGYBncvpQZcVt2bJSsdFKlqjgbeJK_6IlQR39KAi9sq_7u1fQQh7UA3_7jtKMzIGeH59UPP5RPpBScZjK5VOq7_yHtfTo-Tgfd4eDF_Lsnu6BJtYBpCbONdnwSJbSBdjrvusP3jlsAn4x11lA__A30rFIsXvHtVzGu37iHIlSDu-iOWQnhjkbwPbTFp7voVq0-5i66rvTJebmHfnawQjXWqMYOd9iiGktU4xqq8UxgiWpsUP0SW_hig2kMmK6MFtPV2CWGI64wLUc0qMUO0xjsFtP2ankfDXrdwesjz7Qa8fIgTJaeoIxTAeQ4YbQQAaFtAWcxafssCjLBwzDgAW8VgkVxAIw5Y5znJOHcFzRJRPAANaazKX-IcMizWAiIcy0u5dkkETRjOfOznAnmE38fUeuNNDdl-GU3mElq9ZZnac2RqXRkqh25j3x361zXotnkplfW5akh1ZospwDeTW4_sDBJzTtfprAkiIkPC6fw0d8vP0Y3qxfzADWWixV_gq7l6-W4XDw14P4FtK8Fyw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hybrid+Transform+approach+with+integration+of+Fast+Fourier%2C+Discrete+Wavelet+and+Discrete+Shearlet+Transforms+for+prediction+of+surface+roughness+on+machined+surfaces&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Prabhakar%2C+DVN&rft.au=Kumar%2C+M+Sreenivasa&rft.au=Krishna%2C+A+Gopala&rft.date=2020-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=164&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2020.108011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon