A Novel Hybrid Transform approach with integration of Fast Fourier, Discrete Wavelet and Discrete Shearlet Transforms for prediction of surface roughness on machined surfaces
•A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed meth...
Gespeichert in:
| Veröffentlicht in: | Measurement : journal of the International Measurement Confederation Jg. 164; S. 108011 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
London
Elsevier Ltd
01.11.2020
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0263-2241, 1873-412X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed methodology is within acceptable limits.•FFT_DWT_DST model showed better prediction accuracy than conventional methods.
Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi’s L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy. |
|---|---|
| AbstractList | Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi's L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy. •A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting surface roughness.•Prediction error of MLFFANN training with cutting and vision parameters is less.•Validation roughness error of proposed methodology is within acceptable limits.•FFT_DWT_DST model showed better prediction accuracy than conventional methods. Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in obtaining accurate information from periodic data than wavelets, wavelets are effective in handling multi-resolution data than fourier transform, shearlets show much higher directional sensitivity than both fourier transform and wavelets but are computationally complex. Hence a novel hybrid transform approach with integration of Fast Fourier Transform (FFT), Discrete Wavelet Transform (DWT) and Discrete Shearlet Transform (DST) to characterize surface roughness on machined surfaces is presented. For the experimentation, Taguchi’s L9 orthogonal array was used on Computer Numerical Control (CNC) mill with High Speed Steel (HSS) end mill to machine aluminum 3025 alloy work samples. The Artificial Neural Network is trained with cutting parameters, vision parameters as input and the experimental surface roughness (Ra, Rq, Rz) as output. The validation results of proposed models show better performance with reasonable accuracy. |
| ArticleNumber | 108011 |
| Author | Sreenivasa Kumar, M. Prabhakar, D.V.N. Gopala Krishna, A. |
| Author_xml | – sequence: 1 givenname: D.V.N. surname: Prabhakar fullname: Prabhakar, D.V.N. email: dvnprabhakarvasavi@gmail.com organization: Department of Mechanical Engineering, Sri Vasavi Engineering College (JNTUK), Tadepalligudem, West Godavari Dist., 534101, India – sequence: 2 givenname: M. surname: Sreenivasa Kumar fullname: Sreenivasa Kumar, M. organization: Department of Mechanical Engineering, Narasaraopeta Engineering College, Narasaraopeta, Guntur Dist., 522601, India – sequence: 3 givenname: A. surname: Gopala Krishna fullname: Gopala Krishna, A. organization: Department of Mechanical Engineering, University College of Engineering, JNTUK, Kakinada, East Godavari Dist., 533001, India |
| BookMark | eNqNkc1uUzEQhS1UJNLCOxix5Qb_3N6fFapC0yJVdEGkdmdNfMeNo1w7jJ2ivhTPWIdQQF11Y1vHM99ozjlmRyEGZOy9FFMpZPNpPR0R0o5wxJCnSqi93gkpX7GJ7Fpd1VLdHrGJUI2ulKrlG3ac0loI0ei-mbBfZ_xbvMcNv3xYkh_4giAkF2nksN1SBLviP31ecR8y3hFkHwOPjs8hZT6PO_JIH_kXnyxhRn4DBYWZQxj-id9XCLRX_7ITLyffEg7ePhHLDg4scoq7u1XAlHjRxzLfBxyeftNb9trBJuG7P_cJW8zPF7PL6ur64uvs7Kqyuu5z5TrAzsle9NANTreddOXVtFLBqV46rGuNGsXg4LTRUoolINq2R1Su63unT9iHA7ZY8GOHKZt12TWUiUbVddOqRum6VH0-VFmKKRE6Y33-bVEm8BsjhdlnZNbmv4zMPiNzyKgQ-meELfkR6OFFvbNDLxYf7ksOJlmPwRZTCW02Q_QvoDwCjhK64g |
| CitedBy_id | crossref_primary_10_3390_inventions10040071 crossref_primary_10_3390_coatings14020210 crossref_primary_10_32604_cmes_2021_014489 crossref_primary_10_1080_10910344_2024_2324785 crossref_primary_10_1016_j_ymssp_2020_107474 crossref_primary_10_1007_s12008_023_01202_1 crossref_primary_10_3390_ma15249068 crossref_primary_10_3390_jmmp8060244 crossref_primary_10_3390_s21144728 crossref_primary_10_1016_j_ymssp_2023_110282 crossref_primary_10_1016_j_measurement_2020_108879 crossref_primary_10_1088_1742_6596_2785_1_012155 crossref_primary_10_1016_j_ceramint_2021_11_281 crossref_primary_10_1520_JTE20230775 crossref_primary_10_3390_en18133561 crossref_primary_10_1038_s41598_025_89228_1 crossref_primary_10_1088_1742_6596_2724_1_012011 crossref_primary_10_1016_j_measurement_2024_115862 crossref_primary_10_1016_j_mtcomm_2021_102984 crossref_primary_10_3390_en14061545 crossref_primary_10_1088_1361_6501_adeffe crossref_primary_10_3390_ma16083167 crossref_primary_10_3390_app14188144 crossref_primary_10_1088_1361_6501_ac875b crossref_primary_10_3390_s22051991 crossref_primary_10_1016_j_measurement_2021_109677 crossref_primary_10_1088_2051_672X_acce50 crossref_primary_10_1016_j_cirpj_2022_06_001 crossref_primary_10_1016_j_geoen_2024_212654 |
| Cites_doi | 10.1016/S0890-6955(03)00059-2 10.1007/s00170-010-2668-5 10.1007/s00170-014-5828-1 10.1109/TNN.2007.893088 10.1007/s00170-005-2538-8 10.1007/s00170-009-2297-z 10.1016/S0262-8856(02)00152-X 10.1016/S0957-4158(02)00096-X 10.1007/s40092-016-0146-x 10.1007/s00521-005-0468-x 10.1016/j.jmatprotec.2008.07.023 10.1016/j.triboint.2009.06.010 10.1007/s00170-010-3018-3 10.1177/0954408914540633 10.14743/apem2016.2.212 10.1016/j.measurement.2015.03.037 10.1016/j.ndteint.2004.03.004 10.1016/j.acha.2007.09.003 10.1007/s00170-004-2110-y 10.1016/j.precisioneng.2007.08.005 10.1007/s00170-009-2101-0 10.1016/j.proeng.2014.12.236 10.1002/9780470926994 10.1007/s00170-013-5075-x 10.1007/s00521-014-1696-8 10.1007/s12541-011-0050-7 10.1007/s00170-008-1763-3 10.17222/mit.2017.039 10.1016/j.measurement.2014.01.024 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Nov 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Nov 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2020.108011 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2020_108011 S0263224120305492 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c349t-f8ae8f1909a8df3781f9a86712a53bfe443e3e0dfa563110baeec79ee2f899f3 |
| ISICitedReferencesCount | 33 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548658100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Mon Nov 10 02:55:56 EST 2025 Tue Nov 18 22:13:46 EST 2025 Sat Nov 29 07:24:28 EST 2025 Fri Feb 23 02:47:33 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hybrid transform Surface roughness Machine vision Artificial neural networks Shearlets |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-f8ae8f1909a8df3781f9a86712a53bfe443e3e0dfa563110baeec79ee2f899f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2446726234 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2446726234 crossref_citationtrail_10_1016_j_measurement_2020_108011 crossref_primary_10_1016_j_measurement_2020_108011 elsevier_sciencedirect_doi_10_1016_j_measurement_2020_108011 |
| PublicationCentury | 2000 |
| PublicationDate | November 2020 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: November 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Gadelmawla (b0050) 2004; 37 Markopoulos, Georgiopoulos, Manolakos (b0165) 2016; 12 Yang, Natarajan, Sekar, Palani (b0115) 2010; 51 Samtas (b0155) 2014; 73 S. S. K, Estimation of Surface roughness parameter using Wavelets based feature extraction, IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(10) (2008) 282. Gok (b0130) 2015; 70 Benardos, Vosniakos (b0070) 2003; 43 Karayel (b0125) 2009; 209 Sanjay, Jyothi (b0035) 2006; 29 Palani, Natarajan (b0080) 2011; 54 CMTI, “Machine Tool Design Handbook,” 2008, p. 955. Raju, Janardhana, Kumar, Rao (b0015) 2011; 12 Acharya, Image Processing: Principles and Applications [book review], vol. 18, no. 2. 2007. Dhanasekar, Mohan, Bhaduri, Ramamoorthy (b0045) 2008; 32 Seeman, Ganesan, Karthikeyan, Velayudham (b0025) 2010; 48 R.K. Beemaraj, Prediction of Surface Roughness in turning process by using artificial neural network model, no. March, 2018. Reddy, Venkateswara Rao (b0020) 2005; 26 Gök, Demirci, Gök (b0135) 2014; 230 Lee, Yu, Juan (b0075) 2004; 14 Öktem (b0010) 2009; 43 Shahabi, Ratnam (b0060) 2010; 46 Kadirgama, Noor, Rahman, Rejab, Haron, Abou-El-Hossein (b0005) 2009; 25 Easley, Labate, Lim (b0095) 2008; 25 Malamas, Petrakis, Zervakis, Petit, Legat (b0065) 2003; 21 N. Arunachalam, B. Ramamoorthy, Vision based surface roughness evaluation of ground components using wavelet transform and neural network, in: 18th IMEKO World Congr. 2006 Metrol. a Sustain. Dev., vol. 3, no. September, 2006, pp. 2381–2385. Venkata Rao, Murthy, Mohan Rao (b0160) 2014; 51 Nathan, Thanigaiyarasu, Vani (b0055) 2014; 97 Simunovic, Svalina, Simunovic, Saric, Havrlisan, Vukelic (b0120) 2016,; 11 Rafael C. Gonzalez, Richard E. Woods, Digital Image processing, 2nd ed., Pearson Publishers. A.B.A. Hassanat, V.B.S. Prasath, K.I. Mseidein, M. Al-awadi, A.M. Hammouri, A hybrid wavelet-shearlet approach to robust digital image watermarking, 41 (2017) 3–24. S.P.M.U.B.K. Vinayagam, Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process, (2015) 41–55. . Surjya, Chakraborty (b0030) 2005; 14 J.C. Goswami, A.K. Chan, Fundamentals of wavelets Fundam. Wavelets (2011). GittaKutynoik, Wang-Q Lim, Rafael Reisenhofer, Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Transactions on Mathematical Software, www.shearlab.org. Gok, Gologlu, Demirci (b0140) 2013; 69 Emily J. King, Rafael Reisenhofer, Johannes Kiefer, Wang-Q Lim, Zhen Li, Georg Heygster, Shearlet-Based Edge Detection: Flame Fronts and Tidal Flats, Applications of Digital Image Processing. Gök, Gök, Bilgin, Alkan (b0145) 2017; 51 Kayahan, Oktem, Hacizade, Nasibov, Gundogdu (b0040) 2010; 43 Benardos (10.1016/j.measurement.2020.108011_b0070) 2003; 43 Lee (10.1016/j.measurement.2020.108011_b0075) 2004; 14 Kadirgama (10.1016/j.measurement.2020.108011_b0005) 2009; 25 Gadelmawla (10.1016/j.measurement.2020.108011_b0050) 2004; 37 Simunovic (10.1016/j.measurement.2020.108011_b0120) 2016; 11 Venkata Rao (10.1016/j.measurement.2020.108011_b0160) 2014; 51 10.1016/j.measurement.2020.108011_b0180 10.1016/j.measurement.2020.108011_b0085 Malamas (10.1016/j.measurement.2020.108011_b0065) 2003; 21 10.1016/j.measurement.2020.108011_b0100 Shahabi (10.1016/j.measurement.2020.108011_b0060) 2010; 46 Gok (10.1016/j.measurement.2020.108011_b0130) 2015; 70 Sanjay (10.1016/j.measurement.2020.108011_b0035) 2006; 29 Kayahan (10.1016/j.measurement.2020.108011_b0040) 2010; 43 10.1016/j.measurement.2020.108011_b0185 Seeman (10.1016/j.measurement.2020.108011_b0025) 2010; 48 Yang (10.1016/j.measurement.2020.108011_b0115) 2010; 51 Raju (10.1016/j.measurement.2020.108011_b0015) 2011; 12 10.1016/j.measurement.2020.108011_b0105 Gök (10.1016/j.measurement.2020.108011_b0145) 2017; 51 Dhanasekar (10.1016/j.measurement.2020.108011_b0045) 2008; 32 Palani (10.1016/j.measurement.2020.108011_b0080) 2011; 54 Samtas (10.1016/j.measurement.2020.108011_b0155) 2014; 73 Gök (10.1016/j.measurement.2020.108011_b0135) 2014; 230 Öktem (10.1016/j.measurement.2020.108011_b0010) 2009; 43 Surjya (10.1016/j.measurement.2020.108011_b0030) 2005; 14 Markopoulos (10.1016/j.measurement.2020.108011_b0165) 2016; 12 10.1016/j.measurement.2020.108011_b0190 10.1016/j.measurement.2020.108011_b0090 10.1016/j.measurement.2020.108011_b0195 10.1016/j.measurement.2020.108011_b0150 Karayel (10.1016/j.measurement.2020.108011_b0125) 2009; 209 Nathan (10.1016/j.measurement.2020.108011_b0055) 2014; 97 10.1016/j.measurement.2020.108011_b0170 Gok (10.1016/j.measurement.2020.108011_b0140) 2013; 69 10.1016/j.measurement.2020.108011_b0110 10.1016/j.measurement.2020.108011_b0175 Reddy (10.1016/j.measurement.2020.108011_b0020) 2005; 26 Easley (10.1016/j.measurement.2020.108011_b0095) 2008; 25 |
| References_xml | – reference: GittaKutynoik, Wang-Q Lim, Rafael Reisenhofer, Shearlab 3D: Faithful digital shearlet transforms based on compactly supported shearlets, ACM Transactions on Mathematical Software, www.shearlab.org. – volume: 11 start-page: 93 year: 2016, end-page: 104 ident: b0120 article-title: Surface roughness assessing based on digital image features publication-title: Adv. Product. Eng. Manage. – volume: 46 start-page: 275 year: 2010 end-page: 284 ident: b0060 article-title: Noncontact roughness measurement of turned parts using machine vision publication-title: Int. J. Adv. Manuf. Technol. – volume: 73 start-page: 353 year: 2014 end-page: 364 ident: b0155 article-title: Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network publication-title: Int. J. Adv. Manuf. Technol. – reference: S. S. K, Estimation of Surface roughness parameter using Wavelets based feature extraction, IJCSNS Int. J. Comput. Sci. Netw. Secur. 8(10) (2008) 282. – volume: 54 start-page: 1033 year: 2011 end-page: 1042 ident: b0080 article-title: Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform publication-title: Int. J. Adv. Manuf. Technol. – volume: 69 start-page: 1063 year: 2013 end-page: 1078 ident: b0140 article-title: Cutting parameter and tool path style effects on cutting force and tool deflection in machining of convex and concave inclined surfaces publication-title: Int. J. Adv. Manuf. Technol. – volume: 25 start-page: 250 year: 2009 end-page: 256 ident: b0005 article-title: Surface roughness prediction model of 6061–T6 aluminium alloy machining using statistical method publication-title: Eur. J. Sci. Res. – reference: A.B.A. Hassanat, V.B.S. Prasath, K.I. Mseidein, M. Al-awadi, A.M. Hammouri, A hybrid wavelet-shearlet approach to robust digital image watermarking, 41 (2017) 3–24. – volume: 14 start-page: 129 year: 2004 end-page: 141 ident: b0075 article-title: The model of surface roughness inspection by vision system in turning publication-title: Mechatronics – volume: 26 start-page: 1202 year: 2005 end-page: 1210 ident: b0020 article-title: Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling publication-title: Int. J. Adv. Manuf. Technol. – reference: N. Arunachalam, B. Ramamoorthy, Vision based surface roughness evaluation of ground components using wavelet transform and neural network, in: 18th IMEKO World Congr. 2006 Metrol. a Sustain. Dev., vol. 3, no. September, 2006, pp. 2381–2385. – volume: 209 start-page: 3125 year: 2009 end-page: 3137 ident: b0125 article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network publication-title: J. Mater. Process. Technol. – volume: 48 start-page: 613 year: 2010 end-page: 624 ident: b0025 article-title: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach publication-title: Int. J. Adv. Manuf. Technol. – volume: 230 start-page: 111 year: 2014 end-page: 119 ident: b0135 article-title: Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces publication-title: Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. – volume: 97 start-page: 150 year: 2014 end-page: 157 ident: b0055 article-title: Study on the relationship between surface roughness of AA6061 alloy end milling and image texture features of milled surface publication-title: Procedia Eng. – volume: 29 start-page: 846 year: 2006 end-page: 852 ident: b0035 article-title: A study of surface roughness in drilling using mathematical analysis and neural networks publication-title: Int. J. Adv. Manuf. Technol. – reference: CMTI, “Machine Tool Design Handbook,” 2008, p. 955. – volume: 51 start-page: 957 year: 2017 end-page: 965 ident: b0145 article-title: Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling publication-title: Mater. Tehnol. – volume: 14 start-page: 319 year: 2005 end-page: 324 ident: b0030 article-title: Surface roughness prediction in turning using artificial neural networks publication-title: Neural Comput. Appl. – reference: R.K. Beemaraj, Prediction of Surface Roughness in turning process by using artificial neural network model, no. March, 2018. – volume: 70 start-page: 100 year: 2015 end-page: 109 ident: b0130 article-title: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA publication-title: Meas. J. Int. Meas. Confed. – volume: 12 start-page: 383 year: 2011 end-page: 391 ident: b0015 article-title: Optimization of cutting conditions for surface roughness in CNC end milling publication-title: Int. J. Precis. Eng. Manuf. – volume: 43 start-page: 307 year: 2010 end-page: 311 ident: b0040 article-title: Measurement of surface roughness of metals using binary speckle image analysis publication-title: Tribol. Int. – reference: Emily J. King, Rafael Reisenhofer, Johannes Kiefer, Wang-Q Lim, Zhen Li, Georg Heygster, Shearlet-Based Edge Detection: Flame Fronts and Tidal Flats, Applications of Digital Image Processing. – volume: 32 start-page: 196 year: 2008 end-page: 206 ident: b0045 article-title: Evaluation of surface roughness based on monochromatic speckle correlation using image processing publication-title: Precis. Eng. – volume: 51 start-page: 63 year: 2014 end-page: 70 ident: b0160 article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network publication-title: Meas. J. Int. Meas. Confed. – volume: 43 start-page: 852 year: 2009 end-page: 861 ident: b0010 article-title: An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation publication-title: Int. J. Adv. Manuf. Technol. – volume: 25 start-page: 25 year: 2008 end-page: 46 ident: b0095 article-title: Sparse directional image representations using the discrete shearlet transform publication-title: Appl. Comput. Harmon. Anal. – reference: Acharya, Image Processing: Principles and Applications [book review], vol. 18, no. 2. 2007. – volume: 21 start-page: 171 year: 2003 end-page: 188 ident: b0065 article-title: A survey on industrial vision systems, applications and tools publication-title: Image Vis. Comput. – volume: 12 start-page: 389 year: 2016 end-page: 400 ident: b0165 article-title: On the use of back propagation and radial basis function neural networks in surface roughness prediction publication-title: J. Ind. Eng. Int. – reference: J.C. Goswami, A.K. Chan, Fundamentals of wavelets Fundam. Wavelets (2011). – reference: . – reference: S.P.M.U.B.K. Vinayagam, Surface roughness prediction using Taguchi-fuzzy logic-neural network analysis for CNT nanofluids based grinding process, (2015) 41–55. – volume: 37 start-page: 577 year: 2004 end-page: 588 ident: b0050 article-title: A vision system for surface roughness characterization using the gray level co-occurrence matrix publication-title: NDT E Int. – volume: 51 start-page: 965 year: 2010 end-page: 971 ident: b0115 article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm publication-title: Int. J. Adv. Manuf. Technol. – volume: 43 start-page: 833 year: 2003 end-page: 844 ident: b0070 article-title: Predicting surface roughness in machining: A review publication-title: Int. J. Mach. Tools Manuf. – reference: Rafael C. Gonzalez, Richard E. Woods, Digital Image processing, 2nd ed., Pearson Publishers. – volume: 43 start-page: 833 issue: 8 year: 2003 ident: 10.1016/j.measurement.2020.108011_b0070 article-title: Predicting surface roughness in machining: A review publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/S0890-6955(03)00059-2 – volume: 51 start-page: 965 issue: 9–12 year: 2010 ident: 10.1016/j.measurement.2020.108011_b0115 article-title: Prediction of surface roughness in turning operations by computer vision using neural network trained by differential evolution algorithm publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-2668-5 – volume: 73 start-page: 353 issue: 1–4 year: 2014 ident: 10.1016/j.measurement.2020.108011_b0155 article-title: Measurement and evaluation of surface roughness based on optic system using image processing and artificial neural network publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-014-5828-1 – ident: 10.1016/j.measurement.2020.108011_b0190 doi: 10.1109/TNN.2007.893088 – volume: 29 start-page: 846 year: 2006 ident: 10.1016/j.measurement.2020.108011_b0035 article-title: A study of surface roughness in drilling using mathematical analysis and neural networks publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-2538-8 – volume: 48 start-page: 613 issue: 5–8 year: 2010 ident: 10.1016/j.measurement.2020.108011_b0025 article-title: Study on tool wear and surface roughness in machining of particulate aluminum metal matrix composite-response surface methodology approach publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2297-z – volume: 21 start-page: 171 issue: 2 year: 2003 ident: 10.1016/j.measurement.2020.108011_b0065 article-title: A survey on industrial vision systems, applications and tools publication-title: Image Vis. Comput. doi: 10.1016/S0262-8856(02)00152-X – volume: 14 start-page: 129 issue: 1 year: 2004 ident: 10.1016/j.measurement.2020.108011_b0075 article-title: The model of surface roughness inspection by vision system in turning publication-title: Mechatronics doi: 10.1016/S0957-4158(02)00096-X – volume: 12 start-page: 389 issue: 3 year: 2016 ident: 10.1016/j.measurement.2020.108011_b0165 article-title: On the use of back propagation and radial basis function neural networks in surface roughness prediction publication-title: J. Ind. Eng. Int. doi: 10.1007/s40092-016-0146-x – ident: 10.1016/j.measurement.2020.108011_b0195 – volume: 14 start-page: 319 year: 2005 ident: 10.1016/j.measurement.2020.108011_b0030 article-title: Surface roughness prediction in turning using artificial neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-005-0468-x – ident: 10.1016/j.measurement.2020.108011_b0105 – volume: 209 start-page: 3125 issue: 7 year: 2009 ident: 10.1016/j.measurement.2020.108011_b0125 article-title: Prediction and control of surface roughness in CNC lathe using artificial neural network publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2008.07.023 – volume: 43 start-page: 307 issue: 1–2 year: 2010 ident: 10.1016/j.measurement.2020.108011_b0040 article-title: Measurement of surface roughness of metals using binary speckle image analysis publication-title: Tribol. Int. doi: 10.1016/j.triboint.2009.06.010 – volume: 54 start-page: 1033 issue: 9–12 year: 2011 ident: 10.1016/j.measurement.2020.108011_b0080 article-title: Prediction of surface roughness in CNC end milling by machine vision system using artificial neural network based on 2D Fourier transform publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-010-3018-3 – volume: 230 start-page: 111 issue: 2 year: 2014 ident: 10.1016/j.measurement.2020.108011_b0135 article-title: Determination of experimental, analytical, and numerical values of tool deflection at ball end milling of inclined surfaces publication-title: Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. doi: 10.1177/0954408914540633 – ident: 10.1016/j.measurement.2020.108011_b0110 – volume: 11 start-page: 93 issue: 2 year: 2016 ident: 10.1016/j.measurement.2020.108011_b0120 article-title: Surface roughness assessing based on digital image features publication-title: Adv. Product. Eng. Manage. doi: 10.14743/apem2016.2.212 – volume: 70 start-page: 100 issue: December year: 2015 ident: 10.1016/j.measurement.2020.108011_b0130 article-title: A new approach to minimization of the surface roughness and cutting force via fuzzy TOPSIS, multi-objective grey design and RSA publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2015.03.037 – ident: 10.1016/j.measurement.2020.108011_b0175 – volume: 37 start-page: 577 issue: 7 year: 2004 ident: 10.1016/j.measurement.2020.108011_b0050 article-title: A vision system for surface roughness characterization using the gray level co-occurrence matrix publication-title: NDT E Int. doi: 10.1016/j.ndteint.2004.03.004 – ident: 10.1016/j.measurement.2020.108011_b0170 – volume: 25 start-page: 25 issue: 1 year: 2008 ident: 10.1016/j.measurement.2020.108011_b0095 article-title: Sparse directional image representations using the discrete shearlet transform publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2007.09.003 – volume: 26 start-page: 1202 issue: 11–12 year: 2005 ident: 10.1016/j.measurement.2020.108011_b0020 article-title: Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-004-2110-y – ident: 10.1016/j.measurement.2020.108011_b0090 – volume: 32 start-page: 196 issue: 3 year: 2008 ident: 10.1016/j.measurement.2020.108011_b0045 article-title: Evaluation of surface roughness based on monochromatic speckle correlation using image processing publication-title: Precis. Eng. doi: 10.1016/j.precisioneng.2007.08.005 – volume: 46 start-page: 275 issue: 1–4 year: 2010 ident: 10.1016/j.measurement.2020.108011_b0060 article-title: Noncontact roughness measurement of turned parts using machine vision publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-009-2101-0 – volume: 97 start-page: 150 year: 2014 ident: 10.1016/j.measurement.2020.108011_b0055 article-title: Study on the relationship between surface roughness of AA6061 alloy end milling and image texture features of milled surface publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.12.236 – ident: 10.1016/j.measurement.2020.108011_b0085 – ident: 10.1016/j.measurement.2020.108011_b0185 doi: 10.1002/9780470926994 – ident: 10.1016/j.measurement.2020.108011_b0100 – volume: 69 start-page: 1063 issue: 5–8 year: 2013 ident: 10.1016/j.measurement.2020.108011_b0140 article-title: Cutting parameter and tool path style effects on cutting force and tool deflection in machining of convex and concave inclined surfaces publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-013-5075-x – ident: 10.1016/j.measurement.2020.108011_b0150 doi: 10.1007/s00521-014-1696-8 – volume: 12 start-page: 383 issue: 3 year: 2011 ident: 10.1016/j.measurement.2020.108011_b0015 article-title: Optimization of cutting conditions for surface roughness in CNC end milling publication-title: Int. J. Precis. Eng. Manuf. doi: 10.1007/s12541-011-0050-7 – volume: 43 start-page: 852 issue: 9–10 year: 2009 ident: 10.1016/j.measurement.2020.108011_b0010 article-title: An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-008-1763-3 – volume: 25 start-page: 250 issue: 2 year: 2009 ident: 10.1016/j.measurement.2020.108011_b0005 article-title: Surface roughness prediction model of 6061–T6 aluminium alloy machining using statistical method publication-title: Eur. J. Sci. Res. – volume: 51 start-page: 957 issue: 6 year: 2017 ident: 10.1016/j.measurement.2020.108011_b0145 article-title: Effects of cutting parameters and tool-path strategies on tool acceleration in ball-end milling publication-title: Mater. Tehnol. doi: 10.17222/mit.2017.039 – volume: 51 start-page: 63 issue: 1 year: 2014 ident: 10.1016/j.measurement.2020.108011_b0160 article-title: Prediction of cutting tool wear, surface roughness and vibration of work piece in boring of AISI 316 steel with artificial neural network publication-title: Meas. J. Int. Meas. Confed. doi: 10.1016/j.measurement.2014.01.024 – ident: 10.1016/j.measurement.2020.108011_b0180 |
| SSID | ssj0006396 |
| Score | 2.4115884 |
| Snippet | •A novel hybrid shearlet application to characterize the surface integrity is proposed.•Integrated Fourier-Wavelet-Shearlet transform is used for predicting... Milled surfaces contain features of geometrically similar appearances under various magnifications in different orientations. Fourier transform is useful in... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108011 |
| SubjectTerms | Aluminum Artificial neural networks Cutting parameters Directional sensitivity Discrete element method Discrete Wavelet Transform End milling Experimentation Fast Fourier transformations Fourier transforms High speed tool steels Hybrid transform Machine vision Neural networks Numerical controls Orthogonal arrays Shearlets Studies Surface roughness Wavelet transforms |
| Title | A Novel Hybrid Transform approach with integration of Fast Fourier, Discrete Wavelet and Discrete Shearlet Transforms for prediction of surface roughness on machined surfaces |
| URI | https://dx.doi.org/10.1016/j.measurement.2020.108011 https://www.proquest.com/docview/2446726234 |
| Volume | 164 |
| WOSCitedRecordID | wos000548658100008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF21KSCQQNCCKBS0SIhLcJX4a9cSlwgSCmpDJQLkZq3tXZKSJiFOovKn-I3MftpFFIUDF8saxxtH8zz7dvJ2BqHnNBQRKUjohTD9yGwV9zJRFF4rzIKCRZFIeKaaTZB-nw6HyenW9m27F2Y9IdMpvbhI5v_V1WADZ8uts__gbjcoGOAcnA5HcDscN3J8p9mfrfmkefRDbsbS1cslM3Xlw3Xu1daJMISxx8ql7LEkG9ipODSGeAKEuvmFydYUWofujKoPtrS60VVZB1lxoBjndsxytRAslwrG1deRCqlgP1fqTaC55mpZp8cnVcZS5SpqdS0qladNX9Y_rDYuyiKidV3B6YJlI_ZNS8jffHZ_OjlZ-Unzo5QdjdesdLOTjHojvVGu03w7m7MJq2dGYBncvpQZcVt2bJSsdFKlqjgbeJK_6IlQR39KAi9sq_7u1fQQh7UA3_7jtKMzIGeH59UPP5RPpBScZjK5VOq7_yHtfTo-Tgfd4eDF_Lsnu6BJtYBpCbONdnwSJbSBdjrvusP3jlsAn4x11lA__A30rFIsXvHtVzGu37iHIlSDu-iOWQnhjkbwPbTFp7voVq0-5i66rvTJebmHfnawQjXWqMYOd9iiGktU4xqq8UxgiWpsUP0SW_hig2kMmK6MFtPV2CWGI64wLUc0qMUO0xjsFtP2ankfDXrdwesjz7Qa8fIgTJaeoIxTAeQ4YbQQAaFtAWcxafssCjLBwzDgAW8VgkVxAIw5Y5znJOHcFzRJRPAANaazKX-IcMizWAiIcy0u5dkkETRjOfOznAnmE38fUeuNNDdl-GU3mElq9ZZnac2RqXRkqh25j3x361zXotnkplfW5akh1ZospwDeTW4_sDBJzTtfprAkiIkPC6fw0d8vP0Y3qxfzADWWixV_gq7l6-W4XDw14P4FtK8Fyw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Hybrid+Transform+approach+with+integration+of+Fast+Fourier%2C+Discrete+Wavelet+and+Discrete+Shearlet+Transforms+for+prediction+of+surface+roughness+on+machined+surfaces&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Prabhakar%2C+DVN&rft.au=Kumar%2C+M+Sreenivasa&rft.au=Krishna%2C+A+Gopala&rft.date=2020-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=164&rft.spage=1&rft_id=info:doi/10.1016%2Fj.measurement.2020.108011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |