Rock mass type prediction for tunnel boring machine using a novel semi-supervised method

•A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preproce...

Full description

Saved in:
Bibliographic Details
Published in:Measurement : journal of the International Measurement Confederation Vol. 179; p. 109545
Main Authors: Yu, Honggan, Tao, Jianfeng, Qin, Chengjin, Xiao, Dengyu, Sun, Hao, Liu, Chengliang
Format: Journal Article
Language:English
Published: London Elsevier Ltd 01.07.2021
Elsevier Science Ltd
Subjects:
ISSN:0263-2241, 1873-412X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preprocessing methods is proposed for the cleaning of the big machine data.•The proposed method outperforms other commonly adopted supervised methods. Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods.
AbstractList Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods.
•A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preprocessing methods is proposed for the cleaning of the big machine data.•The proposed method outperforms other commonly adopted supervised methods. Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods.
ArticleNumber 109545
Author Yu, Honggan
Qin, Chengjin
Xiao, Dengyu
Liu, Chengliang
Sun, Hao
Tao, Jianfeng
Author_xml – sequence: 1
  givenname: Honggan
  surname: Yu
  fullname: Yu, Honggan
– sequence: 2
  givenname: Jianfeng
  surname: Tao
  fullname: Tao, Jianfeng
  email: jftao@sjtu.edu.cn
– sequence: 3
  givenname: Chengjin
  surname: Qin
  fullname: Qin, Chengjin
  email: qinchengjin@sjtu.edu.cn
– sequence: 4
  givenname: Dengyu
  surname: Xiao
  fullname: Xiao, Dengyu
– sequence: 5
  givenname: Hao
  surname: Sun
  fullname: Sun, Hao
– sequence: 6
  givenname: Chengliang
  surname: Liu
  fullname: Liu, Chengliang
BookMark eNqNkE9LAzEQxYNUsK1-h4jnrUk2uzEnkeI_KAii4C1ksxNN7SZrki347d1SD-Kpp2Fm3nvD_GZo4oMHhM4pWVBC68v1ogOdhggd-LxghNFxLiteHaEpvRJlwSl7m6ApYXVZMMbpCZqltCaE1KWsp-jtOZhP3OmUcP7uAfcRWmeyCx7bEHEevIcNbkJ0_n2UmQ_nAQ9p12nsw3ZcJuhckYYe4tYlaHEH-SO0p-jY6k2Cs986R693ty_Lh2L1dP-4vFkVpuQyF5YZxrWxhhNBpCiZuLJCE9BMGKDSVqAbIFY0jaxBNnVlOQdOoRTS8lbYco4u9rl9DF8DpKzWYYh-PKlYVZWEEc75qLreq0wMKUWwyrisd2_mqN1GUaJ2ONVa_cGpdjjVHueYIP8l9NF1On4f5F3uvTCC2DqIKhkH3oyoI5is2uAOSPkBCIOblg
CitedBy_id crossref_primary_10_1016_j_tust_2025_106427
crossref_primary_10_1016_j_tust_2024_106128
crossref_primary_10_1016_j_measurement_2024_115614
crossref_primary_10_1177_16878132241255209
crossref_primary_10_1016_j_tust_2023_105317
crossref_primary_10_1007_s11431_022_2218_9
crossref_primary_10_1016_j_autcon_2024_105623
crossref_primary_10_1016_j_autcon_2025_106395
crossref_primary_10_1016_j_autcon_2022_104711
crossref_primary_10_3389_feart_2023_1121318
crossref_primary_10_1016_j_rineng_2025_106925
crossref_primary_10_1007_s11431_024_2794_6
crossref_primary_10_1016_j_ymssp_2021_108353
crossref_primary_10_1016_j_aei_2023_102295
crossref_primary_10_3390_app15126684
crossref_primary_10_3390_app13127060
crossref_primary_10_1038_s41598_023_28243_6
crossref_primary_10_1155_adce_5172231
crossref_primary_10_1007_s40098_025_01401_5
crossref_primary_10_1007_s10706_024_02931_0
crossref_primary_10_1016_j_knosys_2021_107213
crossref_primary_10_1016_j_tust_2024_105743
crossref_primary_10_1016_j_jestch_2025_101957
crossref_primary_10_1016_j_tust_2024_106258
crossref_primary_10_1016_j_tust_2025_106555
crossref_primary_10_1016_j_tust_2025_106632
crossref_primary_10_1016_j_undsp_2024_01_008
crossref_primary_10_1177_09544062211061682
crossref_primary_10_32604_cmes_2023_029938
crossref_primary_10_1007_s00521_022_07597_4
crossref_primary_10_1016_j_tust_2025_106498
crossref_primary_10_1016_j_aei_2025_103786
crossref_primary_10_1016_j_engappai_2024_109868
crossref_primary_10_1016_j_autcon_2023_104982
crossref_primary_10_1016_j_ymssp_2021_108312
crossref_primary_10_1016_j_jrmge_2024_11_011
crossref_primary_10_1007_s00603_025_04877_y
crossref_primary_10_1016_j_autcon_2022_104734
crossref_primary_10_1007_s00603_024_04189_7
crossref_primary_10_1007_s11440_022_01779_z
crossref_primary_10_1016_j_gsf_2022_101519
crossref_primary_10_1016_j_undsp_2025_02_002
Cites_doi 10.1038/s41467-019-13056-x
10.1016/j.tust.2016.01.034
10.1007/s12205-019-1460-9
10.1016/j.engappai.2020.104015
10.1016/j.renene.2020.04.041
10.1016/0148-9062(84)91489-X
10.1016/j.measurement.2021.109548
10.1016/j.autcon.2018.12.022
10.1016/j.measurement.2014.09.075
10.1016/j.tust.2008.01.005
10.1109/ICDM.2008.17
10.1016/j.bspc.2020.101874
10.1016/j.tust.2017.03.002
10.1109/ACCESS.2019.2917756
10.1016/j.patrec.2017.03.008
10.1016/j.neucom.2015.08.104
10.1007/s00603-015-0789-8
10.1109/78.806084
10.1016/j.jrmge.2019.01.002
10.1016/j.bpj.2019.11.1130
10.1016/j.autcon.2009.04.005
10.1016/j.measurement.2020.108500
10.1016/j.eswa.2010.10.051
10.1007/s00603-009-0060-2
10.1109/ICIAI.2019.8850794
10.1145/335191.335388
10.1016/j.procs.2012.09.120
10.1016/j.tust.2012.04.007
10.1007/s10064-016-0931-1
10.1016/j.engappai.2018.09.010
10.1016/j.ymssp.2020.107386
10.1016/j.measurement.2019.107244
10.1016/j.measurement.2018.05.049
10.1007/BF01239496
10.1109/ACCESS.2020.3031665
10.1016/j.tust.2016.12.009
10.1007/s00603-017-1256-5
10.1007/s100640050031
10.3390/app9183715
10.1007/s10064-019-01626-8
10.1016/j.tust.2016.04.002
10.1016/j.engappai.2011.02.010
10.1016/j.tust.2019.103097
10.1016/j.ijrmms.2016.03.018
10.1016/j.enggeo.2009.06.006
10.1080/01431161.2016.1246775
10.1016/j.autcon.2018.03.030
10.1016/j.tust.2019.103103
10.1016/j.tust.2016.12.011
10.1016/j.engappai.2019.04.013
10.1109/CISP.2015.7407967
10.1016/j.autcon.2018.05.019
10.1016/j.cie.2005.01.009
10.1016/j.tust.2019.04.014
10.1016/j.autcon.2021.103603
10.1109/WIFS.2016.7823921
ContentType Journal Article
Copyright 2021
Copyright Elsevier Science Ltd. Jul 2021
Copyright_xml – notice: 2021
– notice: Copyright Elsevier Science Ltd. Jul 2021
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2021.109545
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Geology
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2021_109545
S0263224121005224
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-f2c24acfc4070973278f7a0ea27ce19f5eabe0f7bb96e9b65f44e41e379f4d7f3
ISICitedReferencesCount 46
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670114400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Mon Nov 10 03:01:30 EST 2025
Tue Nov 18 21:57:03 EST 2025
Sat Nov 29 07:19:42 EST 2025
Fri Feb 23 02:46:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tunnel boring machine
Rock mass type prediction
Stacked sparse autoencoder
Semi-supervised learning
Data preprocessing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-f2c24acfc4070973278f7a0ea27ce19f5eabe0f7bb96e9b65f44e41e379f4d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2553020444
PQPubID 2047460
ParticipantIDs proquest_journals_2553020444
crossref_citationtrail_10_1016_j_measurement_2021_109545
crossref_primary_10_1016_j_measurement_2021_109545
elsevier_sciencedirect_doi_10_1016_j_measurement_2021_109545
PublicationCentury 2000
PublicationDate July 2021
2021-07-00
20210701
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: July 2021
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Wang, He, Prokhorov (b0225) 2012; 13
Azimian (b0055) 2017; 49
Li, Fu, Yu, Gong, Feng, Li, Clinton (b0245) 2016; 37
D. Cozzolino, L. Verdoliva, Single-image splicing localization through autoencoder-based anomaly detection, in: 2016 IEEE international workshop on information forensics and security (WIFS). IEEE, 2016, pp. 1-6, https://doi.org/10.1109/WIFS.2016.7823921.
Xu, Zhou, Asteris, Armaghani (b0175) 2019; 9
Mao, Tang, Wang, Zhang, Wu (b0265) 2018
Liu, Wang, Guan, Li, Xu, Guo, Wang (b0085) 2019; 91
Der Maaten, Hinton (b0305) 2008; 9
Qin, Shi, Tao, Yu, Jin, Lei, Liu (b0190) 2021; 151
Leu, Adi (b0145) 2011; 38
Felletti, Beretta (b0125) 2009; 108
Yin, Xiang, Zhang, Wang, Yin, Kim (b0205) 2016
Sousa, Karam, Costa, Herbert (b0100) 2017; 11
Guan, Deng, Du, Li, Jiang (b0070) 2012; 31
Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (b0155) 2017; 63
Samaei, Ranjbarnia, Nourani, Naghadehi (b0020) 2020; 152
Grozdi, Jovii, Suboti (b0235) 2017; 59
Liu, Wang, Zhao, Guo, Wang, Li, Wang (b0025) 2020; 95
Farrokh, Rostami (b0110) 2008; 23
Hassanpour, Rostami, Khamehchiyan, Bruland, Tavakoli (b0120) 2010; 43
Zhao, Shi, Hu, Song, Zhang, Tao, Wu (b0135) 2019; 7
Wang, Yao, Cai, Zhang (b0215) 2020; 155
Naghadehi, Samaei, Ranjbarnia, Nourani (b0005) 2018; 126
Armaghani, Amin, Yagiz, Faradonbeh, Abdullah (b0180) 2016; 85
Li, Chow, Zhang (b0200) 2020; 8
Gong, Yin, Ma, Zhao (b0035) 2016; 57
Bottou, Chapelle, DeCoste, Weston (b0220) 2007
E.Ghasemi, H. Kalhori, R. Bagherpour, S. Yagiz, Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks. Bull. Eng. Geol. Environ. 77 (2018) 331-343, https://doi.org/ 10.1007/s10064-016-0931-1.
Galende-Hernández, Menéndez, Fuente, Sainz-Palmero (b0090) 2018; 93
Rispoli, Ferrero, Cardu, Farinetti (b0140) 2017; 50
Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (b0170) 2021; 97
Shen, Qi, Wang, Cai, Zhu (b0240) 2018; 76
M. Shi, X. Song, W. Sun. Geology prediction based on operation data of TBM: comparison between deep neural network and statistical learning methods, arXiv preprint arXiv:1809.06688. (2018), https://doi.org/ 10.1109/ICIAI.2019.8850794.
Sun, Shi, Zhang, Zhao, Song (b0195) 2018; 92
Gan, Ng (b0290) 2017; 90
Jung, Chung, Kwon, Lee (b0095) 2019; 23
Thirukovalluru, Dixit, Sevakula, Verma, Salour (b0260) 2016; 2016
Pan, Zhang, Dai, Zhang (b0300) 1999; 47
Yang, Shi, Gong, Hu (b0270) 2009; 18
J. Liang, R. Liu, Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network, in: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE, 2016, pp. 697-701, https://doi.org/10.1109/cisp.2015.7407967.
F. Liu, M. Kai, Z. Zhou. Isolation Forest, in: 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008, pp. 413-422, https://doi.org/10.1109/ICDM.2008.17.
Yu, Tao, Huang, Qin, Xiao, Liu (b0150) 2021; 124
Bieniawski (b0045) 1973; 15
Wang, Yao, Zhao (b0230) 2016; 184
M. Shi, W. Sun, T. Zhang, Y. Liu, S. Wang, X. Song, Geology prediction based on operation data of TBM: comparison between deep neural network and soft computing methods, in: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). 2019, pp. 1-5, https://doi.org/10.1109/ICIAI.2019.8850794.
Hautamaki, Karkkainen, Franti (b0280) 2004
Kobak, Berens (b0310) 2019; 10
Zhang, Liu, Tan (b0080) 2019; 100
Jin, Qin, Huang, Liu (b0325) 2021; 173
Zhou, Bejarbaneh, Armaghani, Tahir (b0165) 2019; 79
Hoek, Marinos, Benissi (b0050) 1998; 57
Liu, Huang, Gong, Du, Pan, Liu (b0010) 2016; 57
P. Nelson, T.D. O'Rourke, F.H. Kulhawy, Factors affecting TBM penetration rates in sedimentary rocks. in: Proceedings of the 24th US Symposium on Rock Mechanics, Rock Mechanics: Theory - Experiment - Practice. 1983, pp. 227-237, https://doi.org/10.1016/0148-9062(84)91489-x.
Momeni, Armaghani, Hajihassani, Amin (b0185) 2015; 60
Armaghani, Koopialipoor, Marto, Yagiz (b0160) 2019; 11
Leu, Adi (b0105) 2011; 24
Shin, Eom, Kim (b0275) 2005; 48
Meigooni, Tajkhorshid (b0210) 2020; 118
Li, Jing, Zheng, Li, Yang (b0015) 2019; 93
Li, Liu, Xu, Nie, Liu, Song, Sun, Chen, Fan (b0030) 2017; 63
Qin, Jin, Tao (b0320) 2021
G.E. Hinton, S.T. Roweis, Stochastic neighbor embedding, in: Advances in neural information processing systems. 2003, pp. 857-864, https://doi.org/ 10.1109/TSMCB.2011.2106208.
Barton, Lien, Lunde (b0040) 1974; 6
Breunig, Kriegel, Ng, Sander (b0285) 2000
Wang, Shi, Lin, Qin, Zhao, Huang, Liu (b0315) 2020; 58
Lee, Kwak, Tsui, Kim (b0255) 2019; 83
Liu, Liu, Pan, Kong, Hong (b0060) 2017; 65
Leu (10.1016/j.measurement.2021.109545_b0145) 2011; 38
Pan (10.1016/j.measurement.2021.109545_b0300) 1999; 47
Wang (10.1016/j.measurement.2021.109545_b0230) 2016; 184
Wang (10.1016/j.measurement.2021.109545_b0315) 2020; 58
Kobak (10.1016/j.measurement.2021.109545_b0310) 2019; 10
Li (10.1016/j.measurement.2021.109545_b0245) 2016; 37
Jung (10.1016/j.measurement.2021.109545_b0095) 2019; 23
Farrokh (10.1016/j.measurement.2021.109545_b0110) 2008; 23
Armaghani (10.1016/j.measurement.2021.109545_b0160) 2019; 11
Meigooni (10.1016/j.measurement.2021.109545_b0210) 2020; 118
Bieniawski (10.1016/j.measurement.2021.109545_b0045) 1973; 15
Mao (10.1016/j.measurement.2021.109545_b0265) 2018
Shin (10.1016/j.measurement.2021.109545_b0275) 2005; 48
Wang (10.1016/j.measurement.2021.109545_b0215) 2020; 155
Lee (10.1016/j.measurement.2021.109545_b0255) 2019; 83
Momeni (10.1016/j.measurement.2021.109545_b0185) 2015; 60
Li (10.1016/j.measurement.2021.109545_b0015) 2019; 93
10.1016/j.measurement.2021.109545_b0115
Thirukovalluru (10.1016/j.measurement.2021.109545_b0260) 2016; 2016
Gong (10.1016/j.measurement.2021.109545_b0035) 2016; 57
10.1016/j.measurement.2021.109545_b0130
10.1016/j.measurement.2021.109545_b0295
Liu (10.1016/j.measurement.2021.109545_b0085) 2019; 91
Felletti (10.1016/j.measurement.2021.109545_b0125) 2009; 108
Armaghani (10.1016/j.measurement.2021.109545_b0155) 2017; 63
Qin (10.1016/j.measurement.2021.109545_b0320) 2021
10.1016/j.measurement.2021.109545_b0330
10.1016/j.measurement.2021.109545_b0250
Samaei (10.1016/j.measurement.2021.109545_b0020) 2020; 152
Yu (10.1016/j.measurement.2021.109545_b0150) 2021; 124
Galende-Hernández (10.1016/j.measurement.2021.109545_b0090) 2018; 93
Hassanpour (10.1016/j.measurement.2021.109545_b0120) 2010; 43
Sun (10.1016/j.measurement.2021.109545_b0195) 2018; 92
Jin (10.1016/j.measurement.2021.109545_b0325) 2021; 173
Liu (10.1016/j.measurement.2021.109545_b0025) 2020; 95
Rispoli (10.1016/j.measurement.2021.109545_b0140) 2017; 50
Zhou (10.1016/j.measurement.2021.109545_b0165) 2019; 79
Naghadehi (10.1016/j.measurement.2021.109545_b0005) 2018; 126
Guan (10.1016/j.measurement.2021.109545_b0070) 2012; 31
Wang (10.1016/j.measurement.2021.109545_b0225) 2012; 13
Grozdi (10.1016/j.measurement.2021.109545_b0235) 2017; 59
10.1016/j.measurement.2021.109545_b0065
Yin (10.1016/j.measurement.2021.109545_b0205) 2016
Shen (10.1016/j.measurement.2021.109545_b0240) 2018; 76
Liu (10.1016/j.measurement.2021.109545_b0010) 2016; 57
Zhou (10.1016/j.measurement.2021.109545_b0170) 2021; 97
Azimian (10.1016/j.measurement.2021.109545_b0055) 2017; 49
Zhang (10.1016/j.measurement.2021.109545_b0080) 2019; 100
Der Maaten (10.1016/j.measurement.2021.109545_b0305) 2008; 9
10.1016/j.measurement.2021.109545_b0335
Qin (10.1016/j.measurement.2021.109545_b0190) 2021; 151
Li (10.1016/j.measurement.2021.109545_b0200) 2020; 8
10.1016/j.measurement.2021.109545_b0075
Bottou (10.1016/j.measurement.2021.109545_b0220) 2007
Gan (10.1016/j.measurement.2021.109545_b0290) 2017; 90
Xu (10.1016/j.measurement.2021.109545_b0175) 2019; 9
Yang (10.1016/j.measurement.2021.109545_b0270) 2009; 18
Li (10.1016/j.measurement.2021.109545_b0030) 2017; 63
Hautamaki (10.1016/j.measurement.2021.109545_b0280) 2004
Barton (10.1016/j.measurement.2021.109545_b0040) 1974; 6
Leu (10.1016/j.measurement.2021.109545_b0105) 2011; 24
Breunig (10.1016/j.measurement.2021.109545_b0285) 2000
Liu (10.1016/j.measurement.2021.109545_b0060) 2017; 65
Armaghani (10.1016/j.measurement.2021.109545_b0180) 2016; 85
Hoek (10.1016/j.measurement.2021.109545_b0050) 1998; 57
Sousa (10.1016/j.measurement.2021.109545_b0100) 2017; 11
Zhao (10.1016/j.measurement.2021.109545_b0135) 2019; 7
References_xml – volume: 24
  start-page: 658
  year: 2011
  end-page: 665
  ident: b0105
  article-title: Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM
  publication-title: Eng. Appl. Artif. Intell.
– reference: D. Cozzolino, L. Verdoliva, Single-image splicing localization through autoencoder-based anomaly detection, in: 2016 IEEE international workshop on information forensics and security (WIFS). IEEE, 2016, pp. 1-6, https://doi.org/10.1109/WIFS.2016.7823921.
– volume: 8
  start-page: 189287
  year: 2020
  end-page: 189297
  ident: b0200
  article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis
  publication-title: IEEE Access
– volume: 9
  start-page: 3715
  year: 2019
  ident: b0175
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
– volume: 85
  start-page: 174
  year: 2016
  end-page: 186
  ident: b0180
  article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques
  publication-title: Int. J. Rock Mech. Min. Sci.
– start-page: 430
  year: 2004
  end-page: 433
  ident: b0280
  article-title: Outlier detection using k-nearest neighbour graph, in
  publication-title: Proceedings of the 17th International Conference on Pattern Recognition
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b0305
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– reference: M. Shi, W. Sun, T. Zhang, Y. Liu, S. Wang, X. Song, Geology prediction based on operation data of TBM: comparison between deep neural network and soft computing methods, in: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). 2019, pp. 1-5, https://doi.org/10.1109/ICIAI.2019.8850794.
– reference: M. Shi, X. Song, W. Sun. Geology prediction based on operation data of TBM: comparison between deep neural network and statistical learning methods, arXiv preprint arXiv:1809.06688. (2018), https://doi.org/ 10.1109/ICIAI.2019.8850794.
– year: 2021
  ident: b0320
  article-title: DTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection
  publication-title: Measurement
– volume: 126
  start-page: 46
  year: 2018
  end-page: 57
  ident: b0005
  article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming
  publication-title: Measurement
– volume: 92
  start-page: 23
  year: 2018
  end-page: 34
  ident: b0195
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
– volume: 63
  start-page: 69
  year: 2017
  end-page: 94
  ident: b0030
  article-title: An overview of ahead geological prospecting in tunneling
  publication-title: Tunn. Undergr. Space Technol.
– volume: 49
  start-page: 1559
  year: 2017
  end-page: 1566
  ident: b0055
  article-title: A new method for improving the RQD determination of rock core in borehole
  publication-title: Rock Mech. Rock Eng.
– volume: 23
  start-page: 700
  year: 2008
  end-page: 710
  ident: b0110
  article-title: Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran
  publication-title: Tunn. Undergr. Space Technol.
– volume: 47
  start-page: 3401
  year: 1999
  end-page: 3406
  ident: b0300
  article-title: Two denoising methods by wavelet transform
  publication-title: IEEE Trans. Signal Process.
– volume: 15
  start-page: 335
  year: 1973
  end-page: 343
  ident: b0045
  article-title: Engineering classification of jointed rock masses
  publication-title: Civ. Eng. S. Afr.
– volume: 97
  year: 2021
  ident: b0170
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
– volume: 43
  start-page: 427
  year: 2010
  end-page: 445
  ident: b0120
  article-title: TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel
  publication-title: Rock Mech. Rock Eng.
– volume: 48
  start-page: 395
  year: 2005
  end-page: 408
  ident: b0275
  article-title: One-class support vector machines: an application in machine fault detection and classification
  publication-title: Comput. Ind. Eng.
– reference: G.E. Hinton, S.T. Roweis, Stochastic neighbor embedding, in: Advances in neural information processing systems. 2003, pp. 857-864, https://doi.org/ 10.1109/TSMCB.2011.2106208.
– volume: 6
  start-page: 189
  year: 1974
  end-page: 236
  ident: b0040
  article-title: Engineering classification of rock masses for the design of tunnel support
  publication-title: Rock Mech. Rock Eng.
– volume: 118
  start-page: 185a
  year: 2020
  end-page: 186a
  ident: b0210
  article-title: A semi-supervised learning approach for calculation of membrane curvature properties, with application to mitochondrial model membranes
  publication-title: Biophys. J.
– volume: 57
  start-page: 151
  year: 1998
  end-page: 160
  ident: b0050
  article-title: Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation
  publication-title: Bull. Eng. Geol. Environ.
– volume: 90
  start-page: 8
  year: 2017
  end-page: 14
  ident: b0290
  article-title: k-means clustering with outlier removal
  publication-title: Pattern Recognit. Lett.
– volume: 58
  year: 2020
  ident: b0315
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process. Control
– volume: 124
  year: 2021
  ident: b0150
  article-title: A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead
  publication-title: Autom. Constr.
– start-page: 100
  year: 2016
  end-page: 103
  ident: b0205
  article-title: A New SVM Method for Short Text Classification Based on Semi-Supervised Learning, in
  publication-title: International Conference on Advanced Information Technology & Sensor Application. IEEE.
– volume: 91
  year: 2019
  ident: b0085
  article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data
  publication-title: Tunn. Undergr. Space Technol.
– reference: E.Ghasemi, H. Kalhori, R. Bagherpour, S. Yagiz, Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks. Bull. Eng. Geol. Environ. 77 (2018) 331-343, https://doi.org/ 10.1007/s10064-016-0931-1.
– reference: P. Nelson, T.D. O'Rourke, F.H. Kulhawy, Factors affecting TBM penetration rates in sedimentary rocks. in: Proceedings of the 24th US Symposium on Rock Mechanics, Rock Mechanics: Theory - Experiment - Practice. 1983, pp. 227-237, https://doi.org/10.1016/0148-9062(84)91489-x.
– reference: J. Liang, R. Liu, Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network, in: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE, 2016, pp. 697-701, https://doi.org/10.1109/cisp.2015.7407967.
– volume: 13
  start-page: 120
  year: 2012
  end-page: 127
  ident: b0225
  article-title: A folded neural network autoencoder for dimensionality reduction
  publication-title: Procedia Comput. Sci.
– volume: 31
  start-page: 61
  year: 2012
  end-page: 67
  ident: b0070
  article-title: Markovian geology prediction approach and its application in mountain tunnels
  publication-title: Tunn. Undergr. Space Technol.
– volume: 10
  start-page: 5416
  year: 2019
  ident: b0310
  article-title: The art of using t-SNE for single-cell transcriptomics
  publication-title: Nat. Commun.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 7
  ident: b0260
  article-title: Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in
  publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM).
– volume: 11
  start-page: 129
  year: 2017
  end-page: 145
  ident: b0100
  article-title: Exploration and decision-making in geotechnical engineering-a case study
  publication-title: Georisk
– volume: 100
  start-page: 73
  year: 2019
  end-page: 83
  ident: b0080
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. Constr.
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: b0240
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 151
  year: 2021
  ident: b0190
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mech. Syst. Signal Proc.
– volume: 65
  start-page: 140
  year: 2017
  end-page: 154
  ident: b0060
  article-title: A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower Classification (HC) method
  publication-title: Tunn. Undergr. Space Technol.
– volume: 93
  start-page: 325
  year: 2018
  end-page: 338
  ident: b0090
  article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front
  publication-title: Autom. Constr.
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: b0230
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing.
– volume: 108
  start-page: 43
  year: 2009
  end-page: 53
  ident: b0125
  article-title: Expectation of boulder frequency when tunneling in glacial till: A statistical approach based on transition probability
  publication-title: Eng. Geol.
– volume: 83
  start-page: 13
  year: 2019
  end-page: 27
  ident: b0255
  article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes
  publication-title: Eng. Appl. Artif. Intell.
– volume: 95
  year: 2020
  ident: b0025
  article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
  publication-title: Tunn. Undergr. Space Technol.
– volume: 60
  start-page: 50
  year: 2015
  end-page: 63
  ident: b0185
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
  publication-title: Measurement
– volume: 37
  start-page: 5632
  year: 2016
  end-page: 5646
  ident: b0245
  article-title: Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
– volume: 57
  start-page: 4
  year: 2016
  end-page: 17
  ident: b0035
  article-title: TBM tunnelling under adverse geological conditions: an overview
  publication-title: Tunn. Undergr. Space Technol.
– volume: 11
  start-page: 779
  year: 2019
  end-page: 789
  ident: b0160
  article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks
  publication-title: J. Rock Mech. Geotech. Eng.
– year: 2007
  ident: b0220
  article-title: Scaling learning algorithms towards AI
– volume: 93
  year: 2019
  ident: b0015
  article-title: Application and outlook of information and intelligence technology for safe and efficient TBM construction
  publication-title: Tunn. Undergr. Space Technol.
– volume: 57
  start-page: 33
  year: 2016
  end-page: 46
  ident: b0010
  article-title: Application and development of hard rock TBM and its prospect in China
  publication-title: Tunn. Undergr. Space Technol.
– volume: 59
  start-page: 2313
  year: 2017
  end-page: 2322
  ident: b0235
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 38
  start-page: 5801
  year: 2011
  end-page: 5808
  ident: b0145
  article-title: Microtunneling decision support system (MDS) using neural-autoregressive hidden markov model
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 950
  year: 2009
  end-page: 956
  ident: b0270
  article-title: Electro-hydraulic proportional control of thrust system for shield tunneling machine
  publication-title: Autom. Constr.
– reference: F. Liu, M. Kai, Z. Zhou. Isolation Forest, in: 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008, pp. 413-422, https://doi.org/10.1109/ICDM.2008.17.
– volume: 23
  start-page: 3200
  year: 2019
  end-page: 3206
  ident: b0095
  article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data
  publication-title: KSCE J. Civ. Eng.
– volume: 50
  start-page: 2805
  year: 2017
  end-page: 2816
  ident: b0140
  article-title: Determining the particle size of debris from a tunnel boring machine through photographic analysis and comparison between excavation performance and rock mass properties
  publication-title: Rock Mech. Rock Eng.
– start-page: 93
  year: 2000
  end-page: 104
  ident: b0285
  article-title: LOF: identifying density-based local outliers
  publication-title: Acm Sigmod International Conference on Management of Data.
– volume: 7
  start-page: 66703
  year: 2019
  end-page: 66713
  ident: b0135
  article-title: A data-driven framework for tunnel geological-type prediction based on TBM operating data
  publication-title: IEEE Access
– volume: 79
  start-page: 2069
  year: 2019
  end-page: 2084
  ident: b0165
  article-title: Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques
  publication-title: Bull. Eng. Geol. Environ.
– volume: 152
  year: 2020
  ident: b0020
  article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition
  publication-title: Measurement
– volume: 63
  start-page: 29
  year: 2017
  end-page: 43
  ident: b0155
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Space Technol.
– start-page: 1
  year: 2018
  end-page: 11
  ident: b0265
  article-title: Feature representation using deep autoencoder for lung nodule image classification
  publication-title: Complexity.
– volume: 173
  year: 2021
  ident: b0325
  article-title: Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network
  publication-title: Measurement
– volume: 155
  start-page: 1312
  year: 2020
  end-page: 1327
  ident: b0215
  article-title: Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis
  publication-title: Renew. Energy
– volume: 10
  start-page: 5416
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0310
  article-title: The art of using t-SNE for single-cell transcriptomics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13056-x
– start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2021.109545_b0265
  article-title: Feature representation using deep autoencoder for lung nodule image classification
  publication-title: Complexity.
– volume: 57
  start-page: 33
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0010
  article-title: Application and development of hard rock TBM and its prospect in China
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.01.034
– year: 2007
  ident: 10.1016/j.measurement.2021.109545_b0220
– volume: 23
  start-page: 3200
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0095
  article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-019-1460-9
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0260
  article-title: Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in
  publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM).
– volume: 97
  year: 2021
  ident: 10.1016/j.measurement.2021.109545_b0170
  article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.104015
– volume: 155
  start-page: 1312
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0215
  article-title: Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.04.041
– ident: 10.1016/j.measurement.2021.109545_b0115
  doi: 10.1016/0148-9062(84)91489-X
– year: 2021
  ident: 10.1016/j.measurement.2021.109545_b0320
  article-title: DTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109548
– volume: 15
  start-page: 335
  year: 1973
  ident: 10.1016/j.measurement.2021.109545_b0045
  article-title: Engineering classification of jointed rock masses
  publication-title: Civ. Eng. S. Afr.
– volume: 100
  start-page: 73
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0080
  article-title: Prediction of geological conditions for a tunnel boring machine using big operational data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.12.022
– volume: 60
  start-page: 50
  year: 2015
  ident: 10.1016/j.measurement.2021.109545_b0185
  article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.075
– volume: 23
  start-page: 700
  year: 2008
  ident: 10.1016/j.measurement.2021.109545_b0110
  article-title: Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2008.01.005
– ident: 10.1016/j.measurement.2021.109545_b0295
  doi: 10.1109/ICDM.2008.17
– volume: 58
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0315
  article-title: A high-precision arrhythmia classification method based on dual fully connected neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101874
– volume: 65
  start-page: 140
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0060
  article-title: A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower Classification (HC) method
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.03.002
– volume: 7
  start-page: 66703
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0135
  article-title: A data-driven framework for tunnel geological-type prediction based on TBM operating data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917756
– volume: 90
  start-page: 8
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0290
  article-title: k-means clustering with outlier removal
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.03.008
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0230
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2015.08.104
– volume: 49
  start-page: 1559
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0055
  article-title: A new method for improving the RQD determination of rock core in borehole
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-015-0789-8
– volume: 47
  start-page: 3401
  year: 1999
  ident: 10.1016/j.measurement.2021.109545_b0300
  article-title: Two denoising methods by wavelet transform
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.806084
– volume: 11
  start-page: 779
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0160
  article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2019.01.002
– volume: 118
  start-page: 185a
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0210
  article-title: A semi-supervised learning approach for calculation of membrane curvature properties, with application to mitochondrial model membranes
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2019.11.1130
– start-page: 100
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0205
  article-title: A New SVM Method for Short Text Classification Based on Semi-Supervised Learning, in
  publication-title: International Conference on Advanced Information Technology & Sensor Application. IEEE.
– volume: 18
  start-page: 950
  year: 2009
  ident: 10.1016/j.measurement.2021.109545_b0270
  article-title: Electro-hydraulic proportional control of thrust system for shield tunneling machine
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2009.04.005
– volume: 173
  year: 2021
  ident: 10.1016/j.measurement.2021.109545_b0325
  article-title: Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108500
– volume: 38
  start-page: 5801
  year: 2011
  ident: 10.1016/j.measurement.2021.109545_b0145
  article-title: Microtunneling decision support system (MDS) using neural-autoregressive hidden markov model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.10.051
– volume: 43
  start-page: 427
  year: 2010
  ident: 10.1016/j.measurement.2021.109545_b0120
  article-title: TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-009-0060-2
– ident: 10.1016/j.measurement.2021.109545_b0075
  doi: 10.1109/ICIAI.2019.8850794
– start-page: 93
  year: 2000
  ident: 10.1016/j.measurement.2021.109545_b0285
  article-title: LOF: identifying density-based local outliers
  publication-title: Acm Sigmod International Conference on Management of Data.
  doi: 10.1145/335191.335388
– volume: 13
  start-page: 120
  year: 2012
  ident: 10.1016/j.measurement.2021.109545_b0225
  article-title: A folded neural network autoencoder for dimensionality reduction
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2012.09.120
– volume: 31
  start-page: 61
  year: 2012
  ident: 10.1016/j.measurement.2021.109545_b0070
  article-title: Markovian geology prediction approach and its application in mountain tunnels
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2012.04.007
– ident: 10.1016/j.measurement.2021.109545_b0130
  doi: 10.1007/s10064-016-0931-1
– volume: 76
  start-page: 170
  year: 2018
  ident: 10.1016/j.measurement.2021.109545_b0240
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.010
– ident: 10.1016/j.measurement.2021.109545_b0065
– volume: 151
  year: 2021
  ident: 10.1016/j.measurement.2021.109545_b0190
  article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network
  publication-title: Mech. Syst. Signal Proc.
  doi: 10.1016/j.ymssp.2020.107386
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.measurement.2021.109545_b0305
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 152
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0020
  article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107244
– volume: 126
  start-page: 46
  year: 2018
  ident: 10.1016/j.measurement.2021.109545_b0005
  article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.049
– volume: 6
  start-page: 189
  year: 1974
  ident: 10.1016/j.measurement.2021.109545_b0040
  article-title: Engineering classification of rock masses for the design of tunnel support
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/BF01239496
– volume: 8
  start-page: 189287
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0200
  article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031665
– volume: 63
  start-page: 29
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0155
  article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.12.009
– volume: 50
  start-page: 2805
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0140
  article-title: Determining the particle size of debris from a tunnel boring machine through photographic analysis and comparison between excavation performance and rock mass properties
  publication-title: Rock Mech. Rock Eng.
  doi: 10.1007/s00603-017-1256-5
– ident: 10.1016/j.measurement.2021.109545_b0330
– volume: 57
  start-page: 151
  year: 1998
  ident: 10.1016/j.measurement.2021.109545_b0050
  article-title: Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s100640050031
– volume: 9
  start-page: 3715
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0175
  article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate
  publication-title: Appl. Sci.
  doi: 10.3390/app9183715
– volume: 59
  start-page: 2313
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0235
  article-title: Whispered speech recognition using deep denoising autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– volume: 79
  start-page: 2069
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0165
  article-title: Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques
  publication-title: Bull. Eng. Geol. Environ.
  doi: 10.1007/s10064-019-01626-8
– volume: 57
  start-page: 4
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0035
  article-title: TBM tunnelling under adverse geological conditions: an overview
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.04.002
– volume: 24
  start-page: 658
  year: 2011
  ident: 10.1016/j.measurement.2021.109545_b0105
  article-title: Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.02.010
– volume: 93
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0015
  article-title: Application and outlook of information and intelligence technology for safe and efficient TBM construction
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.103097
– volume: 85
  start-page: 174
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0180
  article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques
  publication-title: Int. J. Rock Mech. Min. Sci.
  doi: 10.1016/j.ijrmms.2016.03.018
– volume: 108
  start-page: 43
  year: 2009
  ident: 10.1016/j.measurement.2021.109545_b0125
  article-title: Expectation of boulder frequency when tunneling in glacial till: A statistical approach based on transition probability
  publication-title: Eng. Geol.
  doi: 10.1016/j.enggeo.2009.06.006
– volume: 11
  start-page: 129
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0100
  article-title: Exploration and decision-making in geotechnical engineering-a case study
  publication-title: Georisk
– volume: 37
  start-page: 5632
  year: 2016
  ident: 10.1016/j.measurement.2021.109545_b0245
  article-title: Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2016.1246775
– volume: 92
  start-page: 23
  year: 2018
  ident: 10.1016/j.measurement.2021.109545_b0195
  article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.030
– volume: 95
  year: 2020
  ident: 10.1016/j.measurement.2021.109545_b0025
  article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.103103
– volume: 63
  start-page: 69
  year: 2017
  ident: 10.1016/j.measurement.2021.109545_b0030
  article-title: An overview of ahead geological prospecting in tunneling
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2016.12.011
– start-page: 430
  year: 2004
  ident: 10.1016/j.measurement.2021.109545_b0280
  article-title: Outlier detection using k-nearest neighbour graph, in
– volume: 83
  start-page: 13
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0255
  article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.04.013
– ident: 10.1016/j.measurement.2021.109545_b0335
  doi: 10.1109/CISP.2015.7407967
– volume: 93
  start-page: 325
  year: 2018
  ident: 10.1016/j.measurement.2021.109545_b0090
  article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.05.019
– volume: 48
  start-page: 395
  year: 2005
  ident: 10.1016/j.measurement.2021.109545_b0275
  article-title: One-class support vector machines: an application in machine fault detection and classification
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2005.01.009
– volume: 91
  year: 2019
  ident: 10.1016/j.measurement.2021.109545_b0085
  article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2019.04.014
– volume: 124
  year: 2021
  ident: 10.1016/j.measurement.2021.109545_b0150
  article-title: A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.103603
– ident: 10.1016/j.measurement.2021.109545_b0250
  doi: 10.1109/WIFS.2016.7823921
SSID ssj0006396
Score 2.470113
Snippet •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor...
Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109545
SubjectTerms Artificial neural networks
Boring machines
Data preprocessing
Decision trees
Feature extraction
Geology
Neural networks
Onsite
Prediction models
Rock mass type prediction
Rock masses
Rocks
Semi-supervised learning
Stacked sparse autoencoder
Subway tunnels
Support vector machines
Tunnel boring machine
Tunnel construction
Tunnels
Underground construction
Title Rock mass type prediction for tunnel boring machine using a novel semi-supervised method
URI https://dx.doi.org/10.1016/j.measurement.2021.109545
https://www.proquest.com/docview/2553020444
Volume 179
WOSCitedRecordID wos000670114400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1di9QwFA3jrIo-iK6Kq6tE8G3o0o-0ScGXRVdUdBEdYXwqaZssHXY6w3Q6rH_G3-q9Sb8YWRgRX8qQSZqZ3NPc05ubE0JeIW3VItKOlFI7LBOeI0LpOrnymExzkafSqOt_4ufnYjaLv4xGv9q9MNtLXpbi6ipe_VdTQxkYG7fO_oW5u5tCAXwGo8MVzA7XvQz_FWa4yQI4sQ2vrta4FNNnFNaY2DJJbd7dwqRSqkltIgZyUi638GWlFoVT1SucRiogpPaU6SGN_dxHFk1MYaA_0WdjtmHGYWWzwRDFPofr_z9q4wCX5cVFj9WptGtCAF-tGveKAdqiyRKAsnnR1Z4VtvpbKP5ZD0MZvtelvTbxtXaPTZ_QVBlp2MBBomE9lp2mBQ8c5pmD2Pt53J5K84dPsOGJ-cmi_7cn2DsqaYVWy3JHcvsb9oldwvuwCwSV3SAHPg9jMSYHpx_OZh87Xw_8LrJRPPsbb5OXfQbhNR1ex4B2uIAhONP75F7zZkJPLaIekJEqD8ndgV7lIbll8oWz6iGZIcoooowiymiPMgoooxZl1KKMNiijBmVUUoMyuoMyalH2iHx_dzZ9895pDulwsoDFG0f7mc9kpjMGzgOln7jQXLpK-jxTXqxDJVPlap6mcaTiNAo1Y4p5KuCxZjnXwWMyLpelekIoZ7nrZdAa17pTLaQGshSpEL1Q7gp-REQ7cEnWKNjjQSqXSZuqOE8GY57gmCd2zI-I3zVdWRmXfRq9bq2TNHzU8swEoLVP8-PWoknzGFaJb47pQpHGp_9292fkTv8IHZPxZl2r5-Rmtt0U1fpFg9Pfr1fGNw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+mass+type+prediction+for+tunnel+boring+machine+using+a+novel+semi-supervised+method&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Yu%2C+Honggan&rft.au=Tao%2C+Jianfeng&rft.au=Qin%2C+Chengjin&rft.au=Xiao%2C+Dengyu&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=179&rft_id=info:doi/10.1016%2Fj.measurement.2021.109545&rft.externalDocID=S0263224121005224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon