Rock mass type prediction for tunnel boring machine using a novel semi-supervised method
•A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preproce...
Uloženo v:
| Vydáno v: | Measurement : journal of the International Measurement Confederation Ročník 179; s. 109545 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
London
Elsevier Ltd
01.07.2021
Elsevier Science Ltd |
| Témata: | |
| ISSN: | 0263-2241, 1873-412X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preprocessing methods is proposed for the cleaning of the big machine data.•The proposed method outperforms other commonly adopted supervised methods.
Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods. |
|---|---|
| AbstractList | Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods. •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor and a feature classifier.•Geological feature extractor and classifier are obtained based on SSAE and DNN, respectively.•A set of data preprocessing methods is proposed for the cleaning of the big machine data.•The proposed method outperforms other commonly adopted supervised methods. Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful for safe and efficient tunneling. Since soft methods can use on-site data to predict geological conditions, they are getting more and more attention. However, there is an imbalance between the machine data and geological data, and current soft methods can only utilize limited machine data with geological labels, limiting the performance of the model. To make full use of the massive unlabeled data and limited labeled data, a novel semi-supervised method is proposed to establish the rock mass type prediction model. In the first step, twenty machine parameters are selected as inputs, and the data preprocessing is performed. Thereafter, a geological feature extractor is established based on the stacked sparse autoencoder and unlabeled machine data. Finally, a feature classifier is obtained based on the deep neural network and labeled geological features to realize the prediction of rock mass type. The on-site data collected from Mumbai metro tunnel was utilized to verify the effectiveness of the proposed method. The results indicate that the unsupervised stacked sparse autoencoder is capable of extracting geological features, and the proposed stacked sparse autoencoder and deep neural network-based semi-supervised method outperforms commonly adopted supervised methods. Its classification performance (F-measure) is 13.84%, 10.29%, 8.71%, 5.23% and 5.13% higher than the support vector machine-based, decision tree-based, K-nearest neighbor-based, random forest-based and deep neural network-based methods, respectively. Therefore, the proposed semi-supervised method can predict the rock mass types ahead of the tunnel face more accurately than the current supervised soft methods. |
| ArticleNumber | 109545 |
| Author | Yu, Honggan Qin, Chengjin Xiao, Dengyu Liu, Chengliang Sun, Hao Tao, Jianfeng |
| Author_xml | – sequence: 1 givenname: Honggan surname: Yu fullname: Yu, Honggan – sequence: 2 givenname: Jianfeng surname: Tao fullname: Tao, Jianfeng email: jftao@sjtu.edu.cn – sequence: 3 givenname: Chengjin surname: Qin fullname: Qin, Chengjin email: qinchengjin@sjtu.edu.cn – sequence: 4 givenname: Dengyu surname: Xiao fullname: Xiao, Dengyu – sequence: 5 givenname: Hao surname: Sun fullname: Sun, Hao – sequence: 6 givenname: Chengliang surname: Liu fullname: Liu, Chengliang |
| BookMark | eNqNkE9LAzEQxYNUsK1-h4jnrUk2uzEnkeI_KAii4C1ksxNN7SZrki347d1SD-Kpp2Fm3nvD_GZo4oMHhM4pWVBC68v1ogOdhggd-LxghNFxLiteHaEpvRJlwSl7m6ApYXVZMMbpCZqltCaE1KWsp-jtOZhP3OmUcP7uAfcRWmeyCx7bEHEevIcNbkJ0_n2UmQ_nAQ9p12nsw3ZcJuhckYYe4tYlaHEH-SO0p-jY6k2Cs986R693ty_Lh2L1dP-4vFkVpuQyF5YZxrWxhhNBpCiZuLJCE9BMGKDSVqAbIFY0jaxBNnVlOQdOoRTS8lbYco4u9rl9DF8DpKzWYYh-PKlYVZWEEc75qLreq0wMKUWwyrisd2_mqN1GUaJ2ONVa_cGpdjjVHueYIP8l9NF1On4f5F3uvTCC2DqIKhkH3oyoI5is2uAOSPkBCIOblg |
| CitedBy_id | crossref_primary_10_1016_j_tust_2025_106427 crossref_primary_10_1016_j_tust_2024_106128 crossref_primary_10_1016_j_measurement_2024_115614 crossref_primary_10_1177_16878132241255209 crossref_primary_10_1016_j_tust_2023_105317 crossref_primary_10_1007_s11431_022_2218_9 crossref_primary_10_1016_j_autcon_2024_105623 crossref_primary_10_1016_j_autcon_2025_106395 crossref_primary_10_1016_j_autcon_2022_104711 crossref_primary_10_3389_feart_2023_1121318 crossref_primary_10_1016_j_rineng_2025_106925 crossref_primary_10_1007_s11431_024_2794_6 crossref_primary_10_1016_j_ymssp_2021_108353 crossref_primary_10_1016_j_aei_2023_102295 crossref_primary_10_3390_app15126684 crossref_primary_10_3390_app13127060 crossref_primary_10_1038_s41598_023_28243_6 crossref_primary_10_1155_adce_5172231 crossref_primary_10_1007_s40098_025_01401_5 crossref_primary_10_1007_s10706_024_02931_0 crossref_primary_10_1016_j_knosys_2021_107213 crossref_primary_10_1016_j_tust_2024_105743 crossref_primary_10_1016_j_jestch_2025_101957 crossref_primary_10_1016_j_tust_2024_106258 crossref_primary_10_1016_j_tust_2025_106555 crossref_primary_10_1016_j_tust_2025_106632 crossref_primary_10_1016_j_undsp_2024_01_008 crossref_primary_10_1177_09544062211061682 crossref_primary_10_32604_cmes_2023_029938 crossref_primary_10_1007_s00521_022_07597_4 crossref_primary_10_1016_j_tust_2025_106498 crossref_primary_10_1016_j_aei_2025_103786 crossref_primary_10_1016_j_engappai_2024_109868 crossref_primary_10_1016_j_autcon_2023_104982 crossref_primary_10_1016_j_ymssp_2021_108312 crossref_primary_10_1016_j_jrmge_2024_11_011 crossref_primary_10_1007_s00603_025_04877_y crossref_primary_10_1016_j_autcon_2022_104734 crossref_primary_10_1007_s00603_024_04189_7 crossref_primary_10_1007_s11440_022_01779_z crossref_primary_10_1016_j_gsf_2022_101519 crossref_primary_10_1016_j_undsp_2025_02_002 |
| Cites_doi | 10.1038/s41467-019-13056-x 10.1016/j.tust.2016.01.034 10.1007/s12205-019-1460-9 10.1016/j.engappai.2020.104015 10.1016/j.renene.2020.04.041 10.1016/0148-9062(84)91489-X 10.1016/j.measurement.2021.109548 10.1016/j.autcon.2018.12.022 10.1016/j.measurement.2014.09.075 10.1016/j.tust.2008.01.005 10.1109/ICDM.2008.17 10.1016/j.bspc.2020.101874 10.1016/j.tust.2017.03.002 10.1109/ACCESS.2019.2917756 10.1016/j.patrec.2017.03.008 10.1016/j.neucom.2015.08.104 10.1007/s00603-015-0789-8 10.1109/78.806084 10.1016/j.jrmge.2019.01.002 10.1016/j.bpj.2019.11.1130 10.1016/j.autcon.2009.04.005 10.1016/j.measurement.2020.108500 10.1016/j.eswa.2010.10.051 10.1007/s00603-009-0060-2 10.1109/ICIAI.2019.8850794 10.1145/335191.335388 10.1016/j.procs.2012.09.120 10.1016/j.tust.2012.04.007 10.1007/s10064-016-0931-1 10.1016/j.engappai.2018.09.010 10.1016/j.ymssp.2020.107386 10.1016/j.measurement.2019.107244 10.1016/j.measurement.2018.05.049 10.1007/BF01239496 10.1109/ACCESS.2020.3031665 10.1016/j.tust.2016.12.009 10.1007/s00603-017-1256-5 10.1007/s100640050031 10.3390/app9183715 10.1007/s10064-019-01626-8 10.1016/j.tust.2016.04.002 10.1016/j.engappai.2011.02.010 10.1016/j.tust.2019.103097 10.1016/j.ijrmms.2016.03.018 10.1016/j.enggeo.2009.06.006 10.1080/01431161.2016.1246775 10.1016/j.autcon.2018.03.030 10.1016/j.tust.2019.103103 10.1016/j.tust.2016.12.011 10.1016/j.engappai.2019.04.013 10.1109/CISP.2015.7407967 10.1016/j.autcon.2018.05.019 10.1016/j.cie.2005.01.009 10.1016/j.tust.2019.04.014 10.1016/j.autcon.2021.103603 10.1109/WIFS.2016.7823921 |
| ContentType | Journal Article |
| Copyright | 2021 Copyright Elsevier Science Ltd. Jul 2021 |
| Copyright_xml | – notice: 2021 – notice: Copyright Elsevier Science Ltd. Jul 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2021.109545 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics Geology |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2021_109545 S0263224121005224 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c349t-f2c24acfc4070973278f7a0ea27ce19f5eabe0f7bb96e9b65f44e41e379f4d7f3 |
| ISICitedReferencesCount | 46 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000670114400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Mon Nov 10 03:01:30 EST 2025 Tue Nov 18 21:57:03 EST 2025 Sat Nov 29 07:19:42 EST 2025 Fri Feb 23 02:46:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Tunnel boring machine Rock mass type prediction Stacked sparse autoencoder Semi-supervised learning Data preprocessing |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-f2c24acfc4070973278f7a0ea27ce19f5eabe0f7bb96e9b65f44e41e379f4d7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2553020444 |
| PQPubID | 2047460 |
| ParticipantIDs | proquest_journals_2553020444 crossref_citationtrail_10_1016_j_measurement_2021_109545 crossref_primary_10_1016_j_measurement_2021_109545 elsevier_sciencedirect_doi_10_1016_j_measurement_2021_109545 |
| PublicationCentury | 2000 |
| PublicationDate | July 2021 2021-07-00 20210701 |
| PublicationDateYYYYMMDD | 2021-07-01 |
| PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Wang, He, Prokhorov (b0225) 2012; 13 Azimian (b0055) 2017; 49 Li, Fu, Yu, Gong, Feng, Li, Clinton (b0245) 2016; 37 D. Cozzolino, L. Verdoliva, Single-image splicing localization through autoencoder-based anomaly detection, in: 2016 IEEE international workshop on information forensics and security (WIFS). IEEE, 2016, pp. 1-6, https://doi.org/10.1109/WIFS.2016.7823921. Xu, Zhou, Asteris, Armaghani (b0175) 2019; 9 Mao, Tang, Wang, Zhang, Wu (b0265) 2018 Liu, Wang, Guan, Li, Xu, Guo, Wang (b0085) 2019; 91 Der Maaten, Hinton (b0305) 2008; 9 Qin, Shi, Tao, Yu, Jin, Lei, Liu (b0190) 2021; 151 Leu, Adi (b0145) 2011; 38 Felletti, Beretta (b0125) 2009; 108 Yin, Xiang, Zhang, Wang, Yin, Kim (b0205) 2016 Sousa, Karam, Costa, Herbert (b0100) 2017; 11 Guan, Deng, Du, Li, Jiang (b0070) 2012; 31 Armaghani, Mohamad, Narayanasamy, Narita, Yagiz (b0155) 2017; 63 Samaei, Ranjbarnia, Nourani, Naghadehi (b0020) 2020; 152 Grozdi, Jovii, Suboti (b0235) 2017; 59 Liu, Wang, Zhao, Guo, Wang, Li, Wang (b0025) 2020; 95 Farrokh, Rostami (b0110) 2008; 23 Hassanpour, Rostami, Khamehchiyan, Bruland, Tavakoli (b0120) 2010; 43 Zhao, Shi, Hu, Song, Zhang, Tao, Wu (b0135) 2019; 7 Wang, Yao, Cai, Zhang (b0215) 2020; 155 Naghadehi, Samaei, Ranjbarnia, Nourani (b0005) 2018; 126 Armaghani, Amin, Yagiz, Faradonbeh, Abdullah (b0180) 2016; 85 Li, Chow, Zhang (b0200) 2020; 8 Gong, Yin, Ma, Zhao (b0035) 2016; 57 Bottou, Chapelle, DeCoste, Weston (b0220) 2007 E.Ghasemi, H. Kalhori, R. Bagherpour, S. Yagiz, Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks. Bull. Eng. Geol. Environ. 77 (2018) 331-343, https://doi.org/ 10.1007/s10064-016-0931-1. Galende-Hernández, Menéndez, Fuente, Sainz-Palmero (b0090) 2018; 93 Rispoli, Ferrero, Cardu, Farinetti (b0140) 2017; 50 Zhou, Qiu, Zhu, Armaghani, Li, Nguyen, Yagiz (b0170) 2021; 97 Shen, Qi, Wang, Cai, Zhu (b0240) 2018; 76 M. Shi, X. Song, W. Sun. Geology prediction based on operation data of TBM: comparison between deep neural network and statistical learning methods, arXiv preprint arXiv:1809.06688. (2018), https://doi.org/ 10.1109/ICIAI.2019.8850794. Sun, Shi, Zhang, Zhao, Song (b0195) 2018; 92 Gan, Ng (b0290) 2017; 90 Jung, Chung, Kwon, Lee (b0095) 2019; 23 Thirukovalluru, Dixit, Sevakula, Verma, Salour (b0260) 2016; 2016 Pan, Zhang, Dai, Zhang (b0300) 1999; 47 Yang, Shi, Gong, Hu (b0270) 2009; 18 J. Liang, R. Liu, Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network, in: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE, 2016, pp. 697-701, https://doi.org/10.1109/cisp.2015.7407967. F. Liu, M. Kai, Z. Zhou. Isolation Forest, in: 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008, pp. 413-422, https://doi.org/10.1109/ICDM.2008.17. Yu, Tao, Huang, Qin, Xiao, Liu (b0150) 2021; 124 Bieniawski (b0045) 1973; 15 Wang, Yao, Zhao (b0230) 2016; 184 M. Shi, W. Sun, T. Zhang, Y. Liu, S. Wang, X. Song, Geology prediction based on operation data of TBM: comparison between deep neural network and soft computing methods, in: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). 2019, pp. 1-5, https://doi.org/10.1109/ICIAI.2019.8850794. Hautamaki, Karkkainen, Franti (b0280) 2004 Kobak, Berens (b0310) 2019; 10 Zhang, Liu, Tan (b0080) 2019; 100 Jin, Qin, Huang, Liu (b0325) 2021; 173 Zhou, Bejarbaneh, Armaghani, Tahir (b0165) 2019; 79 Hoek, Marinos, Benissi (b0050) 1998; 57 Liu, Huang, Gong, Du, Pan, Liu (b0010) 2016; 57 P. Nelson, T.D. O'Rourke, F.H. Kulhawy, Factors affecting TBM penetration rates in sedimentary rocks. in: Proceedings of the 24th US Symposium on Rock Mechanics, Rock Mechanics: Theory - Experiment - Practice. 1983, pp. 227-237, https://doi.org/10.1016/0148-9062(84)91489-x. Momeni, Armaghani, Hajihassani, Amin (b0185) 2015; 60 Armaghani, Koopialipoor, Marto, Yagiz (b0160) 2019; 11 Leu, Adi (b0105) 2011; 24 Shin, Eom, Kim (b0275) 2005; 48 Meigooni, Tajkhorshid (b0210) 2020; 118 Li, Jing, Zheng, Li, Yang (b0015) 2019; 93 Li, Liu, Xu, Nie, Liu, Song, Sun, Chen, Fan (b0030) 2017; 63 Qin, Jin, Tao (b0320) 2021 G.E. Hinton, S.T. Roweis, Stochastic neighbor embedding, in: Advances in neural information processing systems. 2003, pp. 857-864, https://doi.org/ 10.1109/TSMCB.2011.2106208. Barton, Lien, Lunde (b0040) 1974; 6 Breunig, Kriegel, Ng, Sander (b0285) 2000 Wang, Shi, Lin, Qin, Zhao, Huang, Liu (b0315) 2020; 58 Lee, Kwak, Tsui, Kim (b0255) 2019; 83 Liu, Liu, Pan, Kong, Hong (b0060) 2017; 65 Leu (10.1016/j.measurement.2021.109545_b0145) 2011; 38 Pan (10.1016/j.measurement.2021.109545_b0300) 1999; 47 Wang (10.1016/j.measurement.2021.109545_b0230) 2016; 184 Wang (10.1016/j.measurement.2021.109545_b0315) 2020; 58 Kobak (10.1016/j.measurement.2021.109545_b0310) 2019; 10 Li (10.1016/j.measurement.2021.109545_b0245) 2016; 37 Jung (10.1016/j.measurement.2021.109545_b0095) 2019; 23 Farrokh (10.1016/j.measurement.2021.109545_b0110) 2008; 23 Armaghani (10.1016/j.measurement.2021.109545_b0160) 2019; 11 Meigooni (10.1016/j.measurement.2021.109545_b0210) 2020; 118 Bieniawski (10.1016/j.measurement.2021.109545_b0045) 1973; 15 Mao (10.1016/j.measurement.2021.109545_b0265) 2018 Shin (10.1016/j.measurement.2021.109545_b0275) 2005; 48 Wang (10.1016/j.measurement.2021.109545_b0215) 2020; 155 Lee (10.1016/j.measurement.2021.109545_b0255) 2019; 83 Momeni (10.1016/j.measurement.2021.109545_b0185) 2015; 60 Li (10.1016/j.measurement.2021.109545_b0015) 2019; 93 10.1016/j.measurement.2021.109545_b0115 Thirukovalluru (10.1016/j.measurement.2021.109545_b0260) 2016; 2016 Gong (10.1016/j.measurement.2021.109545_b0035) 2016; 57 10.1016/j.measurement.2021.109545_b0130 10.1016/j.measurement.2021.109545_b0295 Liu (10.1016/j.measurement.2021.109545_b0085) 2019; 91 Felletti (10.1016/j.measurement.2021.109545_b0125) 2009; 108 Armaghani (10.1016/j.measurement.2021.109545_b0155) 2017; 63 Qin (10.1016/j.measurement.2021.109545_b0320) 2021 10.1016/j.measurement.2021.109545_b0330 10.1016/j.measurement.2021.109545_b0250 Samaei (10.1016/j.measurement.2021.109545_b0020) 2020; 152 Yu (10.1016/j.measurement.2021.109545_b0150) 2021; 124 Galende-Hernández (10.1016/j.measurement.2021.109545_b0090) 2018; 93 Hassanpour (10.1016/j.measurement.2021.109545_b0120) 2010; 43 Sun (10.1016/j.measurement.2021.109545_b0195) 2018; 92 Jin (10.1016/j.measurement.2021.109545_b0325) 2021; 173 Liu (10.1016/j.measurement.2021.109545_b0025) 2020; 95 Rispoli (10.1016/j.measurement.2021.109545_b0140) 2017; 50 Zhou (10.1016/j.measurement.2021.109545_b0165) 2019; 79 Naghadehi (10.1016/j.measurement.2021.109545_b0005) 2018; 126 Guan (10.1016/j.measurement.2021.109545_b0070) 2012; 31 Wang (10.1016/j.measurement.2021.109545_b0225) 2012; 13 Grozdi (10.1016/j.measurement.2021.109545_b0235) 2017; 59 10.1016/j.measurement.2021.109545_b0065 Yin (10.1016/j.measurement.2021.109545_b0205) 2016 Shen (10.1016/j.measurement.2021.109545_b0240) 2018; 76 Liu (10.1016/j.measurement.2021.109545_b0010) 2016; 57 Zhou (10.1016/j.measurement.2021.109545_b0170) 2021; 97 Azimian (10.1016/j.measurement.2021.109545_b0055) 2017; 49 Zhang (10.1016/j.measurement.2021.109545_b0080) 2019; 100 Der Maaten (10.1016/j.measurement.2021.109545_b0305) 2008; 9 10.1016/j.measurement.2021.109545_b0335 Qin (10.1016/j.measurement.2021.109545_b0190) 2021; 151 Li (10.1016/j.measurement.2021.109545_b0200) 2020; 8 10.1016/j.measurement.2021.109545_b0075 Bottou (10.1016/j.measurement.2021.109545_b0220) 2007 Gan (10.1016/j.measurement.2021.109545_b0290) 2017; 90 Xu (10.1016/j.measurement.2021.109545_b0175) 2019; 9 Yang (10.1016/j.measurement.2021.109545_b0270) 2009; 18 Li (10.1016/j.measurement.2021.109545_b0030) 2017; 63 Hautamaki (10.1016/j.measurement.2021.109545_b0280) 2004 Barton (10.1016/j.measurement.2021.109545_b0040) 1974; 6 Leu (10.1016/j.measurement.2021.109545_b0105) 2011; 24 Breunig (10.1016/j.measurement.2021.109545_b0285) 2000 Liu (10.1016/j.measurement.2021.109545_b0060) 2017; 65 Armaghani (10.1016/j.measurement.2021.109545_b0180) 2016; 85 Hoek (10.1016/j.measurement.2021.109545_b0050) 1998; 57 Sousa (10.1016/j.measurement.2021.109545_b0100) 2017; 11 Zhao (10.1016/j.measurement.2021.109545_b0135) 2019; 7 |
| References_xml | – volume: 24 start-page: 658 year: 2011 end-page: 665 ident: b0105 article-title: Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM publication-title: Eng. Appl. Artif. Intell. – reference: D. Cozzolino, L. Verdoliva, Single-image splicing localization through autoencoder-based anomaly detection, in: 2016 IEEE international workshop on information forensics and security (WIFS). IEEE, 2016, pp. 1-6, https://doi.org/10.1109/WIFS.2016.7823921. – volume: 8 start-page: 189287 year: 2020 end-page: 189297 ident: b0200 article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis publication-title: IEEE Access – volume: 9 start-page: 3715 year: 2019 ident: b0175 article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate publication-title: Appl. Sci. – volume: 85 start-page: 174 year: 2016 end-page: 186 ident: b0180 article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques publication-title: Int. J. Rock Mech. Min. Sci. – start-page: 430 year: 2004 end-page: 433 ident: b0280 article-title: Outlier detection using k-nearest neighbour graph, in publication-title: Proceedings of the 17th International Conference on Pattern Recognition – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b0305 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – reference: M. Shi, W. Sun, T. Zhang, Y. Liu, S. Wang, X. Song, Geology prediction based on operation data of TBM: comparison between deep neural network and soft computing methods, in: 2019 1st International Conference on Industrial Artificial Intelligence (IAI). 2019, pp. 1-5, https://doi.org/10.1109/ICIAI.2019.8850794. – reference: M. Shi, X. Song, W. Sun. Geology prediction based on operation data of TBM: comparison between deep neural network and statistical learning methods, arXiv preprint arXiv:1809.06688. (2018), https://doi.org/ 10.1109/ICIAI.2019.8850794. – year: 2021 ident: b0320 article-title: DTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection publication-title: Measurement – volume: 126 start-page: 46 year: 2018 end-page: 57 ident: b0005 article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming publication-title: Measurement – volume: 92 start-page: 23 year: 2018 end-page: 34 ident: b0195 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. – volume: 63 start-page: 69 year: 2017 end-page: 94 ident: b0030 article-title: An overview of ahead geological prospecting in tunneling publication-title: Tunn. Undergr. Space Technol. – volume: 49 start-page: 1559 year: 2017 end-page: 1566 ident: b0055 article-title: A new method for improving the RQD determination of rock core in borehole publication-title: Rock Mech. Rock Eng. – volume: 23 start-page: 700 year: 2008 end-page: 710 ident: b0110 article-title: Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran publication-title: Tunn. Undergr. Space Technol. – volume: 47 start-page: 3401 year: 1999 end-page: 3406 ident: b0300 article-title: Two denoising methods by wavelet transform publication-title: IEEE Trans. Signal Process. – volume: 15 start-page: 335 year: 1973 end-page: 343 ident: b0045 article-title: Engineering classification of jointed rock masses publication-title: Civ. Eng. S. Afr. – volume: 97 year: 2021 ident: b0170 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. – volume: 43 start-page: 427 year: 2010 end-page: 445 ident: b0120 article-title: TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel publication-title: Rock Mech. Rock Eng. – volume: 48 start-page: 395 year: 2005 end-page: 408 ident: b0275 article-title: One-class support vector machines: an application in machine fault detection and classification publication-title: Comput. Ind. Eng. – reference: G.E. Hinton, S.T. Roweis, Stochastic neighbor embedding, in: Advances in neural information processing systems. 2003, pp. 857-864, https://doi.org/ 10.1109/TSMCB.2011.2106208. – volume: 6 start-page: 189 year: 1974 end-page: 236 ident: b0040 article-title: Engineering classification of rock masses for the design of tunnel support publication-title: Rock Mech. Rock Eng. – volume: 118 start-page: 185a year: 2020 end-page: 186a ident: b0210 article-title: A semi-supervised learning approach for calculation of membrane curvature properties, with application to mitochondrial model membranes publication-title: Biophys. J. – volume: 57 start-page: 151 year: 1998 end-page: 160 ident: b0050 article-title: Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation publication-title: Bull. Eng. Geol. Environ. – volume: 90 start-page: 8 year: 2017 end-page: 14 ident: b0290 article-title: k-means clustering with outlier removal publication-title: Pattern Recognit. Lett. – volume: 58 year: 2020 ident: b0315 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. Control – volume: 124 year: 2021 ident: b0150 article-title: A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead publication-title: Autom. Constr. – start-page: 100 year: 2016 end-page: 103 ident: b0205 article-title: A New SVM Method for Short Text Classification Based on Semi-Supervised Learning, in publication-title: International Conference on Advanced Information Technology & Sensor Application. IEEE. – volume: 91 year: 2019 ident: b0085 article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data publication-title: Tunn. Undergr. Space Technol. – reference: E.Ghasemi, H. Kalhori, R. Bagherpour, S. Yagiz, Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks. Bull. Eng. Geol. Environ. 77 (2018) 331-343, https://doi.org/ 10.1007/s10064-016-0931-1. – reference: P. Nelson, T.D. O'Rourke, F.H. Kulhawy, Factors affecting TBM penetration rates in sedimentary rocks. in: Proceedings of the 24th US Symposium on Rock Mechanics, Rock Mechanics: Theory - Experiment - Practice. 1983, pp. 227-237, https://doi.org/10.1016/0148-9062(84)91489-x. – reference: J. Liang, R. Liu, Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network, in: 2015 8th International Congress on Image and Signal Processing (CISP). IEEE, 2016, pp. 697-701, https://doi.org/10.1109/cisp.2015.7407967. – volume: 13 start-page: 120 year: 2012 end-page: 127 ident: b0225 article-title: A folded neural network autoencoder for dimensionality reduction publication-title: Procedia Comput. Sci. – volume: 31 start-page: 61 year: 2012 end-page: 67 ident: b0070 article-title: Markovian geology prediction approach and its application in mountain tunnels publication-title: Tunn. Undergr. Space Technol. – volume: 10 start-page: 5416 year: 2019 ident: b0310 article-title: The art of using t-SNE for single-cell transcriptomics publication-title: Nat. Commun. – volume: 2016 start-page: 1 year: 2016 end-page: 7 ident: b0260 article-title: Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM). – volume: 11 start-page: 129 year: 2017 end-page: 145 ident: b0100 article-title: Exploration and decision-making in geotechnical engineering-a case study publication-title: Georisk – volume: 100 start-page: 73 year: 2019 end-page: 83 ident: b0080 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. Constr. – volume: 76 start-page: 170 year: 2018 end-page: 184 ident: b0240 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 151 year: 2021 ident: b0190 article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network publication-title: Mech. Syst. Signal Proc. – volume: 65 start-page: 140 year: 2017 end-page: 154 ident: b0060 article-title: A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower Classification (HC) method publication-title: Tunn. Undergr. Space Technol. – volume: 93 start-page: 325 year: 2018 end-page: 338 ident: b0090 article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front publication-title: Autom. Constr. – volume: 184 start-page: 232 year: 2016 end-page: 242 ident: b0230 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing. – volume: 108 start-page: 43 year: 2009 end-page: 53 ident: b0125 article-title: Expectation of boulder frequency when tunneling in glacial till: A statistical approach based on transition probability publication-title: Eng. Geol. – volume: 83 start-page: 13 year: 2019 end-page: 27 ident: b0255 article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes publication-title: Eng. Appl. Artif. Intell. – volume: 95 year: 2020 ident: b0025 article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm publication-title: Tunn. Undergr. Space Technol. – volume: 60 start-page: 50 year: 2015 end-page: 63 ident: b0185 article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks publication-title: Measurement – volume: 37 start-page: 5632 year: 2016 end-page: 5646 ident: b0245 article-title: Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. – volume: 57 start-page: 4 year: 2016 end-page: 17 ident: b0035 article-title: TBM tunnelling under adverse geological conditions: an overview publication-title: Tunn. Undergr. Space Technol. – volume: 11 start-page: 779 year: 2019 end-page: 789 ident: b0160 article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks publication-title: J. Rock Mech. Geotech. Eng. – year: 2007 ident: b0220 article-title: Scaling learning algorithms towards AI – volume: 93 year: 2019 ident: b0015 article-title: Application and outlook of information and intelligence technology for safe and efficient TBM construction publication-title: Tunn. Undergr. Space Technol. – volume: 57 start-page: 33 year: 2016 end-page: 46 ident: b0010 article-title: Application and development of hard rock TBM and its prospect in China publication-title: Tunn. Undergr. Space Technol. – volume: 59 start-page: 2313 year: 2017 end-page: 2322 ident: b0235 article-title: Whispered speech recognition using deep denoising autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 38 start-page: 5801 year: 2011 end-page: 5808 ident: b0145 article-title: Microtunneling decision support system (MDS) using neural-autoregressive hidden markov model publication-title: Expert Syst. Appl. – volume: 18 start-page: 950 year: 2009 end-page: 956 ident: b0270 article-title: Electro-hydraulic proportional control of thrust system for shield tunneling machine publication-title: Autom. Constr. – reference: F. Liu, M. Kai, Z. Zhou. Isolation Forest, in: 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008, pp. 413-422, https://doi.org/10.1109/ICDM.2008.17. – volume: 23 start-page: 3200 year: 2019 end-page: 3206 ident: b0095 article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data publication-title: KSCE J. Civ. Eng. – volume: 50 start-page: 2805 year: 2017 end-page: 2816 ident: b0140 article-title: Determining the particle size of debris from a tunnel boring machine through photographic analysis and comparison between excavation performance and rock mass properties publication-title: Rock Mech. Rock Eng. – start-page: 93 year: 2000 end-page: 104 ident: b0285 article-title: LOF: identifying density-based local outliers publication-title: Acm Sigmod International Conference on Management of Data. – volume: 7 start-page: 66703 year: 2019 end-page: 66713 ident: b0135 article-title: A data-driven framework for tunnel geological-type prediction based on TBM operating data publication-title: IEEE Access – volume: 79 start-page: 2069 year: 2019 end-page: 2084 ident: b0165 article-title: Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques publication-title: Bull. Eng. Geol. Environ. – volume: 152 year: 2020 ident: b0020 article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition publication-title: Measurement – volume: 63 start-page: 29 year: 2017 end-page: 43 ident: b0155 article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition publication-title: Tunn. Undergr. Space Technol. – start-page: 1 year: 2018 end-page: 11 ident: b0265 article-title: Feature representation using deep autoencoder for lung nodule image classification publication-title: Complexity. – volume: 173 year: 2021 ident: b0325 article-title: Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network publication-title: Measurement – volume: 155 start-page: 1312 year: 2020 end-page: 1327 ident: b0215 article-title: Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis publication-title: Renew. Energy – volume: 10 start-page: 5416 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0310 article-title: The art of using t-SNE for single-cell transcriptomics publication-title: Nat. Commun. doi: 10.1038/s41467-019-13056-x – start-page: 1 year: 2018 ident: 10.1016/j.measurement.2021.109545_b0265 article-title: Feature representation using deep autoencoder for lung nodule image classification publication-title: Complexity. – volume: 57 start-page: 33 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0010 article-title: Application and development of hard rock TBM and its prospect in China publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.01.034 – year: 2007 ident: 10.1016/j.measurement.2021.109545_b0220 – volume: 23 start-page: 3200 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0095 article-title: An ANN to predict ground condition ahead of tunnel face using TBM operational data publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-019-1460-9 – volume: 2016 start-page: 1 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0260 article-title: Generating feature sets for fault diagnosis using denoising stacked auto-encoder, in publication-title: IEEE International Conference on Prognostics and Health Management (ICPHM). – volume: 97 year: 2021 ident: 10.1016/j.measurement.2021.109545_b0170 article-title: Optimization of support vector machine through the use of metaheuristic algorithms in forecasting TBM advance rate publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104015 – volume: 155 start-page: 1312 year: 2020 ident: 10.1016/j.measurement.2021.109545_b0215 article-title: Mahalanobis semi-supervised mapping and beetle antennae search based support vector machine for wind turbine rolling bearings fault diagnosis publication-title: Renew. Energy doi: 10.1016/j.renene.2020.04.041 – ident: 10.1016/j.measurement.2021.109545_b0115 doi: 10.1016/0148-9062(84)91489-X – year: 2021 ident: 10.1016/j.measurement.2021.109545_b0320 article-title: DTCNNMI: A deep twin convolutional neural networks with multi-domain inputs for strongly noisy diesel engine misfire detection publication-title: Measurement doi: 10.1016/j.measurement.2021.109548 – volume: 15 start-page: 335 year: 1973 ident: 10.1016/j.measurement.2021.109545_b0045 article-title: Engineering classification of jointed rock masses publication-title: Civ. Eng. S. Afr. – volume: 100 start-page: 73 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0080 article-title: Prediction of geological conditions for a tunnel boring machine using big operational data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.12.022 – volume: 60 start-page: 50 year: 2015 ident: 10.1016/j.measurement.2021.109545_b0185 article-title: Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks publication-title: Measurement doi: 10.1016/j.measurement.2014.09.075 – volume: 23 start-page: 700 year: 2008 ident: 10.1016/j.measurement.2021.109545_b0110 article-title: Correlation of tunnel convergence with TBM operational parameters and chip size in the Ghomroud tunnel, Iran publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2008.01.005 – ident: 10.1016/j.measurement.2021.109545_b0295 doi: 10.1109/ICDM.2008.17 – volume: 58 year: 2020 ident: 10.1016/j.measurement.2021.109545_b0315 article-title: A high-precision arrhythmia classification method based on dual fully connected neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101874 – volume: 65 start-page: 140 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0060 article-title: A case study of TBM performance prediction using a Chinese rock mass classification system-Hydropower Classification (HC) method publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2017.03.002 – volume: 7 start-page: 66703 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0135 article-title: A data-driven framework for tunnel geological-type prediction based on TBM operating data publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2917756 – volume: 90 start-page: 8 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0290 article-title: k-means clustering with outlier removal publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.03.008 – volume: 184 start-page: 232 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0230 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing. doi: 10.1016/j.neucom.2015.08.104 – volume: 49 start-page: 1559 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0055 article-title: A new method for improving the RQD determination of rock core in borehole publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-015-0789-8 – volume: 47 start-page: 3401 year: 1999 ident: 10.1016/j.measurement.2021.109545_b0300 article-title: Two denoising methods by wavelet transform publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.806084 – volume: 11 start-page: 779 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0160 article-title: Application of several optimization techniques for estimating TBM advance rate in granitic rocks publication-title: J. Rock Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2019.01.002 – volume: 118 start-page: 185a year: 2020 ident: 10.1016/j.measurement.2021.109545_b0210 article-title: A semi-supervised learning approach for calculation of membrane curvature properties, with application to mitochondrial model membranes publication-title: Biophys. J. doi: 10.1016/j.bpj.2019.11.1130 – start-page: 100 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0205 article-title: A New SVM Method for Short Text Classification Based on Semi-Supervised Learning, in publication-title: International Conference on Advanced Information Technology & Sensor Application. IEEE. – volume: 18 start-page: 950 year: 2009 ident: 10.1016/j.measurement.2021.109545_b0270 article-title: Electro-hydraulic proportional control of thrust system for shield tunneling machine publication-title: Autom. Constr. doi: 10.1016/j.autcon.2009.04.005 – volume: 173 year: 2021 ident: 10.1016/j.measurement.2021.109545_b0325 article-title: Actual bearing compound fault diagnosis based on active learning and decoupling attentional residual network publication-title: Measurement doi: 10.1016/j.measurement.2020.108500 – volume: 38 start-page: 5801 year: 2011 ident: 10.1016/j.measurement.2021.109545_b0145 article-title: Microtunneling decision support system (MDS) using neural-autoregressive hidden markov model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.10.051 – volume: 43 start-page: 427 year: 2010 ident: 10.1016/j.measurement.2021.109545_b0120 article-title: TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-009-0060-2 – ident: 10.1016/j.measurement.2021.109545_b0075 doi: 10.1109/ICIAI.2019.8850794 – start-page: 93 year: 2000 ident: 10.1016/j.measurement.2021.109545_b0285 article-title: LOF: identifying density-based local outliers publication-title: Acm Sigmod International Conference on Management of Data. doi: 10.1145/335191.335388 – volume: 13 start-page: 120 year: 2012 ident: 10.1016/j.measurement.2021.109545_b0225 article-title: A folded neural network autoencoder for dimensionality reduction publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2012.09.120 – volume: 31 start-page: 61 year: 2012 ident: 10.1016/j.measurement.2021.109545_b0070 article-title: Markovian geology prediction approach and its application in mountain tunnels publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2012.04.007 – ident: 10.1016/j.measurement.2021.109545_b0130 doi: 10.1007/s10064-016-0931-1 – volume: 76 start-page: 170 year: 2018 ident: 10.1016/j.measurement.2021.109545_b0240 article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.09.010 – ident: 10.1016/j.measurement.2021.109545_b0065 – volume: 151 year: 2021 ident: 10.1016/j.measurement.2021.109545_b0190 article-title: Precise cutterhead torque prediction for shield tunneling machines using a novel hybrid deep neural network publication-title: Mech. Syst. Signal Proc. doi: 10.1016/j.ymssp.2020.107386 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.measurement.2021.109545_b0305 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 152 year: 2020 ident: 10.1016/j.measurement.2021.109545_b0020 article-title: Performance prediction of tunnel boring machine through developing high accuracy equations: a case study in adverse geological condition publication-title: Measurement doi: 10.1016/j.measurement.2019.107244 – volume: 126 start-page: 46 year: 2018 ident: 10.1016/j.measurement.2021.109545_b0005 article-title: State-of-the-art predictive modeling of TBM performance in changing geological conditions through gene expression programming publication-title: Measurement doi: 10.1016/j.measurement.2018.05.049 – volume: 6 start-page: 189 year: 1974 ident: 10.1016/j.measurement.2021.109545_b0040 article-title: Engineering classification of rock masses for the design of tunnel support publication-title: Rock Mech. Rock Eng. doi: 10.1007/BF01239496 – volume: 8 start-page: 189287 year: 2020 ident: 10.1016/j.measurement.2021.109545_b0200 article-title: SEML: a semi-supervised multi-task learning framework for aspect-based sentiment analysis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031665 – volume: 63 start-page: 29 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0155 article-title: Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.12.009 – volume: 50 start-page: 2805 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0140 article-title: Determining the particle size of debris from a tunnel boring machine through photographic analysis and comparison between excavation performance and rock mass properties publication-title: Rock Mech. Rock Eng. doi: 10.1007/s00603-017-1256-5 – ident: 10.1016/j.measurement.2021.109545_b0330 – volume: 57 start-page: 151 year: 1998 ident: 10.1016/j.measurement.2021.109545_b0050 article-title: Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s100640050031 – volume: 9 start-page: 3715 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0175 article-title: Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate publication-title: Appl. Sci. doi: 10.3390/app9183715 – volume: 59 start-page: 2313 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0235 article-title: Whispered speech recognition using deep denoising autoencoder publication-title: Eng. Appl. Artif. Intell. – volume: 79 start-page: 2069 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0165 article-title: Forecasting of TBM advance rate in hard rock condition based on artificial neural network and genetic programming techniques publication-title: Bull. Eng. Geol. Environ. doi: 10.1007/s10064-019-01626-8 – volume: 57 start-page: 4 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0035 article-title: TBM tunnelling under adverse geological conditions: an overview publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.04.002 – volume: 24 start-page: 658 year: 2011 ident: 10.1016/j.measurement.2021.109545_b0105 article-title: Probabilistic prediction of tunnel geology using a Hybrid Neural-HMM publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.02.010 – volume: 93 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0015 article-title: Application and outlook of information and intelligence technology for safe and efficient TBM construction publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.103097 – volume: 85 start-page: 174 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0180 article-title: Prediction of the uniaxial compressive strength of sandstone using various modeling techniques publication-title: Int. J. Rock Mech. Min. Sci. doi: 10.1016/j.ijrmms.2016.03.018 – volume: 108 start-page: 43 year: 2009 ident: 10.1016/j.measurement.2021.109545_b0125 article-title: Expectation of boulder frequency when tunneling in glacial till: A statistical approach based on transition probability publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2009.06.006 – volume: 11 start-page: 129 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0100 article-title: Exploration and decision-making in geotechnical engineering-a case study publication-title: Georisk – volume: 37 start-page: 5632 year: 2016 ident: 10.1016/j.measurement.2021.109545_b0245 article-title: Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2016.1246775 – volume: 92 start-page: 23 year: 2018 ident: 10.1016/j.measurement.2021.109545_b0195 article-title: Dynamic load prediction of tunnel boring machine (TBM) based on heterogeneous in-situ data publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.030 – volume: 95 year: 2020 ident: 10.1016/j.measurement.2021.109545_b0025 article-title: Prediction of rock mass parameters in the TBM tunnel based on BP neural network integrated simulated annealing algorithm publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.103103 – volume: 63 start-page: 69 year: 2017 ident: 10.1016/j.measurement.2021.109545_b0030 article-title: An overview of ahead geological prospecting in tunneling publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2016.12.011 – start-page: 430 year: 2004 ident: 10.1016/j.measurement.2021.109545_b0280 article-title: Outlier detection using k-nearest neighbour graph, in – volume: 83 start-page: 13 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0255 article-title: Process monitoring using variational autoencoder for high-dimensional nonlinear processes publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.04.013 – ident: 10.1016/j.measurement.2021.109545_b0335 doi: 10.1109/CISP.2015.7407967 – volume: 93 start-page: 325 year: 2018 ident: 10.1016/j.measurement.2021.109545_b0090 article-title: Monitor-While-Drilling-based estimation of rock mass rating with computational intelligence: The case of tunnel excavation front publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.05.019 – volume: 48 start-page: 395 year: 2005 ident: 10.1016/j.measurement.2021.109545_b0275 article-title: One-class support vector machines: an application in machine fault detection and classification publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2005.01.009 – volume: 91 year: 2019 ident: 10.1016/j.measurement.2021.109545_b0085 article-title: Improved support vector regression models for predicting rock mass parameters using tunnel boring machine driving data publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2019.04.014 – volume: 124 year: 2021 ident: 10.1016/j.measurement.2021.109545_b0150 article-title: A field parameters-based method for real-time wear estimation of disc cutter on TBM cutterhead publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.103603 – ident: 10.1016/j.measurement.2021.109545_b0250 doi: 10.1109/WIFS.2016.7823921 |
| SSID | ssj0006396 |
| Score | 2.470113 |
| Snippet | •A novel semi-supervised framework is proposed to predict geological type ahead of tunnel face.•The semi-supervised framework consists of a feature extractor... Tunnel boring machine is extremely sensitive to geological changes, and the accurate prediction of geological conditions ahead of the tunnel face is helpful... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109545 |
| SubjectTerms | Artificial neural networks Boring machines Data preprocessing Decision trees Feature extraction Geology Neural networks Onsite Prediction models Rock mass type prediction Rock masses Rocks Semi-supervised learning Stacked sparse autoencoder Subway tunnels Support vector machines Tunnel boring machine Tunnel construction Tunnels Underground construction |
| Title | Rock mass type prediction for tunnel boring machine using a novel semi-supervised method |
| URI | https://dx.doi.org/10.1016/j.measurement.2021.109545 https://www.proquest.com/docview/2553020444 |
| Volume | 179 |
| WOSCitedRecordID | wos000670114400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3vi9MwGA5zp6IfRM8TT0-J4LfRsaZd0oBfDj1RwUNkQv1UmjQ5Om7dWNdx_lH-j75J-usmh1PwSxlZk7Z7n7559ubJ-yL02tTXZopwDxAsvJD70hMR5R7VJA0EjQKaZrbYBDs_j-KYfxkMfjZ7YbaXrCiiqyu--q-mhjYwttk6-xfmbgeFBvgMRocjmB2Oexn-K3i40QI4sQuvrtZmKaZTFFZG2DISTne3sFJKNapsxCAdFcstfFmqRe6V1cq4kRIIqasy3aexn7vIoo0p9PJPdGrMJszYP9luMDTJPvvr_98rOwEui4uLDquz1K0JAXy1qqdXE6DNa5UAtM3z9uw4d6e_g-YfVT-UQfxW9tp4PEIDz3CKa-7ZFZupHawPlNDln_zN97swxHy86J5qbK4y7vpcz7e9Mw-26sRG-DZPekMlZqjEDXULHRA25dEQHZx-PIs_tVM_0D3qgnruOe6iV52g8Ib7uokQ7VADy3dmD9GD-o8KPnUAe4QGqjhE93vpKw_RHSsfluVjFBvQYQM6bECHO9BhAB12oMMOdLgGHbagwym2oMM7oMMOdEfo2_uz2dsPXl2zw5NByDeeJpKEqdQyhLnEZIJikWbpRKWESeVzPVWpUBPNhOBUcUGnOgxV6KuAcR1mTAdP0LBYFuopwpRlIguEFlOz3Vn6ETDJSQaENMoySTN2jKLmh0tkndDe1FW5TP5owGNE2q4rl9Vln05vGuskNT11tDMBBO7T_aSxaFK_lWVCbNUuk7Px2b_c0nN0r3uPTtBws67UC3Rbbjd5uX5Zo_MXzxnHaw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rock+mass+type+prediction+for+tunnel+boring+machine+using+a+novel+semi-supervised+method&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Yu%2C+Honggan&rft.au=Tao%2C+Jianfeng&rft.au=Qin%2C+Chengjin&rft.au=Xiao%2C+Dengyu&rft.date=2021-07-01&rft.issn=0263-2241&rft.volume=179&rft.spage=109545&rft_id=info:doi/10.1016%2Fj.measurement.2021.109545&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2021_109545 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |