Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities
Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile co...
Uloženo v:
| Vydáno v: | Composites science and technology Ročník 202; s. 108558 |
|---|---|
| Hlavní autoři: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Barking
Elsevier Ltd
20.01.2021
Elsevier BV |
| Témata: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile composites by a hot-compression method. The obtained composite with 40 wt% Al2O3@graphite exhibited a thermal conductivity of 1.409 W/mK, 6.6 times that of pristine phthalonitrile matrix (0.214 W/mK). And the composites still retained electrical insulation below 20 wt% Al2O3@graphite content. Moreover, excellent thermal stabilities had been observed, compared with the glass transition temperature of pristine phthalonitriles (460 °C), the glass transition temperature of the composites decreased slightly but still high. Additionally, at 20 wt% content, the weight loss temperature (T5 and T10) and the char yield at 1000 °C (Yc1000) were 525 °C, 589 °C and 74.9% which was 8 °C, 14 °C and 3.1% higher than that of pristine phthalonitriles, respectively, which holds potential for use in the high temperature thermal management.
[Display omitted] |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0266-3538 1879-1050 |
| DOI: | 10.1016/j.compscitech.2020.108558 |