Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities
Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile co...
Uložené v:
| Vydané v: | Composites science and technology Ročník 202; s. 108558 |
|---|---|
| Hlavní autori: | , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
20.01.2021
Elsevier BV |
| Predmet: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile composites by a hot-compression method. The obtained composite with 40 wt% Al2O3@graphite exhibited a thermal conductivity of 1.409 W/mK, 6.6 times that of pristine phthalonitrile matrix (0.214 W/mK). And the composites still retained electrical insulation below 20 wt% Al2O3@graphite content. Moreover, excellent thermal stabilities had been observed, compared with the glass transition temperature of pristine phthalonitriles (460 °C), the glass transition temperature of the composites decreased slightly but still high. Additionally, at 20 wt% content, the weight loss temperature (T5 and T10) and the char yield at 1000 °C (Yc1000) were 525 °C, 589 °C and 74.9% which was 8 °C, 14 °C and 3.1% higher than that of pristine phthalonitriles, respectively, which holds potential for use in the high temperature thermal management.
[Display omitted] |
|---|---|
| AbstractList | Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile composites by a hot-compression method. The obtained composite with 40 wt% Al2O3@graphite exhibited a thermal conductivity of 1.409 W/mK, 6.6 times that of pristine phthalonitrile matrix (0.214 W/mK). And the composites still retained electrical insulation below 20 wt% Al2O3@graphite content. Moreover, excellent thermal stabilities had been observed, compared with the glass transition temperature of pristine phthalonitriles (460 °C), the glass transition temperature of the composites decreased slightly but still high. Additionally, at 20 wt% content, the weight loss temperature (T5 and T10) and the char yield at 1000 °C (Yc1000) were 525 °C, 589 °C and 74.9% which was 8 °C, 14 °C and 3.1% higher than that of pristine phthalonitriles, respectively, which holds potential for use in the high temperature thermal management.
[Display omitted] Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl sulfonate (SDS) surfactant using an inorganic precursor, then to fabricate thermally conductive and electrically insulating phthalonitrile composites by a hot-compression method. The obtained composite with 40 wt% Al2O3@graphite exhibited a thermal conductivity of 1.409 W/mK, 6.6 times that of pristine phthalonitrile matrix (0.214 W/mK). And the composites still retained electrical insulation below 20 wt% Al2O3@graphite content. Moreover, excellent thermal stabilities had been observed, compared with the glass transition temperature of pristine phthalonitriles (460 °C), the glass transition temperature of the composites decreased slightly but still high. Additionally, at 20 wt% content, the weight loss temperature (T5 and T10) and the char yield at 1000 °C (Yc1000) were 525 °C, 589 °C and 74.9% which was 8 °C, 14 °C and 3.1% higher than that of pristine phthalonitriles, respectively, which holds potential for use in the high temperature thermal management. |
| ArticleNumber | 108558 |
| Author | Zhao, Tong Guo, Ying Wang, Zilong Sun, Jinsong Zhao, Zehua Zhou, Heng Liu, Xianyuan Wang, Jun Zhan, Shuyi Liu, Wenbin |
| Author_xml | – sequence: 1 givenname: Xianyuan surname: Liu fullname: Liu, Xianyuan organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China – sequence: 2 givenname: Zilong surname: Wang fullname: Wang, Zilong organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 3 givenname: Jinsong surname: Sun fullname: Sun, Jinsong organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 4 givenname: Zehua surname: Zhao fullname: Zhao, Zehua organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 5 givenname: Shuyi surname: Zhan fullname: Zhan, Shuyi organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 6 givenname: Ying surname: Guo fullname: Guo, Ying organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 7 givenname: Heng surname: Zhou fullname: Zhou, Heng email: zhouheng@iccas.ac.cn organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China – sequence: 8 givenname: Wenbin orcidid: 0000-0003-0390-8455 surname: Liu fullname: Liu, Wenbin organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China – sequence: 9 givenname: Jun orcidid: 0000-0001-7901-2706 surname: Wang fullname: Wang, Jun email: wj6267@hrbeu.edu.cn organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, PR China – sequence: 10 givenname: Tong surname: Zhao fullname: Zhao, Tong organization: Key Laboratory of Science and Technology on High-Tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, PR China |
| BookMark | eNqNkUtr3DAQx0VIIZttv4NDz97oYXvlUylLXxDIJT2LsTSOtWglR5JTQr98tHUPpaecBmb-D_HTNbn0wSMhN4zuGGXd7XGnw2lO2mbU045Tft7LtpUXZMPkvq8Zbekl2VDedbVohbwi1ykdKaX7tucb8vthwngC514qHbxZdLbPWIE3FTrUOVr952Z9Whxk6x8rcMvJeqh1gIymeowwT6X9dp7yBC54W0wOq_OzQiqHVP2yeary2lOlDIN1NltM78m7EVzCD3_nlvz8-uXh8L2-u__24_D5rtai6XONQyNGI8GM_TAMe2gR0TDZUdMwMAYEdNqgkEaKkY0cORPAm27ATnAqgIot-bjmzjE8LZiyOoYl-lKpeCN7ykRfPFvSryodQ0oRRzVHe4L4ohhVZ9bqqP5hrc6s1cq6eD_95y2igiv4HMG6NyUc1gQsIJ4tRlVU6DUaG8s_KBPsG1JeAWmTqsc |
| CitedBy_id | crossref_primary_10_1016_j_coco_2023_101777 crossref_primary_10_1016_j_polymer_2022_125118 crossref_primary_10_1016_j_ceramint_2021_12_058 crossref_primary_10_3390_molecules29133141 crossref_primary_10_1007_s40820_024_01396_3 crossref_primary_10_1016_j_compositesa_2025_108887 crossref_primary_10_1002_app_54772 crossref_primary_10_1016_j_compscitech_2025_111128 crossref_primary_10_1016_j_cej_2024_151621 crossref_primary_10_1016_j_compositesa_2021_106685 crossref_primary_10_1002_advs_202407156 crossref_primary_10_1016_j_jhazmat_2025_139690 crossref_primary_10_1515_ipp_2024_0047 crossref_primary_10_1002_smll_202405971 crossref_primary_10_1007_s10973_023_12563_w crossref_primary_10_1016_j_compositesa_2021_106517 crossref_primary_10_3390_polym13183028 crossref_primary_10_1016_j_ceramint_2023_05_036 crossref_primary_10_1007_s10853_025_10985_5 crossref_primary_10_1016_j_compositesb_2025_113042 crossref_primary_10_3390_nano13152243 crossref_primary_10_1016_j_compositesa_2022_107123 crossref_primary_10_1007_s13726_022_01118_9 crossref_primary_10_1016_j_coco_2021_100795 crossref_primary_10_1016_j_compositesa_2023_107740 crossref_primary_10_1016_j_compscitech_2022_109374 crossref_primary_10_1016_j_apsusc_2024_161639 crossref_primary_10_1016_j_compscitech_2023_110289 crossref_primary_10_1016_j_compositesa_2025_109305 crossref_primary_10_1016_j_compositesa_2023_107788 crossref_primary_10_1088_1361_6463_ad7473 crossref_primary_10_1002_marc_202500078 crossref_primary_10_1177_09540083211058048 crossref_primary_10_1016_j_mtcomm_2022_105239 crossref_primary_10_1002_smll_202409657 crossref_primary_10_1016_j_coco_2025_102272 crossref_primary_10_1007_s10443_023_10195_9 crossref_primary_10_1002_pat_5642 crossref_primary_10_1016_j_diamond_2022_109521 crossref_primary_10_1016_j_compscitech_2022_109289 crossref_primary_10_1126_science_adp6581 |
| Cites_doi | 10.1016/j.compscitech.2014.08.003 10.1021/acssuschemeng.9b02594 10.1177/0954008320916224 10.1016/j.compscitech.2016.10.017 10.1016/j.compositesa.2018.02.006 10.1002/pc.24401 10.1002/app.46606 10.1016/j.compscitech.2019.107778 10.1021/jp3026545 10.1177/0954008319847259 10.1007/s10854-016-4571-9 10.1007/s10965-012-9918-1 10.1016/S0032-3861(00)00164-6 10.1016/j.compositesb.2018.11.005 10.1016/j.compscitech.2018.11.012 10.1016/j.compscitech.2017.03.023 10.1016/j.compositesa.2016.12.014 10.1016/j.compositesa.2016.11.002 10.1016/j.polymer.2007.08.028 10.1039/C6RA04513H 10.1007/s42114-019-00077-9 10.1039/C5RA08010J 10.1002/app.28817 10.1016/j.polymer.2005.03.068 10.1016/j.ijheatmasstransfer.2015.08.081 10.1016/j.carbon.2014.06.073 10.1002/app.41595 10.1039/C8TC04309D 10.1016/j.carbon.2013.04.034 10.1016/j.coco.2018.07.003 10.1016/j.polymer.2015.09.035 10.1007/s42114-018-0072-z 10.1007/s42114-019-00116-5 10.1016/j.foodchem.2019.01.188 10.1177/0954008318765066 10.1007/s42114-019-00081-z 10.1002/adma.201905099 10.1007/s42114-019-00083-x 10.1016/j.carbon.2019.09.085 10.1177/0954008316631593 10.1016/j.carbon.2008.02.008 10.1016/j.compositesa.2015.09.005 10.1016/j.reactfunctpolym.2017.10.016 10.1016/j.compscitech.2020.108336 10.1016/j.polymer.2016.08.062 10.1016/j.carbon.2012.07.029 10.1007/s10965-014-0570-9 10.1016/j.carbon.2010.09.047 10.1016/j.compositesa.2017.06.005 10.1039/C8RA01946K |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier BV Jan 20, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier BV Jan 20, 2021 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2020.108558 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2020_108558 S0266353820323502 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFPUW AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- ~HD .-4 29F 6TJ 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADIYS ADMUD ADNMO AFJKZ AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ 7SR 8FD JG9 |
| ID | FETCH-LOGICAL-c349t-eb43fd8adf9bbb7a5eeed1860d41adda3a6cde38d83f1f2e213a246be63203a03 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600743500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Sun Nov 09 06:43:40 EST 2025 Sat Nov 29 07:16:55 EST 2025 Tue Nov 18 21:48:56 EST 2025 Sat Oct 11 16:50:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal properties Electrical properties Polymer-matrix composites (PMCs) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-eb43fd8adf9bbb7a5eeed1860d41adda3a6cde38d83f1f2e213a246be63203a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7901-2706 0000-0003-0390-8455 |
| PQID | 2489013921 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2489013921 crossref_primary_10_1016_j_compscitech_2020_108558 crossref_citationtrail_10_1016_j_compscitech_2020_108558 elsevier_sciencedirect_doi_10_1016_j_compscitech_2020_108558 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-20 |
| PublicationDateYYYYMMDD | 2021-01-20 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Lee, Yu, Shahzad, Hong, Noh, Kim, Hong, Koo (bib30) 2019; 182 Ruan, Guo, Tang, Zhang, Zhang, He, Kong, Gu (bib8) 2018; 10 Sun, Yao, Zhang, Li, Mai, Yu (bib3) 2016; 137 Chen, Hao, Ting, Li, Gao (bib41) 2019; 286 Dayo, Cao, Cai, Song, Wang, Zegaoui, Derradji, Xu, Wang, Liu, Gong (bib53) 2018; 129 Song, Cao, Luo, Guo, Gu, Ding (bib2) 2018; 6 Choi, Yang, Kim, Nam, Kim, Shim (bib50) 2014; 103 Choi, Kim, Nam, Shim (bib39) 2013; 60 Chen, Dai, Gao (bib31) 2019; 7 Tang, Su, Yang, Kong, Zhao, Huang, Liao, Liu (bib46) 2015; 5 Jiang, Liu, Min, Sui (bib24) 2017; 144 Shi, Song, Li, Li, Pan, Huang, Ma, Guo (bib14) 2020 Qiu, Guo, Zou, Feng, Zhang, Pervaiz, Wen (bib32) 2018; 2 Chen, Wang, Chen, Yu, Zhang (bib23) 2018; 31 Tu, Li, Zhang, Hu, Cai, Yin, Dong, Huang, Xiong, Jiang (bib35) 2019; 2 Feng, Ma, Wu, Li, Zhao, Shi, Wang, Wang, Song (bib44) 2020; 200 Gu, Yang, Lv, Li, Liang, Zhang (bib42) 2016; 92 Im, Kim (bib1) 2012; 50 Zhang, Ning, Ma, Song, Wang, Zhang, Fan, Zhang, Yan (bib49) 2020; 156 Chen, Wang, Su, Chen, Zhang, Lai, Jiang, Wu, Sun, Li, Guo (bib10) 2019; 4 Zhou, Liu, Chen (bib7) 2019; 2 Wang, Cheng (bib37) 2019; 2 Kim, Kim (bib48) 2016; 101 Gu, Liang, Dang, Dong, Zhang (bib55) 2016; 6 Li, Xu, Guo, Ma, Zhong, Zhang, Gu (bib58) 2018; 107 Wang, Liu, Han, Guo, Zhou, Wang, Liu, Zhao (bib22) 2020; 32 Dong, Li, Vessalas, Wang (bib15) 2020; 7 Cui, Du, Zhao, Zhang, Yang, Xie, Mai (bib51) 2011; 49 Dominguez, Keller (bib21) 2008; 110 Huangfu, Liang, Han, Qiu, Song, Wang, Kong, Gu (bib34) 2019; 169 Keller, Dominguez (bib54) 2005; 46 Gu, Meng, Tang, Li, Zhuang, Kong (bib6) 2017; 92 Guo, Finkenstadt, Nimmagadda (bib13) 2019; 2 Huang, Iizuka, Jiang, Ohki, Tanaka (bib28) 2012; 116 Bai, Zheng, Bao, Liu, Yang, Yang (bib26) 2018; 3 Liu, Jia, Liu (bib57) 2015; 132 Derradji, Henniche, Wang, Dayo, Ouyang, Liu, Medjahed (bib25) 2018; 39 Lu, Liu, Murugadoss, Seok, Huang, Ryu, Guo (bib11) 2020; 9 Zhou, Wu, Long, Zhu, Wu, Liu, Murugadoss, Winchester, Nautiyal, Wang, Guo (bib9) 2020; 7 Das, Ghosh, Das (bib12) 2019; 2 Li, Feng, Huang (bib38) 2016; 27 Shan, Chen, Xi, Yu, Qu, Zhang (bib19) 2016; 29 Hirahara (bib40) 2018; 8 Guo, Chen, Zhang, Yang, Zhao, Liu (bib52) 2012; 19 Gu, Lv, Wu, Zhao, Tian, Zhang (bib27) 2015; 79 Wang, Guo, Li, Xu, Han, Luo, Ye, Zhou, Zhao (bib18) 2018; 135 Zong, Liu, Zhang, Wang, Jian (bib20) 2015; 77 Rimdusit, Ishida (bib5) 2000; 41 Noma, Saga, Une (bib29) 2014; 78 Gu, Lv, Wu, Guo, Tian, Qiu, Li, Zhang (bib17) 2017; 94 Wang, Guo, Han, Li, Ding, Jiang, Zhou, Zhao (bib47) 2019; 32 Ji, Yan, Wang, Xiong, Zhou, Li, Sun, Wong (bib33) 2019; 163 Yu, Li, An, Jiang, Yang (bib43) 2018; 2 Ganguli, Roy, Anderson (bib4) 2008; 46 Yang, Tang, Guo, Liang, Zhang, Kou, Gu (bib16) 2017; 101 Liu, Jia, Liu (bib56) 2014; 21 Wu, Li, Tong, Chao, Zhai, Xu, Yan, Wu, Xu, Bao, Deng, Wang (bib36) 2019; 31 Laskoski, Dominguez, Keller (bib45) 2007; 48 Derradji (10.1016/j.compscitech.2020.108558_bib25) 2018; 39 Choi (10.1016/j.compscitech.2020.108558_bib50) 2014; 103 Chen (10.1016/j.compscitech.2020.108558_bib23) 2018; 31 Jiang (10.1016/j.compscitech.2020.108558_bib24) 2017; 144 Im (10.1016/j.compscitech.2020.108558_bib1) 2012; 50 Ji (10.1016/j.compscitech.2020.108558_bib33) 2019; 163 Zhou (10.1016/j.compscitech.2020.108558_bib7) 2019; 2 Guo (10.1016/j.compscitech.2020.108558_bib13) 2019; 2 Dong (10.1016/j.compscitech.2020.108558_bib15) 2020; 7 Bai (10.1016/j.compscitech.2020.108558_bib26) 2018; 3 Chen (10.1016/j.compscitech.2020.108558_bib10) 2019; 4 Wang (10.1016/j.compscitech.2020.108558_bib37) 2019; 2 Chen (10.1016/j.compscitech.2020.108558_bib31) 2019; 7 Huangfu (10.1016/j.compscitech.2020.108558_bib34) 2019; 169 Rimdusit (10.1016/j.compscitech.2020.108558_bib5) 2000; 41 Keller (10.1016/j.compscitech.2020.108558_bib54) 2005; 46 Choi (10.1016/j.compscitech.2020.108558_bib39) 2013; 60 Gu (10.1016/j.compscitech.2020.108558_bib42) 2016; 92 Huang (10.1016/j.compscitech.2020.108558_bib28) 2012; 116 Kim (10.1016/j.compscitech.2020.108558_bib48) 2016; 101 Liu (10.1016/j.compscitech.2020.108558_bib56) 2014; 21 Cui (10.1016/j.compscitech.2020.108558_bib51) 2011; 49 Noma (10.1016/j.compscitech.2020.108558_bib29) 2014; 78 Zhang (10.1016/j.compscitech.2020.108558_bib49) 2020; 156 Chen (10.1016/j.compscitech.2020.108558_bib41) 2019; 286 Zong (10.1016/j.compscitech.2020.108558_bib20) 2015; 77 Shi (10.1016/j.compscitech.2020.108558_bib14) 2020 Shan (10.1016/j.compscitech.2020.108558_bib19) 2016; 29 Qiu (10.1016/j.compscitech.2020.108558_bib32) 2018; 2 Liu (10.1016/j.compscitech.2020.108558_bib57) 2015; 132 Wang (10.1016/j.compscitech.2020.108558_bib22) 2020; 32 Gu (10.1016/j.compscitech.2020.108558_bib55) 2016; 6 Yu (10.1016/j.compscitech.2020.108558_bib43) 2018; 2 Guo (10.1016/j.compscitech.2020.108558_bib52) 2012; 19 Feng (10.1016/j.compscitech.2020.108558_bib44) 2020; 200 Song (10.1016/j.compscitech.2020.108558_bib2) 2018; 6 Hirahara (10.1016/j.compscitech.2020.108558_bib40) 2018; 8 Gu (10.1016/j.compscitech.2020.108558_bib6) 2017; 92 Gu (10.1016/j.compscitech.2020.108558_bib27) 2015; 79 Li (10.1016/j.compscitech.2020.108558_bib38) 2016; 27 Ganguli (10.1016/j.compscitech.2020.108558_bib4) 2008; 46 Ruan (10.1016/j.compscitech.2020.108558_bib8) 2018; 10 Das (10.1016/j.compscitech.2020.108558_bib12) 2019; 2 Lu (10.1016/j.compscitech.2020.108558_bib11) 2020; 9 Li (10.1016/j.compscitech.2020.108558_bib58) 2018; 107 Yang (10.1016/j.compscitech.2020.108558_bib16) 2017; 101 Zhou (10.1016/j.compscitech.2020.108558_bib9) 2020; 7 Wang (10.1016/j.compscitech.2020.108558_bib18) 2018; 135 Gu (10.1016/j.compscitech.2020.108558_bib17) 2017; 94 Sun (10.1016/j.compscitech.2020.108558_bib3) 2016; 137 Laskoski (10.1016/j.compscitech.2020.108558_bib45) 2007; 48 Tang (10.1016/j.compscitech.2020.108558_bib46) 2015; 5 Tu (10.1016/j.compscitech.2020.108558_bib35) 2019; 2 Dayo (10.1016/j.compscitech.2020.108558_bib53) 2018; 129 Wu (10.1016/j.compscitech.2020.108558_bib36) 2019; 31 Lee (10.1016/j.compscitech.2020.108558_bib30) 2019; 182 Wang (10.1016/j.compscitech.2020.108558_bib47) 2019; 32 Dominguez (10.1016/j.compscitech.2020.108558_bib21) 2008; 110 |
| References_xml | – volume: 110 start-page: 2504 year: 2008 end-page: 2515 ident: bib21 article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties publication-title: J. Appl. Polym. Sci. – volume: 27 start-page: 6364 year: 2016 end-page: 6370 ident: bib38 article-title: High-performance epoxy resin/silica coated flake graphite composites for thermal conductivity and electrical insulation publication-title: J. Mater. Sci. Mater. Electron. – volume: 32 start-page: 3 year: 2019 end-page: 11 ident: bib47 article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group publication-title: High Perform. Polym. – volume: 32 start-page: 963 year: 2020 end-page: 972 ident: bib22 article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure publication-title: High Perform. Polym. – volume: 2 start-page: 46 year: 2019 end-page: 50 ident: bib7 article-title: Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation publication-title: Advanced Composites and Hybrid Materials – volume: 94 start-page: 209 year: 2017 end-page: 216 ident: bib17 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in -situ polymerization-electrospinning-hot press method publication-title: Compos. Appl. Sci. Manuf. – volume: 31 start-page: 1905099 year: 2019 end-page: 1905108 ident: bib36 article-title: High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting publication-title: Adv. Mater. – volume: 48 start-page: 6234 year: 2007 end-page: 6240 ident: bib45 article-title: Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability publication-title: Polymer – volume: 49 start-page: 495 year: 2011 end-page: 500 ident: bib51 article-title: Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes publication-title: Carbon – volume: 7 start-page: 51 year: 2020 end-page: 63 ident: bib15 article-title: Mechanical and conductive properties of smart cementitious composites with conductive rubber crumbs publication-title: ES Materials & Manufacturing – volume: 41 start-page: 7941 year: 2000 end-page: 7949 ident: bib5 article-title: Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins publication-title: Polymer – volume: 2 start-page: 66 year: 2018 end-page: 72 ident: bib32 article-title: Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration publication-title: ES Energy & Environment – volume: 101 start-page: 237 year: 2017 end-page: 242 ident: bib16 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers publication-title: Compos. Appl. Sci. Manuf. – volume: 2 start-page: 83 year: 2019 end-page: 92 ident: bib37 article-title: A novel flexible room temperature positive temperature coefficient material for thermal management publication-title: Advanced Composites and Hybrid Materials – volume: 46 start-page: 4614 year: 2005 end-page: 4618 ident: bib54 article-title: High temperature resorcinol-based phthalonitrile polymer publication-title: Polymer – volume: 144 start-page: 63 year: 2017 end-page: 69 ident: bib24 article-title: BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities publication-title: Compos. Sci. Technol. – volume: 78 start-page: 204 year: 2014 end-page: 211 ident: bib29 article-title: Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins publication-title: Carbon – volume: 60 start-page: 254 year: 2013 end-page: 265 ident: bib39 article-title: Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites publication-title: Carbon – volume: 79 start-page: 8 year: 2015 end-page: 13 ident: bib27 article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique publication-title: Compos. Appl. Sci. Manuf. – volume: 2 start-page: 67 year: 2018 end-page: 73 ident: bib43 article-title: Interfacial and glass transition properties of surface-treated carbon fiber reinforced polymer composites under hygrothermal conditions publication-title: Engineered Science – volume: 129 start-page: 46 year: 2018 end-page: 52 ident: bib53 article-title: Synthesis of benzophenone-center bisphenol-A containing phthalonitrile monomer (BBaph) and its copolymerization with P-a benzoxazine publication-title: React. Funct. Polym. – volume: 10 start-page: 68 year: 2018 end-page: 72 ident: bib8 article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique publication-title: Composites Communications – volume: 286 start-page: 467 year: 2019 end-page: 474 ident: bib41 article-title: Preparation and emulsification properties of dialdehyde starch nanoparticles publication-title: Food Chem. – volume: 163 start-page: 363 year: 2019 end-page: 370 ident: bib33 article-title: Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network publication-title: Compos. B Eng. – volume: 5 start-page: 55170 year: 2015 end-page: 55178 ident: bib46 article-title: Preparation of alumina-coated graphite for thermally conductive and electrically insulating epoxy composites publication-title: RSC Adv. – volume: 7 start-page: 14064 year: 2019 end-page: 14073 ident: bib31 article-title: Starch nanoparticles–graphene aerogels with high supercapacitor performance and efficient adsorption publication-title: ACS Sustain. Chem. Eng. – volume: 116 start-page: 13629 year: 2012 end-page: 13639 ident: bib28 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C – volume: 21 start-page: 570 year: 2014 end-page: 579 ident: bib56 article-title: Preparation of hybrid colloidal graphite-copper phthalocyanine and their utilization in polymer composites with enhanced thermal conductivity and mechanical properties publication-title: J. Polym. Res. – volume: 92 start-page: 15 year: 2016 end-page: 22 ident: bib42 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. – volume: 4 start-page: 31 year: 2019 end-page: 37 ident: bib10 article-title: Self-healing polymer composites based on hydrogen bond reinforced with graphene oxide publication-title: ES Materials & Manufacturing – volume: 19 start-page: 9918 year: 2012 end-page: 9926 ident: bib52 article-title: Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites publication-title: J. Polym. Res. – volume: 137 start-page: 16 year: 2016 end-page: 23 ident: bib3 article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites publication-title: Compos. Sci. Technol. – volume: 8 start-page: 16781 year: 2018 end-page: 16787 ident: bib40 article-title: Designable core–shell graphite particles for thermally conductive and electrically insulating polymer composites publication-title: RSC Adv. – volume: 156 start-page: 499 year: 2020 end-page: 505 ident: bib49 article-title: The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities publication-title: Carbon – volume: 6 start-page: 35809 year: 2016 end-page: 35814 ident: bib55 article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride publication-title: RSC Adv. – volume: 6 start-page: 13108 year: 2018 end-page: 13113 ident: bib2 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C – volume: 29 start-page: 113 year: 2016 end-page: 123 ident: bib19 article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin publication-title: High Perform. Polym. – volume: 182 start-page: 107778 year: 2019 end-page: 107785 ident: bib30 article-title: Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction publication-title: Compos. Sci. Technol. – volume: 9 start-page: 25 year: 2020 end-page: 34 ident: bib11 article-title: Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage publication-title: Engineered Science – volume: 101 start-page: 168 year: 2016 end-page: 175 ident: bib48 article-title: BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating publication-title: Polymer – volume: 135 start-page: 46606 year: 2018 end-page: 46614 ident: bib18 article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group publication-title: J. Appl. Polym. Sci. – volume: 2 start-page: 690 year: 2019 end-page: 700 ident: bib13 article-title: Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites publication-title: Advanced Composites and Hybrid Materials – volume: 50 start-page: 5429 year: 2012 end-page: 5440 ident: bib1 article-title: Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite publication-title: Carbon – volume: 39 start-page: 3705 year: 2018 end-page: 3711 ident: bib25 article-title: High performance nanocomposites from Ti3SiC2 MAX phase and phthalonitrile resin publication-title: Polym. Compos. – volume: 46 start-page: 806 year: 2008 end-page: 817 ident: bib4 article-title: Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites publication-title: Carbon – volume: 31 start-page: 294 year: 2018 end-page: 303 ident: bib23 article-title: Improvement of thermal conductivities and mechanical properties for polyphthalonitrile nanocomposites via incorporating functionalized h-BN fillers publication-title: High Perform. Polym. – volume: 2 start-page: 471 year: 2019 end-page: 480 ident: bib35 article-title: Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites publication-title: Advanced Composites and Hybrid Materials – volume: 107 start-page: 570 year: 2018 end-page: 578 ident: bib58 article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers publication-title: Compos. Appl. Sci. Manuf. – volume: 7 start-page: 4 year: 2020 end-page: 24 ident: bib9 article-title: Recent advances in thermal interface materials publication-title: ES Materials & Manufacturing – volume: 132 start-page: 41595 year: 2015 end-page: 41603 ident: bib57 article-title: Effective thermal conductivity and thermal properties of phthalonitrile-terminated poly(arylene ether nitriles) composites with hybrid functionalized alumina publication-title: J. Appl. Polym. Sci. – volume: 77 start-page: 177 year: 2015 end-page: 188 ident: bib20 article-title: Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones publication-title: Polymer – volume: 103 start-page: 8 year: 2014 end-page: 15 ident: bib50 article-title: Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites publication-title: Compos. Sci. Technol. – start-page: 108522 year: 2020 ident: bib14 article-title: Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole publication-title: Compos. Sci. Technol. – volume: 92 start-page: 27 year: 2017 end-page: 32 ident: bib6 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Compos. Appl. Sci. Manuf. – volume: 200 start-page: 108336 year: 2020 end-page: 108344 ident: bib44 article-title: Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites publication-title: Compos. Sci. Technol. – volume: 2 start-page: 214 year: 2019 end-page: 233 ident: bib12 article-title: Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review publication-title: Advanced Composites and Hybrid Materials – volume: 3 start-page: 66 year: 2018 end-page: 72 ident: bib26 article-title: Effect of PLA crystallization on the thermal conductivity and breakdown strength of PLA/BN composites publication-title: ES Materials & Manufacturing – volume: 169 start-page: 70 year: 2019 end-page: 75 ident: bib34 article-title: Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites publication-title: Compos. Sci. Technol. – volume: 103 start-page: 8 year: 2014 ident: 10.1016/j.compscitech.2020.108558_bib50 article-title: Microwave-accelerated synthesis of silica nanoparticle-coated graphite nanoplatelets and properties of their epoxy composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2014.08.003 – volume: 7 start-page: 14064 issue: 16 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib31 article-title: Starch nanoparticles–graphene aerogels with high supercapacitor performance and efficient adsorption publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b02594 – volume: 32 start-page: 963 issue: 8 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib22 article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure publication-title: High Perform. Polym. doi: 10.1177/0954008320916224 – volume: 137 start-page: 16 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib3 article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.10.017 – volume: 107 start-page: 570 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib58 article-title: Fabrication, proposed model and simulation predictions on thermally conductive hybrid cyanate ester composites with boron nitride fillers publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2018.02.006 – volume: 39 start-page: 3705 issue: 10 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib25 article-title: High performance nanocomposites from Ti3SiC2 MAX phase and phthalonitrile resin publication-title: Polym. Compos. doi: 10.1002/pc.24401 – volume: 135 start-page: 46606 issue: 34 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib18 article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46606 – volume: 182 start-page: 107778 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib30 article-title: Low percolation 3D Cu and Ag shell network composites for EMI shielding and thermal conduction publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107778 – volume: 116 start-page: 13629 issue: 25 year: 2012 ident: 10.1016/j.compscitech.2020.108558_bib28 article-title: Role of interface on the thermal conductivity of highly filled dielectric epoxy/AlN composites publication-title: J. Phys. Chem. C doi: 10.1021/jp3026545 – volume: 32 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib47 article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group publication-title: High Perform. Polym. doi: 10.1177/0954008319847259 – volume: 2 start-page: 66 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib32 article-title: Extremely low thermal conductivity of graphene nanoplatelets using nanoparticle decoration publication-title: ES Energy & Environment – volume: 27 start-page: 6364 issue: 6 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib38 article-title: High-performance epoxy resin/silica coated flake graphite composites for thermal conductivity and electrical insulation publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4571-9 – volume: 19 start-page: 9918 issue: 7 year: 2012 ident: 10.1016/j.compscitech.2020.108558_bib52 article-title: Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites publication-title: J. Polym. Res. doi: 10.1007/s10965-012-9918-1 – volume: 2 start-page: 67 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib43 article-title: Interfacial and glass transition properties of surface-treated carbon fiber reinforced polymer composites under hygrothermal conditions publication-title: Engineered Science – volume: 41 start-page: 7941 issue: 22 year: 2000 ident: 10.1016/j.compscitech.2020.108558_bib5 article-title: Development of new class of electronic packaging materials based on ternary systems of benzoxazine, epoxy, and phenolic resins publication-title: Polymer doi: 10.1016/S0032-3861(00)00164-6 – volume: 163 start-page: 363 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib33 article-title: Thermal conductivity enhancement of CNT/MoS2/graphene-epoxy nanocomposites based on structural synergistic effects and interpenetrating network publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2018.11.005 – volume: 169 start-page: 70 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib34 article-title: Fabrication and investigation on the Fe3O4/thermally annealed graphene aerogel/epoxy electromagnetic interference shielding nanocomposites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.11.012 – volume: 144 start-page: 63 year: 2017 ident: 10.1016/j.compscitech.2020.108558_bib24 article-title: BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2017.03.023 – volume: 94 start-page: 209 year: 2017 ident: 10.1016/j.compscitech.2020.108558_bib17 article-title: Dielectric thermally conductive boron nitride/polyimide composites with outstanding thermal stabilities via in -situ polymerization-electrospinning-hot press method publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.12.014 – volume: 92 start-page: 27 year: 2017 ident: 10.1016/j.compscitech.2020.108558_bib6 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2016.11.002 – volume: 48 start-page: 6234 issue: 21 year: 2007 ident: 10.1016/j.compscitech.2020.108558_bib45 article-title: Synthesis and properties of aromatic ether phosphine oxide containing oligomeric phthalonitrile resins with improved oxidative stability publication-title: Polymer doi: 10.1016/j.polymer.2007.08.028 – volume: 6 start-page: 35809 issue: 42 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib55 article-title: Ideal dielectric thermally conductive bismaleimide nanocomposites filled with polyhedral oligomeric silsesquioxane functionalized nanosized boron nitride publication-title: RSC Adv. doi: 10.1039/C6RA04513H – volume: 2 start-page: 46 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib7 article-title: Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-019-00077-9 – volume: 5 start-page: 55170 issue: 68 year: 2015 ident: 10.1016/j.compscitech.2020.108558_bib46 article-title: Preparation of alumina-coated graphite for thermally conductive and electrically insulating epoxy composites publication-title: RSC Adv. doi: 10.1039/C5RA08010J – volume: 110 start-page: 2504 issue: 4 year: 2008 ident: 10.1016/j.compscitech.2020.108558_bib21 article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28817 – volume: 46 start-page: 4614 issue: 13 year: 2005 ident: 10.1016/j.compscitech.2020.108558_bib54 article-title: High temperature resorcinol-based phthalonitrile polymer publication-title: Polymer doi: 10.1016/j.polymer.2005.03.068 – volume: 92 start-page: 15 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib42 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.08.081 – volume: 78 start-page: 204 year: 2014 ident: 10.1016/j.compscitech.2020.108558_bib29 article-title: Amorphous silica-coated graphite particles for thermally conductive and electrically insulating resins publication-title: Carbon doi: 10.1016/j.carbon.2014.06.073 – volume: 132 start-page: 41595 issue: 10 year: 2015 ident: 10.1016/j.compscitech.2020.108558_bib57 article-title: Effective thermal conductivity and thermal properties of phthalonitrile-terminated poly(arylene ether nitriles) composites with hybrid functionalized alumina publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.41595 – volume: 6 start-page: 13108 issue: 48 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib2 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04309D – volume: 60 start-page: 254 year: 2013 ident: 10.1016/j.compscitech.2020.108558_bib39 article-title: Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites publication-title: Carbon doi: 10.1016/j.carbon.2013.04.034 – volume: 10 start-page: 68 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib8 article-title: Improved thermal conductivities in polystyrene nanocomposites by incorporating thermal reduced graphene oxide via electrospinning-hot press technique publication-title: Composites Communications doi: 10.1016/j.coco.2018.07.003 – volume: 77 start-page: 177 year: 2015 ident: 10.1016/j.compscitech.2020.108558_bib20 article-title: Enhanced thermal properties of phthalonitrile networks by cooperating phenyl-s-triazine moieties in backbones publication-title: Polymer doi: 10.1016/j.polymer.2015.09.035 – volume: 9 start-page: 25 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib11 article-title: Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage publication-title: Engineered Science – volume: 4 start-page: 31 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib10 article-title: Self-healing polymer composites based on hydrogen bond reinforced with graphene oxide publication-title: ES Materials & Manufacturing – volume: 2 start-page: 214 issue: 2 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib12 article-title: Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-018-0072-z – volume: 2 start-page: 690 issue: 4 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib13 article-title: Mechanical properties and water absorption behavior of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-019-00116-5 – volume: 286 start-page: 467 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib41 article-title: Preparation and emulsification properties of dialdehyde starch nanoparticles publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.01.188 – volume: 31 start-page: 294 issue: 3 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib23 article-title: Improvement of thermal conductivities and mechanical properties for polyphthalonitrile nanocomposites via incorporating functionalized h-BN fillers publication-title: High Perform. Polym. doi: 10.1177/0954008318765066 – volume: 2 start-page: 83 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib37 article-title: A novel flexible room temperature positive temperature coefficient material for thermal management publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-019-00081-z – volume: 31 start-page: 1905099 issue: 49 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib36 article-title: High-performance thermally conductive phase change composites by large-size oriented graphite sheets for scalable thermal energy harvesting publication-title: Adv. Mater. doi: 10.1002/adma.201905099 – volume: 3 start-page: 66 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib26 article-title: Effect of PLA crystallization on the thermal conductivity and breakdown strength of PLA/BN composites publication-title: ES Materials & Manufacturing – volume: 2 start-page: 471 issue: 3 year: 2019 ident: 10.1016/j.compscitech.2020.108558_bib35 article-title: Latent heat and thermal conductivity enhancements in polyethylene glycol/polyethylene glycol-grafted graphene oxide composites publication-title: Advanced Composites and Hybrid Materials doi: 10.1007/s42114-019-00083-x – volume: 156 start-page: 499 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib49 article-title: The structural properties of chemically derived graphene nanosheets/mesophase pitch-based composite carbon fibers with high conductivities publication-title: Carbon doi: 10.1016/j.carbon.2019.09.085 – volume: 29 start-page: 113 issue: 1 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib19 article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin publication-title: High Perform. Polym. doi: 10.1177/0954008316631593 – volume: 46 start-page: 806 issue: 5 year: 2008 ident: 10.1016/j.compscitech.2020.108558_bib4 article-title: Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites publication-title: Carbon doi: 10.1016/j.carbon.2008.02.008 – volume: 79 start-page: 8 year: 2015 ident: 10.1016/j.compscitech.2020.108558_bib27 article-title: Enhanced thermal conductivity of SiCp/PS composites by electrospinning–hot press technique publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2015.09.005 – volume: 129 start-page: 46 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib53 article-title: Synthesis of benzophenone-center bisphenol-A containing phthalonitrile monomer (BBaph) and its copolymerization with P-a benzoxazine publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2017.10.016 – start-page: 108522 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib14 article-title: Enhancing interfacial performance of epoxy resin composites via in-situ nucleophilic addition polymerization modification of carbon fibers with hyperbranched polyimidazole publication-title: Compos. Sci. Technol. – volume: 7 start-page: 51 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib15 article-title: Mechanical and conductive properties of smart cementitious composites with conductive rubber crumbs publication-title: ES Materials & Manufacturing – volume: 200 start-page: 108336 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib44 article-title: Establishment of multistage gradient modulus intermediate layer between fiber and matrix via designing double “rigid-flexible” structure to improve interfacial and mechanical properties of carbon fiber/resin composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108336 – volume: 7 start-page: 4 year: 2020 ident: 10.1016/j.compscitech.2020.108558_bib9 article-title: Recent advances in thermal interface materials publication-title: ES Materials & Manufacturing – volume: 101 start-page: 168 year: 2016 ident: 10.1016/j.compscitech.2020.108558_bib48 article-title: BN-MWCNT/PPS core-shell structured composite for high thermal conductivity with electrical insulating via particle coating publication-title: Polymer doi: 10.1016/j.polymer.2016.08.062 – volume: 50 start-page: 5429 issue: 15 year: 2012 ident: 10.1016/j.compscitech.2020.108558_bib1 article-title: Thermal conductivity of a graphene oxide-carbon nanotube hybrid/epoxy composite publication-title: Carbon doi: 10.1016/j.carbon.2012.07.029 – volume: 21 start-page: 570 issue: 11 year: 2014 ident: 10.1016/j.compscitech.2020.108558_bib56 article-title: Preparation of hybrid colloidal graphite-copper phthalocyanine and their utilization in polymer composites with enhanced thermal conductivity and mechanical properties publication-title: J. Polym. Res. doi: 10.1007/s10965-014-0570-9 – volume: 49 start-page: 495 issue: 2 year: 2011 ident: 10.1016/j.compscitech.2020.108558_bib51 article-title: Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes publication-title: Carbon doi: 10.1016/j.carbon.2010.09.047 – volume: 101 start-page: 237 year: 2017 ident: 10.1016/j.compscitech.2020.108558_bib16 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers publication-title: Compos. Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2017.06.005 – volume: 8 start-page: 16781 issue: 30 year: 2018 ident: 10.1016/j.compscitech.2020.108558_bib40 article-title: Designable core–shell graphite particles for thermally conductive and electrically insulating polymer composites publication-title: RSC Adv. doi: 10.1039/C8RA01946K |
| SSID | ssj0007592 |
| Score | 2.532133 |
| Snippet | Alumina-coated graphite (Al2O3@graphite) core-shell particles were firstly synthesized by a liquid-phase chemical precipitation with the aid of sodium dodecyl... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108558 |
| SubjectTerms | Aluminum oxide Chemical precipitation Chemical synthesis Chemicals Composite materials Core-shell particles Electrical insulation Electrical properties Electrical resistivity Glass transition temperature Graphite Heat conductivity High temperature Liquid phases Polymer-matrix composites (PMCs) Temperature Thermal conductivity Thermal energy Thermal management Thermal properties Weight loss |
| Title | Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities |
| URI | https://dx.doi.org/10.1016/j.compscitech.2020.108558 https://www.proquest.com/docview/2489013921 |
| Volume | 202 |
| WOSCitedRecordID | wos000600743500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFvE4ICggCgUtEuLmYu86fkhcKpQIUBQ4pBDlYq3tdZPKckMeVSP-Gb-OmX3YDlVROHCxok0mzvr7dnZ2Mg9C3oRhziO_8J1MeD6m5LgOFvl2OBMpZ3mIFVdUs4lwOIzG4_hrp_PL5sJclmFVRVdX8fy_Qg1jADamzv4D3PWXwgC8BtDhCrDDdVfgQdmW5QYjyrGaK8YGoXtcd7xBUMqNjkEXKuZZgH6aVcLJLgSan6qEteqa159PV1NR4qpfgPJQ4ecY4yVNStxK3wndESrE1sYj2sIHzcdt8pAK17zmzB_M1oj0GJi6WTds_W5c2ZMZ_ISz5t8rnU2istbq0clUKJ_vRE7Xou3JYOjGcJjbuNfqFJtvLSUIBoTDu7oCzLHUSjoKY9g-dMFaq8WZy1p6GHMqdEn4a1uE9lacI8JzmD1O-hiEVbSlkdkuyz38kvRPB4Nk1BuP3s5_ONixDB-ead9yi-yzsBvDprB_8qk3_lzbATDItIdPz-AOed1EF95w95usoz_sBGX8jB6SB-bUQk802x6RjqwOyF2b1L48IPdbdS0fk581B2nDQQrg0zYHacNBus1Bajn4bpuBtGEgRQZSw0DaYuATctrvjT58dEyXDyfjfrxyZOrzIo9EXsRpmoaiK8Fs86LAzX0PNl_BRZDlkkd5xAuvYJJ5XDA_SGXAmcuFy5-Sveqiks8IjUUsRJqxNAdhPEh7BQ_isMsyD65hfkgi-3STzJTAx04sZWJjHc-TFjAJApNoYA4Jq0Xnug7MLkLvLYSJWWjaUE2AjLuIH1nYE6NglgnzoxiPbcx7_ve3X5B7zSI7InurxVq-JLezy9VsuXhlyPob1TjWmQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermally+conductive+and+electrically+insulating+alumina-coated+graphite%2Fphthalonitrile+composites+with+thermal+stabilities&rft.jtitle=Composites+science+and+technology&rft.au=Liu%2C+Xianyuan&rft.au=Wang%2C+Zilong&rft.au=Sun%2C+Jinsong&rft.au=Zhao%2C+Zehua&rft.date=2021-01-20&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=202&rft.spage=108558&rft_id=info:doi/10.1016%2Fj.compscitech.2020.108558&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |