BigMPI4py: Python Module for Parallelization of Big Data Objects Discloses Germ Layer Specific DNA Demethylation Motifs
Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than <inline-formula><tex-math notation="LaTeX">2^{31}</tex-math> <mml:math><mml:msup><mml:mn>2</mml...
Uloženo v:
| Vydáno v: | IEEE/ACM transactions on computational biology and bioinformatics Ročník 19; číslo 3; s. 1507 - 1522 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than <inline-formula><tex-math notation="LaTeX">2^{31}</tex-math> <mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>31</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="ascension-ieq1-3043979.gif"/> </inline-formula> bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis . |
|---|---|
| AbstractList | Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than [Formula Omitted] bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis . Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 2 bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis. Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 231 bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis.Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 231 bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis. Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than <inline-formula><tex-math notation="LaTeX">2^{31}</tex-math> <mml:math><mml:msup><mml:mn>2</mml:mn><mml:mn>31</mml:mn></mml:msup></mml:math><inline-graphic xlink:href="ascension-ieq1-3043979.gif"/> </inline-formula> bytes, we developed BigMPI4py, a Python module that wraps mpi4py, supporting object sizes beyond this boundary. BigMPI4py automatically determines the optimal object distribution strategy, and uses vectorized methods, achieving higher parallelization efficiency. BigMPI4py facilitates the implementation of Python for Big Data applications in multicore workstations and High Performance Computer systems. We use BigMPI4py to speed-up the search for germ line specific de novo DNA methylated/unmethylated motifs from the 59 whole genome bisulfite sequencing DNA methylation samples from 27 human tissues of the ENCODE project. We developed a parallel implementation of the Kruskall-Wallis test to find CpGs with differential methylation across germ layers. The parallel evaluation of the significance of 55 million CpG achieved a 22x speedup with 25 cores allowing us an efficient identification of a set of hypermethylated genes in ectoderm and mesoderm-related tissues, and another set in endoderm-related tissues and finally, the discovery of germ layer specific DNA demethylation motifs. Our results point out that DNA methylation signal provide a higher degree of information for the demethylated state than for the methylated state. BigMPI4py is available at https://https://www.arauzolab.org/tools/bigmpi4py and https://gitlab.com/alexmascension/bigmpi4py and the Jupyter Notebook with WGBS analysis at https://gitlab.com/alexmascension/wgbs-analysis . |
| Author | Arauzo-Bravo, Marcos J. Ascension, Alex M. |
| Author_xml | – sequence: 1 givenname: Alex M. orcidid: 0000-0002-0013-3052 surname: Ascension fullname: Ascension, Alex M. email: alexmascension@gmail.com organization: Computational Biology and Systems Biomedicine Department, Biodonostia Health Research Institute; P/ Doctor Begiristain, Donostia-San Sebastián, Spain – sequence: 2 givenname: Marcos J. orcidid: 0000-0002-3264-464X surname: Arauzo-Bravo fullname: Arauzo-Bravo, Marcos J. email: mararabra@yahoo.co.uk organization: Computational Biology and Systems Biomedicine Department, Biodonostia Health Research Institute; P/ Doctor Begiristain, Donostia-San Sebastián, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33301409$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU2P0zAQhi20iP2AH4CQkCUuXFL8mcTcti0sK7VsJZZz5Lhj1pUTF9sRCr-elJY97IHTWJrnHY_muURnfegBodeUzCgl6sP9Yj6fMcLIjBPBVaWeoQsqZVUoVYqzw1vIQqqSn6PLlHaEMKGIeIHOOeeECqIu0K-5-7He3Ir9-BFvxvwQerwO28EDtiHijY7ae_Dut85uagWLJx4vddb4rt2ByQkvXTI-JEj4BmKHV3qEiL_twTjrDF5-vcZL6CA_jP44Yx2ys-klem61T_DqVK_Q98-f7hdfitXdze3ielUYLlQuQAtSAamUlIIxZkpC6hoqAm0NmujStlS1xtKKm9aWpZZGa9gyW9paUtZKfoXeH-fuY_g5QMpNN-0L3usewpAaJipSslpIPqHvnqC7MMR-2q5hZcVqIqViE_X2RA1tB9tmH12n49j8O-kE0CNgYkgpgn1EKGkO2pqDtuagrTlpmzLVk4xx-e-5ctTO_zf55ph0APD4k2KTZ8r5Hx5jo1k |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_3390_ijms24010386 crossref_primary_10_1007_s11227_024_06127_4 |
| Cites_doi | 10.1007/s00428-019-02604-x 10.1530/JME-13-0159 10.3324/haematol.2017.185603 10.1007/s12020-011-9582-y 10.1371/journal.pone.0049086 10.1111/febs.12130 10.1172/JCI130379 10.1002/cbin.11096 10.3892/mmr.2018.8938 10.1016/j.jpdc.2005.03.010 10.1126/science.1200970 10.1002/hep.30631 10.1101/gr.155960.113 10.1159/000104774 10.1073/pnas.1920880117 10.7554/elife.32532 10.1051/0004-6361/201732493 10.1089/big.2013.0016 10.1089/gtmb.2012.0435 10.1093/nar/gku696 10.1371/journal.pbio.1002195 10.1016/j.stemcr.2019.10.013 10.1186/s13148-016-0195-4 10.1242/dev.029355 10.1093/nar/gkx302 10.1093/hmg/ddt001 10.1016/j.clcc.2018.10.003 10.1186/s12864-017-4353-7 10.1159/000494647 10.25080/Majora-7b98e3ed-013 10.1109/ExaMPI.2014.5 10.1093/nar/gky1131 10.1007/s00436-017-5423-0 10.5555/3291168.3291210 10.1016/j.molcel.2010.05.004 10.1016/j.bbrc.2015.10.086 10.1002/dvdy.20373 10.1038/s41598-018-23733-4 10.1016/j.cell.2012.06.053 10.3390/ijms18020412 10.4049/jimmunol.1500250 10.1002/jcp.28831 10.1371/journal.pone.0019778 10.1523/JNEUROSCI.18-14-05389.1998 10.1038/nature07391 10.1016/j.celrep.2019.09.035 10.1002/dvdy.10290 10.1093/bioinformatics/btw633 10.1186/gb-2013-14-10-r115 10.1093/toxsci/68.2.403 10.1089/scd.2006.0077 10.1152/ajpgi.00421.2003 10.1002/dvdy.22639 10.1002/jcp.29179 10.1093/nar/gku1055 10.2217/epi-2016-0120 10.1093/hmg/9.9.1443 10.1145/2642769.2642802 10.3389/fnins.2011.00035 10.2217/epi-2017-0098 10.1002/jcb.29149 10.1158/1078-0432.CCR-17-1347 10.1111/imm.12535 10.1038/bjc.2015.341 10.1007/978-3-540-30218-6_19 10.1074/jbc.M114.557546 10.1074/mcp.M113.035600 10.1155/2016/2574152 10.1186/s12885-019-5294-0 10.1038/srep21534 10.1186/s12859-017-1698-5 10.1038/nature11247 10.1152/ajpgi.00394.2005 10.1038/s41598-018-23158-z 10.1038/nrg1655 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2020.3043979 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 1522 |
| ExternalDocumentID | 33301409 10_1109_TCBB_2020_3043979 9290413 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Diputación Foral de Gipúzcoa, Spain grantid: DFG109/2020 – fundername: Ministry of Economy and Competitiveness, Spain grantid: BFU2016-77987-P – fundername: Instituto de Salud Carlos III grantid: AC17/00012 funderid: 10.13039/501100004587 – fundername: European Union 4D-HEALING grantid: 643271 – fundername: Basque Government Predoctoral grantid: PRE_2018_1_0008 – fundername: Austrian Science Fund FWF grantid: I 3734 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-ea407e079554222c60088e70eb8ea0a6fb19bcf173cbf66a5caaed2f6f8512b53 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000805807200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 09:31:56 EDT 2025 Mon Jun 30 05:25:58 EDT 2025 Mon Jul 21 05:34:51 EDT 2025 Sat Nov 29 01:52:04 EST 2025 Tue Nov 18 21:31:46 EST 2025 Wed Aug 27 02:04:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-ea407e079554222c60088e70eb8ea0a6fb19bcf173cbf66a5caaed2f6f8512b53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-0013-3052 0000-0002-3264-464X |
| PMID | 33301409 |
| PQID | 2672805592 |
| PQPubID | 85499 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_9290413 pubmed_primary_33301409 crossref_citationtrail_10_1109_TCBB_2020_3043979 proquest_miscellaneous_2470628453 crossref_primary_10_1109_TCBB_2020_3043979 proquest_journals_2672805592 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref18 Lohr (ref1) ref51 ref50 Group (ref12) Yang (ref36) 2017; 24 ref46 ref45 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 Lukinov (ref17) (ref79) 2020 ref49 ref8 ref7 ref9 ref4 ref6 Abadi (ref83) 2015 ref5 ref82 ref81 ref40 ref80 ref35 ref34 ref78 Chollet (ref84) 2015 ref37 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref39 ref38 Besnard (ref65) 2011 Marr (ref3) 2018 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref28 ref27 ref29 Hammond (ref19) 2018 Nardelli (ref16) 2016 ref60 ref62 ref61 |
| References_xml | – ident: ref34 doi: 10.1007/s00428-019-02604-x – ident: ref50 doi: 10.1530/JME-13-0159 – ident: ref63 doi: 10.3324/haematol.2017.185603 – year: 2015 ident: ref83 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – ident: ref30 doi: 10.1007/s12020-011-9582-y – ident: ref88 doi: 10.1371/journal.pone.0049086 – ident: ref76 doi: 10.1111/febs.12130 – ident: ref87 doi: 10.1172/JCI130379 – ident: ref12 article-title: About us – ident: ref41 doi: 10.1002/cbin.11096 – ident: ref42 doi: 10.3892/mmr.2018.8938 – ident: ref15 doi: 10.1016/j.jpdc.2005.03.010 – ident: ref2 doi: 10.1126/science.1200970 – year: 2015 ident: ref84 article-title: Keras – ident: ref52 doi: 10.1002/hep.30631 – ident: ref9 article-title: Documentation – ident: ref22 doi: 10.1101/gr.155960.113 – ident: ref74 doi: 10.1159/000104774 – ident: ref59 doi: 10.1073/pnas.1920880117 – ident: ref69 doi: 10.7554/elife.32532 – ident: ref81 doi: 10.1051/0004-6361/201732493 – ident: ref10 doi: 10.1089/big.2013.0016 – ident: ref60 doi: 10.1089/gtmb.2012.0435 – ident: ref72 doi: 10.1093/nar/gku696 – ident: ref7 doi: 10.1371/journal.pbio.1002195 – ident: ref71 doi: 10.1016/j.stemcr.2019.10.013 – ident: ref26 doi: 10.1186/s13148-016-0195-4 – ident: ref48 doi: 10.1242/dev.029355 – ident: ref46 doi: 10.1093/nar/gkx302 – ident: ref55 doi: 10.1093/hmg/ddt001 – ident: ref32 doi: 10.1016/j.clcc.2018.10.003 – ident: ref85 doi: 10.1186/s12864-017-4353-7 – ident: ref35 doi: 10.1159/000494647 – ident: ref82 doi: 10.25080/Majora-7b98e3ed-013 – ident: ref80 article-title: Pyspark: Python API for spark – ident: ref18 doi: 10.1109/ExaMPI.2014.5 – ident: ref78 doi: 10.1093/nar/gky1131 – year: 2020 ident: ref79 article-title: Joblib: Running python functions as pipeline jobs – ident: ref25 doi: 10.1007/s00436-017-5423-0 – year: 2018 ident: ref3 article-title: How much data do we create every day? The mind-blowing stats everyone should read – ident: ref13 doi: 10.5555/3291168.3291210 – ident: ref43 doi: 10.1016/j.molcel.2010.05.004 – ident: ref67 doi: 10.1016/j.bbrc.2015.10.086 – ident: ref56 doi: 10.1002/dvdy.20373 – ident: ref29 doi: 10.1038/s41598-018-23733-4 – year: 2018 ident: ref19 article-title: BigMPI – ident: ref53 doi: 10.1016/j.cell.2012.06.053 – ident: ref8 doi: 10.3390/ijms18020412 – ident: ref70 doi: 10.4049/jimmunol.1500250 – ident: ref39 doi: 10.1002/jcp.28831 – ident: ref64 doi: 10.1371/journal.pone.0019778 – ident: ref51 doi: 10.1523/JNEUROSCI.18-14-05389.1998 – ident: ref58 doi: 10.1038/nature07391 – ident: ref86 doi: 10.1016/j.celrep.2019.09.035 – ident: ref75 doi: 10.1002/dvdy.10290 – ident: ref5 doi: 10.1093/bioinformatics/btw633 – ident: ref23 doi: 10.1186/gb-2013-14-10-r115 – ident: ref45 doi: 10.1093/toxsci/68.2.403 – ident: ref47 doi: 10.1089/scd.2006.0077 – ident: ref61 doi: 10.1152/ajpgi.00421.2003 – ident: ref1 article-title: The origins of ‘Big Data’: An etymological detective Story – ident: ref17 article-title: OverflowError: Integer 2559182040 does not fit in ’int’ – ident: ref44 doi: 10.1002/dvdy.22639 – ident: ref57 doi: 10.1002/jcp.29179 – year: 2016 ident: ref16 article-title: OverflowError: Integer 2768896564 does not fit in ’int’ publication-title: Bitbucket – ident: ref62 doi: 10.1093/nar/gku1055 – ident: ref38 doi: 10.2217/epi-2016-0120 – ident: ref68 doi: 10.1093/hmg/9.9.1443 – ident: ref11 doi: 10.1145/2642769.2642802 – volume-title: Front. Neurosci. year: 2011 ident: ref65 article-title: Elk-1 a transcription factor with multiple facets in the brain doi: 10.3389/fnins.2011.00035 – ident: ref21 doi: 10.2217/epi-2017-0098 – ident: ref40 doi: 10.1002/jcb.29149 – ident: ref37 doi: 10.1158/1078-0432.CCR-17-1347 – ident: ref77 doi: 10.1111/imm.12535 – ident: ref4 doi: 10.1038/bjc.2015.341 – ident: ref14 doi: 10.1007/978-3-540-30218-6_19 – ident: ref33 doi: 10.1074/jbc.M114.557546 – ident: ref49 doi: 10.1074/mcp.M113.035600 – ident: ref73 doi: 10.1155/2016/2574152 – ident: ref31 doi: 10.1186/s12885-019-5294-0 – ident: ref66 doi: 10.1038/srep21534 – ident: ref6 doi: 10.1186/s12859-017-1698-5 – ident: ref28 doi: 10.1038/nature11247 – volume: 24 start-page: 75 issue: 131 year: 2017 ident: ref36 article-title: miR-200b regulates epithelial-mesenchymal transition of chemo-resistant breast cancer cells by targeting FN1 publication-title: Discov. Med. – ident: ref54 doi: 10.1152/ajpgi.00394.2005 – ident: ref24 doi: 10.1038/s41598-018-23158-z – ident: ref20 doi: 10.1101/gr.155960.113 – ident: ref27 doi: 10.1038/nrg1655 |
| SSID | ssj0024904 |
| Score | 2.3053048 |
| Snippet | Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than... Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 2... Parallelization in Python integrates Message Passing Interface via the mpi4py module. Since mpi4py does not support parallelization of objects greater than 231... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1507 |
| SubjectTerms | Big Data Bioinformatics Bisulfite Computational biology computational epigenomics CpG islands Demethylation Deoxyribonucleic acid DNA DNA - metabolism DNA Demethylation DNA methylation DNA Methylation - genetics DNA methylation motifs DNA methylation sequencing DNA sequencing Ectoderm Endoderm Genomes Genomics Germ Layers - metabolism high performance computing (HPC) Human tissues Humans Mesoderm Message passing message passing interface (MPI) Modules parallelization Python Sequence Analysis, DNA - methods Sequential analysis Syntactics Tissues whole genome bisulfite sequencing (WGBS) Workstations |
| Title | BigMPI4py: Python Module for Parallelization of Big Data Objects Discloses Germ Layer Specific DNA Demethylation Motifs |
| URI | https://ieeexplore.ieee.org/document/9290413 https://www.ncbi.nlm.nih.gov/pubmed/33301409 https://www.proquest.com/docview/2672805592 https://www.proquest.com/docview/2470628453 |
| Volume | 19 |
| WOSCitedRecordID | wos000805807200027&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELbGBBIv_BqMjDEZiSdEmB0ncczbujJA2kofBupbZDtnFKlqpiZl6n_P2UmDkACJlyhRLnaSO9vf2b77CHmtFQiB_V5suGVxmuHBKO5ivDIFB2d1mND_dilns2KxUPM98naMhQGAsPkM3vnTsJZfNXbjp8pOcShnqaeovSNl3sdq_cqrpwJVoEcEcYZWNaxgcqZOr88nE_QEE3RQfSCo9JlChQi-hfptOAr8Kn-HmmHIuXj4fy_7iDwYoCU9623hMdmD1RNyryeb3B6Q20n9_Wr-Ob3ZvqfzrU8ZQK-aarMEiriVzvXas6osh7BM2jiK8nSqO02_GD9Z09Jp3dpl00JLP2J_Ti81wnUaCOxdbel0dkan4Bmpt_3-Oiy-q137lHy9-HB9_ikeaBdiK1LVxaDRyQMmFSINRA8WIVFRgGRgCtBM585wZazjUljj8lxnVmuoEpc7RG-JycQzsr9qVvCcUG4Er9KkKirJ00zkGnRSOfQQZcWsAxURtvv7pR1ykntqjGUZfBOmSq-70uuuHHQXkTfjIzd9Qo5_CR94xYyCg04icrxTcTk02bZMcs_UhQ5WEpFX421sbH4FRa-g2aBMKn3MKX5KRA570xjL3lnU0Z_rfEHuJz5yIuyVPCb73XoDL8ld-6Or2_UJWvSiOAkW_RObSu6r |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9NAwQv42PAAgOMxBMim_Md87aujE20pQ8F7S2ynTOKVDVTk4L633N20iAkQOIlSpSLneTO9u9s3_0A3kiBUUT9nq8Czf04oYMSgfHpSuUBGi3dhP7XSTab5dfXYr4H74ZYGER0m8_wxJ66tfyy1hs7VXZKQzmPLUXtrSSOQ95Fa_3KrCccWaDFBH5CdtWvYQZcnC7ORyPyBUNyUW0oaGZzhUaR8y7EbwOSY1j5O9h0g87F_f973Qdw0INLdtZZw0PYw9UjuNPRTW4P4ceo-jadX8U32_dsvrVJA9i0LjdLZIRc2VyuLa_Ksg_MZLVhJM_GspXss7LTNQ0bV41e1g027CP16GwiCbAzR2FvKs3GszM2RstJve122FHxbWWax_Dl4sPi_NLviRd8HcWi9VGSm4c8E4Q1CD9oAkV5jhlHlaPkMjUqEEqbIIu0MmkqEy0llqFJDeG3UCXRE9hf1Ss8AhaoKCjjsMzLLIiTKJUow9KQj5iVXBsUHvDd3y90n5XckmMsC-edcFFY3RVWd0WvOw_eDo_cdCk5_iV8aBUzCPY68eB4p-Kib7RNEaaWq4tcrNCD18Ntam52DUWusN6QTJzZqFP6FA-edqYxlL2zqGd_rvMV3L1cTCfF5Gr26TncC20chds5eQz77XqDL-C2_t5Wzfqls-ufixTxCg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BigMPI4py%3A+Python+Module+for+Parallelization+of+Big+Data+Objects+Discloses+Germ+Layer+Specific+DNA+Demethylation+Motifs&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Ascensi%C3%B3n%2C+Alex+M.&rft.au=Ara%C3%BAzo-Bravo%2C+Marcos+J.&rft.date=2022-05-01&rft.issn=1545-5963&rft.eissn=1557-9964&rft.volume=19&rft.issue=3&rft.spage=1507&rft.epage=1522&rft_id=info:doi/10.1109%2FTCBB.2020.3043979&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCBB_2020_3043979 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |