Towards Better Bus Networks: A Visual Analytics Approach

Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics Jg. 27; H. 2; S. 817 - 827
Hauptverfasser: Weng, Di, Zheng, Chengbo, Deng, Zikun, Ma, Mingze, Bao, Jie, Zheng, Yu, Xu, Mingliang, Wu, Yingcai
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.02.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1077-2626, 1941-0506, 1941-0506
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts.
AbstractList Bus routes are typically updated every 3–5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts.
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their optimal replacements remain challenging due to the difficulties in analyzing a complex bus network and the large solution space comprising alternative routes. Most of the automated approaches cannot produce satisfactory results in real-world settings without laborious inspection and evaluation of the candidates. The limitations observed in these approaches motivate us to collaborate with domain experts and propose a visual analytics solution for the performance analysis and incremental planning of bus routes based on an existing bus network. Developing such a solution involves three major challenges, namely, a) the in-depth analysis of complex bus route networks, b) the interactive generation of improved route candidates, and c) the effective evaluation of alternative bus routes. For challenge a, we employ an overview-to-detail approach by dividing the analysis of a complex bus network into three levels to facilitate the efficient identification of deficient routes. For challenge b, we improve a route generation model and interpret the performance of the generation with tailored visualizations. For challenge c, we incorporate a conflict resolution strategy in the progressive decision-making process to assist users in evaluating the alternative routes and finding the most optimal one. The proposed system is evaluated with two usage scenarios based on real-world data and received positive feedback from the experts. Index Terms-Bus route planning, spatial decision-making, urban data visual analytics.
Author Weng, Di
Zheng, Chengbo
Zheng, Yu
Ma, Mingze
Wu, Yingcai
Deng, Zikun
Xu, Mingliang
Bao, Jie
Author_xml – sequence: 1
  givenname: Di
  surname: Weng
  fullname: Weng, Di
  email: dweng@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China and Zhejiang Lab, Hangzhou, China
– sequence: 2
  givenname: Chengbo
  surname: Zheng
  fullname: Zheng, Chengbo
  email: chbozheng@gmail.com
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 3
  givenname: Zikun
  surname: Deng
  fullname: Deng, Zikun
  email: zikun-rain@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China and Zhejiang Lab, Hangzhou, China
– sequence: 4
  givenname: Mingze
  surname: Ma
  fullname: Ma, Mingze
  email: mamzaug@foxmail.com
  organization: Zhejiang Lab, Hangzhou, China
– sequence: 5
  givenname: Jie
  surname: Bao
  fullname: Bao, Jie
  email: baojie@jd.com
  organization: JD Intelligent Cities Research, JD Intelligent Cities Business Unit, JD Digits, Beijing, China
– sequence: 6
  givenname: Yu
  surname: Zheng
  fullname: Zheng, Yu
  email: msyuzheng@outlook.com
  organization: JD Intelligent Cities Research, JD Intelligent Cities Business Unit, JD Digits, Beijing, China
– sequence: 7
  givenname: Mingliang
  surname: Xu
  fullname: Xu, Mingliang
  email: iexumingliang@zzu.edu.cn
  organization: School of Information Engineering, Zhengzhou University, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
– sequence: 8
  givenname: Yingcai
  surname: Wu
  fullname: Wu, Yingcai
  email: ycwu@zju.edu.cn
  organization: State Key Lab of CAD&CG, Zhejiang University, China and Zhejiang Lab, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33048743$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdRtFZ_gAgS8OIldfYzibe0-AWil-o1bDZTTE2TurtB_PduaPXQg3vYnYXnnRmeY7Lfdi0SckZhQilk1_O32f2EAYMJBw5CpntkRDNBY5Cg9kMNSRIzxdQROXZuCUCFSLNDcsQDnSaCj0g67760rVw0Re_RRtPeRc_ovzr74W6iPHqrXa-bKG918-1r46J8vbadNu8n5GChG4en23dMXu9u57OH-Onl_nGWP8WGi8zHqMpFVRnGuagUVbSSlQGtdKY4IPIkkRoplBI4ZeFbCmYqHi4j5UJCQvmYXG36hrGfPTpfrGpnsGl0i13vCiYkpaG7HNDLHXTZ9TZsPlApZ0rwVAXqYkv15QqrYm3rlbbfxa-TANANYGznnMXFH0KhGLwXg_di8F5svYdMspMxtde-7lpvdd38mzzfJGtE_JuUsXDCMj-h4Ixd
CODEN ITVGEA
CitedBy_id crossref_primary_10_1007_s12650_021_00777_9
crossref_primary_10_1007_s12650_021_00778_8
crossref_primary_10_1109_TVCG_2021_3114781
crossref_primary_10_1007_s12650_022_00882_3
crossref_primary_10_1007_s12650_022_00884_1
crossref_primary_10_1016_j_avb_2021_101719
crossref_primary_10_1109_MCG_2024_3454645
crossref_primary_10_1109_TBDATA_2024_3423721
crossref_primary_10_1109_ACCESS_2022_3161465
crossref_primary_10_1109_TVCG_2025_3538768
crossref_primary_10_3390_su151914245
crossref_primary_10_1109_TVCG_2023_3326921
crossref_primary_10_1007_s12650_022_00861_8
crossref_primary_10_1007_s40313_022_00908_z
crossref_primary_10_1109_TVCG_2025_3552134
crossref_primary_10_1109_TVCG_2020_3030469
crossref_primary_10_1016_j_cag_2024_104013
crossref_primary_10_1109_TITS_2023_3338700
crossref_primary_10_1007_s11704_021_0609_0
crossref_primary_10_1007_s41095_022_0275_7
crossref_primary_10_1109_TIV_2023_3288907
crossref_primary_10_1007_s41095_023_0351_7
crossref_primary_10_1080_19427867_2023_2262207
crossref_primary_10_1007_s12650_020_00705_3
crossref_primary_10_1109_TVCG_2022_3229953
crossref_primary_10_1007_s12650_021_00803_w
crossref_primary_10_1109_TVCG_2021_3114875
crossref_primary_10_1109_TVCG_2021_3131824
crossref_primary_10_1109_TVCG_2021_3114832
crossref_primary_10_1109_TVCG_2025_3532498
crossref_primary_10_1145_3695986
crossref_primary_10_1109_TVCG_2021_3114877
crossref_primary_10_1109_TKDE_2024_3387480
crossref_primary_10_1016_j_visinf_2025_01_001
crossref_primary_10_1109_TVCG_2021_3071387
crossref_primary_10_1111_exsy_13065
crossref_primary_10_1007_s12650_021_00772_0
crossref_primary_10_1109_TVCG_2021_3114878
crossref_primary_10_1007_s12650_024_00968_0
crossref_primary_10_1109_TVCG_2021_3114813
crossref_primary_10_1080_15230406_2022_2039775
crossref_primary_10_1109_TVCG_2021_3114836
crossref_primary_10_1109_TVCG_2023_3239909
crossref_primary_10_1007_s12650_025_01055_8
crossref_primary_10_1007_s12650_025_01050_z
crossref_primary_10_1109_MCG_2021_3097326
crossref_primary_10_1007_s12650_021_00775_x
Cites_doi 10.1109/TVCG.2014.2346893
10.1109/TVCG.2018.2864503
10.1109/TVCG.2016.2616404
10.1145/2820783.2820876
10.1016/j.visinf.2019.10.002
10.1109/TITS.2014.2298892
10.1109/TVCG.2020.3030359
10.1057/palgrave.ivs.9500174
10.1061/(ASCE)0733-947X(2006)132:2(122)
10.1109/VL.1996.545307
10.1109/TVCG.2013.193
10.5038/2375-0901.7.1.4
10.1145/3097983.3098056
10.1145/2629592
10.1109/IV.2004.1320137
10.1109/VAST.2011.6102454
10.1145/3173574.3173821
10.1007/11871842_29
10.1007/978-0-85729-079-3
10.1201/b17511
10.1109/TCIAIG.2012.2186810
10.1080/03081060.2013.844903
10.1109/TVCG.2015.2467554
10.1061/(ASCE)0733-947X(1998)124:4(368)
10.5038/CUTR-NCTR-RR-2007-01
10.1109/TVCG.2016.2598432
10.1109/VAST.2009.5332584
10.1111/cgf.12114
10.1007/BF01840357
10.1016/j.ejor.2007.02.005
10.1109/TVCG.2013.145
10.1109/2945.981847
10.1109/TITS.2020.2964012
10.1177/1473871615581216
10.1007/s11432-018-9801-4
10.1016/j.tra.2008.03.011
10.1016/0377-2217(80)90126-5
10.1109/TVCG.2013.173
10.1111/cgf.13712
10.1080/03052150210909
10.1145/2070781.2024169
10.1155/2018/2696037
10.1109/TITS.2015.2496783
10.1007/978-3-642-37583-5
10.1109/TITS.2020.2983226
10.1109/TITS.2017.2683539
10.1145/2702123.2702419
10.1016/j.trb.2005.12.003
10.3141/1617-02
10.1109/MCG.2018.053491730
10.1145/1518701.1518897
10.1145/2623330.2623656
10.1016/j.visinf.2018.04.006
10.1109/TBDATA.2016.2586447
10.1016/j.jcps.2014.08.002
10.1109/TVCG.2015.2467196
10.1057/PALGRAVE.IVS.9500184
10.1007/BF02289588
10.1016/j.visinf.2017.01.007
10.1145/2814575
10.3141/1899-21
10.1023/A:1026123329433
10.1109/VAST.2010.5652478
10.1109/TVCG.2016.2640960
10.1109/MCG.2010.79
10.5038/2375-0901.9.2.6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2020.3030458
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 827
ExternalDocumentID 33048743
10_1109_TVCG_2020_3030458
9222274
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China; NSFC
  grantid: 61761136020
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2018YFB1004300
  funderid: 10.13039/501100012166
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: (2018YFB1004300)
  funderid: 10.13039/501100012166
– fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation
  grantid: (LR18F020001)
  funderid: 10.13039/501100004731
– fundername: Natural Science Foundation of Zhejiang Province; Zhejiang Provincial Natural Science Foundation
  grantid: LR18F020001
  funderid: 10.13039/501100004731
– fundername: Talents Program of Zhejiang University
– fundername: National Natural Science Foundation of China-Zhejiang Joint Fund for the Integration of Industrialization and Informatization; NSFC-Zhejiang Joint Fund
  grantid: (U1609217)
  funderid: 10.13039/100017054
– fundername: National Natural Science Foundation of China; NSFC
  grantid: (61761136020)
  funderid: 10.13039/501100001809
– fundername: National Natural Science Foundation of China-Zhejiang Joint Fund for the Integration of Industrialization and Informatization; NSFC-Zhejiang Joint Fund for the Integration of Industrialization and Informatization
  grantid: U1609217
  funderid: 10.13039/100017054
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
PKN
RIC
RIG
Z5M
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-e6bfddc2334d6161d5dc0a6a9630ee3775ae10b50312e37b42cd342cc55f50713
IEDL.DBID RIE
ISICitedReferencesCount 56
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000706330100067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Mon Sep 29 04:55:34 EDT 2025
Mon Jun 30 02:12:40 EDT 2025
Wed Feb 19 02:30:41 EST 2025
Sat Nov 29 06:05:44 EST 2025
Tue Nov 18 20:38:47 EST 2025
Wed Aug 27 02:14:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e6bfddc2334d6161d5dc0a6a9630ee3775ae10b50312e37b42cd342cc55f50713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 33048743
PQID 2483264386
PQPubID 75741
PageCount 11
ParticipantIDs proquest_miscellaneous_2451133451
crossref_primary_10_1109_TVCG_2020_3030458
ieee_primary_9222274
pubmed_primary_33048743
crossref_citationtrail_10_1109_TVCG_2020_3030458
proquest_journals_2483264386
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref15
ref58
ref14
ref52
ref55
ref54
ref10
ref17
ref16
liu (ref42) 0
ref18
mandl (ref45) 1979
yu (ref70) 2005; 5
xiong (ref68) 1992
ref51
ref50
ref46
ref48
ref41
ref43
ref8
ref7
deng (ref19) 2020; 26
ref9
ref4
ref3
ref6
ref5
ref82
(ref61) 0
ref81
ref40
ref83
liang (ref38) 0
ref80
ref79
ref35
ref78
ref34
ref37
(ref20) 0
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
zhou (ref84) 0
ref2
ref39
(ref53) 0
mackechnie (ref44) 0
ref71
ref73
ref72
sun (ref59) 2014
(ref24) 0
ref67
ref23
ref26
ref69
ref25
ref64
ref63
ref66
ref22
ref21
munzner (ref49) 2009; 15
wu (ref65) 2014
ref28
ref27
(ref32) 0
ref29
mees (ref47) 2010
aigner (ref1) 2011
andrienko (ref11) 2019
ref60
ref62
References_xml – ident: ref71
  doi: 10.1109/TVCG.2014.2346893
– ident: ref83
  doi: 10.1109/TVCG.2018.2864503
– ident: ref5
  doi: 10.1109/TVCG.2016.2616404
– ident: ref37
  doi: 10.1145/2820783.2820876
– ident: ref40
  doi: 10.1016/j.visinf.2019.10.002
– ident: ref17
  doi: 10.1109/TITS.2014.2298892
– ident: ref67
  doi: 10.1109/TVCG.2020.3030359
– year: 1992
  ident: ref68
  article-title: Transportation network design using a cumulative genetic algorithm and neural network
  publication-title: Transportation Research Record
– ident: ref3
  doi: 10.1057/palgrave.ivs.9500174
– ident: ref21
  doi: 10.1061/(ASCE)0733-947X(2006)132:2(122)
– ident: ref58
  doi: 10.1109/VL.1996.545307
– ident: ref9
  doi: 10.1109/TVCG.2013.193
– ident: ref76
  doi: 10.5038/2375-0901.7.1.4
– start-page: 143
  year: 2014
  ident: ref65
  article-title: Bound-arySeer: Visual analysis of 2D boundary changes
  publication-title: In Proc IEEE VAST
– ident: ref12
  doi: 10.1145/3097983.3098056
– ident: ref80
  doi: 10.1145/2629592
– ident: ref25
  doi: 10.1109/IV.2004.1320137
– start-page: 185
  year: 2014
  ident: ref59
  article-title: Embedding temporal display into maps for occlusion-free visualization of spatio-temporal data
  publication-title: Proc Pacific Vis Symp
– ident: ref6
  doi: 10.1109/VAST.2011.6102454
– ident: ref64
  doi: 10.1145/3173574.3173821
– ident: ref35
  doi: 10.1007/11871842_29
– start-page: 2020
  year: 0
  ident: ref61
  publication-title: Factors influencing bus system efficiency
– year: 2011
  ident: ref1
  publication-title: Visualization of Time-Oriented Data
  doi: 10.1007/978-0-85729-079-3
– ident: ref50
  doi: 10.1201/b17511
– ident: ref14
  doi: 10.1109/TCIAIG.2012.2186810
– ident: ref13
  doi: 10.1080/03081060.2013.844903
– ident: ref41
  doi: 10.1109/TVCG.2015.2467554
– ident: ref55
  doi: 10.1061/(ASCE)0733-947X(1998)124:4(368)
– ident: ref48
  doi: 10.5038/CUTR-NCTR-RR-2007-01
– ident: ref39
  doi: 10.1109/TVCG.2016.2598432
– ident: ref8
  doi: 10.1109/VAST.2009.5332584
– ident: ref72
  doi: 10.1111/cgf.12114
– ident: ref23
  doi: 10.1007/BF01840357
– year: 0
  ident: ref42
  article-title: A visual analytics approach to scheduling customized shuttle buses via perceiving passengers' travel demands
  publication-title: Proceedings of IEEE VIS 2020 - Short Papers
– ident: ref77
  doi: 10.1016/j.ejor.2007.02.005
– ident: ref26
  doi: 10.1109/TVCG.2013.145
– ident: ref34
  doi: 10.1109/2945.981847
– start-page: 2020
  year: 0
  ident: ref44
  publication-title: How do bus routes and schedules get planned?
– ident: ref63
  doi: 10.1109/TITS.2020.2964012
– ident: ref10
  doi: 10.1177/1473871615581216
– ident: ref82
  doi: 10.1007/s11432-018-9801-4
– volume: 5
  start-page: 374
  year: 2005
  ident: ref70
  article-title: Optimizing bus transit network with parallel ant colony algorithm
  publication-title: Eastern asia society for transportation studies
– year: 2010
  ident: ref47
  publication-title: Public transport network planning a guide to best practice in NZ cities
– ident: ref29
  doi: 10.1016/j.tra.2008.03.011
– ident: ref46
  doi: 10.1016/0377-2217(80)90126-5
– ident: ref27
  doi: 10.1109/TVCG.2013.173
– ident: ref73
  doi: 10.1111/cgf.13712
– ident: ref16
  doi: 10.1080/03052150210909
– year: 1979
  ident: ref45
  publication-title: Applied Network Optimization
– ident: ref57
  doi: 10.1145/2070781.2024169
– ident: ref22
  doi: 10.1155/2018/2696037
– ident: ref56
  doi: 10.1109/TITS.2015.2496783
– ident: ref2
  doi: 10.1007/978-3-642-37583-5
– start-page: 2020
  year: 0
  ident: ref24
  publication-title: Gapminder tools
– start-page: 2020
  year: 0
  ident: ref38
  publication-title: Rerouting buses using data science - Part I
– volume: 15
  start-page: 921
  year: 2009
  ident: ref49
  article-title: A nested process model for visualization design and validation
  publication-title: IEEE TVCG
– start-page: 2020
  year: 0
  ident: ref53
  publication-title: Transportation software for the mass - transit planning and scheduling
– start-page: 2020
  year: 0
  ident: ref20
  publication-title: ArcGIS Desktop
– ident: ref66
  doi: 10.1109/TITS.2020.2983226
– ident: ref4
  doi: 10.1109/TITS.2017.2683539
– ident: ref79
  doi: 10.1145/2702123.2702419
– ident: ref28
  doi: 10.1016/j.trb.2005.12.003
– ident: ref60
  doi: 10.3141/1617-02
– ident: ref74
  doi: 10.1109/MCG.2018.053491730
– ident: ref30
  doi: 10.1145/1518701.1518897
– ident: ref62
  doi: 10.1145/2623330.2623656
– ident: ref36
  doi: 10.1016/j.visinf.2018.04.006
– ident: ref81
  doi: 10.1109/TBDATA.2016.2586447
– year: 0
  ident: ref84
  article-title: Visual abstraction of geographical point data with spatial autocorrelations
  publication-title: Proceedings of IEEE VAST 2020
– ident: ref18
  doi: 10.1016/j.jcps.2014.08.002
– ident: ref15
  doi: 10.1109/TVCG.2015.2467196
– start-page: 1
  year: 2019
  ident: ref11
  article-title: Visual analysis of place connectedness by public transport
  publication-title: IEEE Transactions on ITS
– ident: ref78
  doi: 10.1057/PALGRAVE.IVS.9500184
– volume: 26
  start-page: 800
  year: 2020
  ident: ref19
  article-title: AirVis: Visual analytics of air pollution propagation
  publication-title: IEEE TVCG
– ident: ref33
  doi: 10.1007/BF02289588
– ident: ref52
  doi: 10.1016/j.visinf.2017.01.007
– ident: ref69
  doi: 10.1145/2814575
– start-page: 2020
  year: 0
  ident: ref32
  publication-title: CPLEX Optimizers
– ident: ref31
  doi: 10.3141/1899-21
– ident: ref51
  doi: 10.1023/A:1026123329433
– ident: ref7
  doi: 10.1109/VAST.2010.5652478
– ident: ref43
  doi: 10.1109/TVCG.2016.2640960
– ident: ref54
  doi: 10.1109/MCG.2010.79
– ident: ref75
  doi: 10.5038/2375-0901.9.2.6
SSID ssj0014489
Score 2.5634346
Snippet Bus routes are typically updated every 3-5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their...
Bus routes are typically updated every 3–5 years to meet constantly changing travel demands. However, identifying deficient bus routes and finding their...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 817
SubjectTerms Bus route planning
Buses (vehicles)
Data visualization
Decision analysis
Decision making
Inspection
Knowledge engineering
Mathematical analysis
Planning
Positive feedback
Route planning
Solution space
Spatial data
spatial decision-making
Transportation
Urban areas
urban data visual analytics
Visual analytics
Title Towards Better Bus Networks: A Visual Analytics Approach
URI https://ieeexplore.ieee.org/document/9222274
https://www.ncbi.nlm.nih.gov/pubmed/33048743
https://www.proquest.com/docview/2483264386
https://www.proquest.com/docview/2451133451
Volume 27
WOSCitedRecordID wos000706330100067&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Na9swFH-kpZT2sK1fm9eseNBTqRtHliyptzQs7SnskJXcjCW9QqAkI4779-9JdswGXaEXY2NZMu_D-j2_L4DLMuXoYW6iDYqEq9wlpWI6sUj410llGHOh2YScTtV8rn_24LrLhUHEEHyGN_40-PLdytb-V9lAM5-5yXdgR8q8ydXqPAZkZugmvlAmjFB668EcpnowexzfkyXIyEBtHIMHsO_NeCV59s92FPqr_B9qhi1n8vF9L_sJPrTQMh41snAEPVwew-FfBQdPQM1ClGwV34UsnviuruJpEwhe3caj-HFR1X4KX6nE12-OR23J8VP4NfkxGz8kbe-ExGZcbxLMzZNzlmUZdzmhOiecTcu8JH1LETMpRYnD1AjSaUaXhjPrMjpYIZ48RMzOYHe5WuIXiImiKSqOypaGGyeM5pKQhRnakuYXIoJ0S8LCtoXFfX-L5yIYGKkuPAMKz4CiZUAEV90jv5uqGm8NPvHU7Qa2hI2gv-VT0epdVTBOXygCWSqP4Ht3mzTGu0HKJa5qP4ZAJtFFDCP43PC3m3srFl9fX_McDpiPaQlR233Y3axr_AZ79mWzqNYXJJZzdRHE8g-0Jtjs
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEJ8AGsQHP0C0iFoTnwyV3na33fXtICIEvPhwEt6a7u6QkJg7Qq_8_c5s9xpMkMSXpk2nu83MTvc3nS-AT00ukWFuZiyqTOrSZ40WJnNI-NdX2grhQ7OJajLRFxfm5wrsDbkwiBiCz_ALnwZfvp-7jn-V7RvBmZtyFR5x56yYrTX4DMjQMH2EYZUJwunRhznKzf70_PA72YKCTNTeNbgB62zI60oWf21IocPKv8Fm2HSOnv_f676AZxFcpuN-NbyEFZxtwtM7JQe3QE9DnGybHoQ8nvSga9NJHwrefk3H6flV2_EQXKuEKzin41h0_BX8Ovo2PTzOYveEzBXSLDIs7aX3ThSF9CXhOq-8y5uyIY3LEYuqUg2OcqtIqwVdWimcL-jglLpkkFhsw9psPsM3kBJHc9QStWustF5ZIyvCFnbkGhpfqQTyJQtrF0uLc4eL33UwMXJTswBqFkAdBZDA5-GR676uxkPEW8zdgTAyNoHdpZzqqHltLSR9owhm6TKBj8Nt0hl2hDQznHdMQzCT-KJGCbzu5TuMvVwWO_fP-QGeHE9_nNVnJ5PTt7AhOMIlxHDvwtripsN38NjdLq7am_dhcf4BERjbTQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+Better+Bus+Networks%3A+A+Visual+Analytics+Approach&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Weng%2C+Di&rft.au=Zheng%2C+Chengbo&rft.au=Deng%2C+Zikun&rft.au=Ma%2C+Mingze&rft.date=2021-02-01&rft.eissn=1941-0506&rft.volume=27&rft.issue=2&rft.spage=817&rft_id=info:doi/10.1109%2FTVCG.2020.3030458&rft_id=info%3Apmid%2F33048743&rft.externalDocID=33048743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon