Interval Multiobjective Optimization With Memetic Algorithms
One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front w...
Saved in:
| Published in: | IEEE transactions on cybernetics Vol. 50; no. 8; pp. 3444 - 3457 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA. |
|---|---|
| AbstractList | One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA. One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA.One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA. |
| Author | Sun, Jing Miao, Zhuang Zeng, Xiao-Jun Gong, Dunwei Wang, Gaige Li, Junqing |
| Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-1485-0247 surname: Sun fullname: Sun, Jing email: sunj@hhit.edu.cn organization: School of Science, Huaihai Institute of Technology, Lianyungang, China – sequence: 2 givenname: Zhuang surname: Miao fullname: Miao, Zhuang email: 15162186171@163.com organization: Jiangsu Automation Research Institute of CSIC, Lianyungang, China – sequence: 3 givenname: Dunwei surname: Gong fullname: Gong, Dunwei email: dwgong@vip.163.com organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China – sequence: 4 givenname: Xiao-Jun orcidid: 0000-0002-2320-2495 surname: Zeng fullname: Zeng, Xiao-Jun email: x.zeng@manchester.ac.uk organization: School of Computer Science, University of Manchester, Manchester, U.K – sequence: 5 givenname: Junqing orcidid: 0000-0001-8440-9601 surname: Li fullname: Li, Junqing email: lijunqing@lcu-cs.com organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China – sequence: 6 givenname: Gaige orcidid: 0000-0002-3295-8972 surname: Wang fullname: Wang, Gaige email: gaigewang@163.com organization: Department of Computer Science and Technology, Ocean University of China, Qingdao |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31034428$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kElLAzEYhoMo7j9ABBnw4qU122QBL1rcwNKLIp5CZvqNpsxSk4ygv97U1h48mEvCy_PmS549tNl2LSB0RPCQEKzPH0cvV0OKiR5SjRVX-QbapUSoAaUy31yfhdxBhyHMcFoqRVptox1GMOOcql10cd9G8B-2zsZ9HV1XzKCM7gOyyTy6xn3ZlLXZs4tv2RgaiK7MLuvXzqegCQdoq7J1gMPVvo-ebq4fR3eDh8nt_ejyYVAyruMAcsuFkjmVU1UxoXEheMWlrUphxbRgRBWSQ6FYRXUF1KpSi_RFqKQtpISC7aOz5b1z3733EKJpXCihrm0LXR8MpURyRZnWCT39g8663rfpdYZyyonSLJeJOllRfdHA1My9a6z_NL9eEkCWQOm7EDxUa4Rgs9BvFvrNQr9Z6U8d-adTuvjjL3rr6n-bx8umA4D1JCW0xlqybzZkkK4 |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1007_s00500_024_09893_8 crossref_primary_10_1016_j_swevo_2022_101081 crossref_primary_10_3390_electronics13173579 crossref_primary_10_3390_math8101651 crossref_primary_10_3390_math9040420 crossref_primary_10_3390_math8091403 crossref_primary_10_1155_2021_2149048 crossref_primary_10_1016_j_matcom_2021_04_006 crossref_primary_10_1002_tal_2052 crossref_primary_10_1016_j_ins_2024_121690 crossref_primary_10_1109_TCYB_2019_2932996 crossref_primary_10_1109_TEVC_2020_2987559 crossref_primary_10_1007_s11047_020_09794_3 crossref_primary_10_1109_TGRS_2023_3318003 crossref_primary_10_1007_s40747_024_01418_y crossref_primary_10_1007_s10910_019_01095_0 crossref_primary_10_1109_ACCESS_2020_2999417 crossref_primary_10_1016_j_jksuci_2023_101666 crossref_primary_10_1109_TCBB_2020_2975181 crossref_primary_10_1016_j_knosys_2022_108447 crossref_primary_10_1109_TCBB_2019_2931717 crossref_primary_10_1016_j_ins_2023_119533 crossref_primary_10_1016_j_swevo_2022_101073 crossref_primary_10_1038_s41598_025_02890_3 crossref_primary_10_3390_math8091415 crossref_primary_10_1109_TASE_2023_3346446 crossref_primary_10_1016_j_swevo_2023_101406 crossref_primary_10_1007_s11227_025_07621_z crossref_primary_10_3390_math10020276 crossref_primary_10_1016_j_swevo_2024_101749 crossref_primary_10_1007_s00521_022_07105_8 crossref_primary_10_1007_s10479_024_05854_4 crossref_primary_10_1016_j_swevo_2025_102153 crossref_primary_10_3390_math8020149 crossref_primary_10_1016_j_knosys_2021_106856 crossref_primary_10_1016_j_egyr_2021_03_044 crossref_primary_10_1007_s10586_024_04396_5 crossref_primary_10_1016_j_eswa_2021_115082 crossref_primary_10_1016_j_ins_2024_121552 crossref_primary_10_1016_j_cej_2024_156306 crossref_primary_10_1109_ACCESS_2020_2976751 crossref_primary_10_3390_math10122117 crossref_primary_10_1016_j_swevo_2023_101258 crossref_primary_10_1016_j_eswa_2023_120292 crossref_primary_10_1016_j_swevo_2025_101870 crossref_primary_10_1109_TIV_2023_3332594 crossref_primary_10_1002_mma_6170 crossref_primary_10_1109_ACCESS_2020_3042004 crossref_primary_10_3390_math9111233 crossref_primary_10_1007_s12530_023_09495_z crossref_primary_10_1007_s00366_021_01293_y crossref_primary_10_1109_TASE_2021_3062979 crossref_primary_10_1109_TCBB_2019_2954315 crossref_primary_10_1080_21642583_2019_1630687 crossref_primary_10_1088_1674_1056_add24b crossref_primary_10_3390_math9030205 crossref_primary_10_3390_pr9060911 crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_1109_TEVC_2024_3378774 crossref_primary_10_1080_09540091_2022_2075828 crossref_primary_10_1016_j_eswa_2022_117251 crossref_primary_10_1109_TASE_2022_3148459 crossref_primary_10_1016_j_swevo_2021_100864 crossref_primary_10_1109_TCYB_2020_3023932 crossref_primary_10_1016_j_future_2020_01_048 crossref_primary_10_1016_j_desal_2024_117849 crossref_primary_10_1016_j_swevo_2019_100600 crossref_primary_10_1016_j_eswa_2023_122164 crossref_primary_10_1093_jcde_qwab065 crossref_primary_10_1109_ACCESS_2020_3044606 crossref_primary_10_1016_j_knosys_2023_111019 crossref_primary_10_1109_TEVC_2021_3061545 crossref_primary_10_1016_j_eswa_2021_114886 crossref_primary_10_1007_s00366_021_01497_2 crossref_primary_10_1016_j_jclepro_2019_119464 crossref_primary_10_32604_cmes_2021_017310 crossref_primary_10_1109_TCYB_2020_3027962 crossref_primary_10_32604_cmes_2021_016866 crossref_primary_10_1109_TNSM_2022_3224158 crossref_primary_10_1007_s11831_021_09562_1 crossref_primary_10_1007_s12652_021_03391_7 crossref_primary_10_1016_j_engappai_2022_105193 crossref_primary_10_1007_s13042_024_02297_y crossref_primary_10_1016_j_envsoft_2020_104902 crossref_primary_10_1007_s00521_019_04685_w crossref_primary_10_1109_TEVC_2024_3418858 crossref_primary_10_1109_TEVC_2022_3193294 crossref_primary_10_3390_electronics10111232 crossref_primary_10_1109_ACCESS_2023_3293523 crossref_primary_10_1016_j_autcon_2021_104107 crossref_primary_10_1016_j_eswa_2022_116544 crossref_primary_10_1109_TCYB_2023_3280175 crossref_primary_10_1016_j_apenergy_2023_121831 crossref_primary_10_1016_j_asoc_2021_107574 crossref_primary_10_1016_j_engappai_2023_107762 crossref_primary_10_1002_adc2_171 crossref_primary_10_1016_j_knosys_2020_105675 crossref_primary_10_1002_ese3_1003 crossref_primary_10_1016_j_future_2021_07_033 crossref_primary_10_1016_j_petsci_2024_09_018 crossref_primary_10_1016_j_cie_2025_111136 crossref_primary_10_1007_s40747_024_01505_0 crossref_primary_10_1016_j_ins_2024_120558 crossref_primary_10_3390_e24050586 |
| Cites_doi | 10.1007/s00521-016-2572-5 10.1007/BFb0056872 10.1109/TEVC.2008.2009460 10.1007/s11590-012-0530-4 10.1016/j.ins.2014.09.018 10.1007/978-3-030-02729-2 10.1016/j.agwat.2017.10.016 10.1109/TCYB.2018.2819361 10.1109/TEVC.2007.892759 10.1016/j.cie.2014.05.014 10.1016/j.ins.2014.05.019 10.1109/TCYB.2018.2842158 10.1109/TEVC.2015.2480780 10.1109/TCYB.2018.2871673 10.1137/1.9780898717716 10.1016/j.ins.2011.05.011 10.1016/j.knosys.2018.05.012 10.1016/j.compchemeng.2013.05.004 10.1109/CEC.2016.7743989 10.1109/CEC.2005.1554719 10.1016/j.eswa.2014.08.011 10.1016/j.ins.2013.01.020 10.1109/TCYB.2018.2883914 10.1016/j.jclepro.2018.02.004 10.1162/EVCO_a_00009 10.1109/TEVC.2016.2634625 10.1109/TETCI.2016.2637410 10.1109/TCYB.2018.2789930 10.1109/TCBB.2017.2685320 10.1016/j.ast.2018.07.029 10.1109/4235.996017 10.1109/TEVC.2005.859464 10.1109/TCYB.2013.2295886 10.1109/TFUZZ.2002.805902 10.1109/TCYB.2017.2771213 10.1109/TEVC.2015.2428292 10.1016/j.compstruc.2012.12.028 10.1109/MCI.2011.2176995 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2019.2908485 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Aerospace Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Explore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 3457 |
| ExternalDocumentID | 31034428 10_1109_TCYB_2019_2908485 8699097 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2018YFB1003802-01 funderid: 10.13039/501100012166 – fundername: National Natural Science Foundation of China grantid: 61873105; 61773384; 61773192; 61703188; 61873106; 61573361; 61573362; 61673404; 61763026 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-e5a4687527d8f3690b64f47afc6a6db318b74eb83f29fe2a8c96110ef7ab77eb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 128 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548811800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Nov 09 09:54:38 EST 2025 Sun Jun 29 16:27:39 EDT 2025 Thu Jan 02 23:00:13 EST 2025 Tue Nov 18 22:23:13 EST 2025 Sat Nov 29 02:02:27 EST 2025 Wed Aug 27 02:36:12 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-e5a4687527d8f3690b64f47afc6a6db318b74eb83f29fe2a8c96110ef7ab77eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8440-9601 0000-0002-2320-2495 0000-0002-3295-8972 0000-0002-1485-0247 |
| PMID | 31034428 |
| PQID | 2424189357 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2217482399 crossref_primary_10_1109_TCYB_2019_2908485 proquest_journals_2424189357 ieee_primary_8699097 crossref_citationtrail_10_1109_TCYB_2019_2908485 pubmed_primary_31034428 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref34 ref12 ref37 ref15 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 ref1 ref39 ref17 ref38 sun (ref16) 2013; 22 ref19 ref18 ishibuchi (ref36) 2013; 48 ref24 ref23 ref26 ref25 ref20 ref42 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 deb (ref41) 2002 ref3 ref6 ref5 mahmoudzadeh (ref29) 0 ref40 |
| References_xml | – ident: ref17 doi: 10.1007/s00521-016-2572-5 – ident: ref39 doi: 10.1007/BFb0056872 – volume: 22 start-page: 269 year: 2013 ident: ref16 article-title: Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree publication-title: Chin J Electron – ident: ref20 doi: 10.1109/TEVC.2008.2009460 – ident: ref35 doi: 10.1007/s11590-012-0530-4 – ident: ref25 doi: 10.1016/j.ins.2014.09.018 – ident: ref19 doi: 10.1007/978-3-030-02729-2 – ident: ref9 doi: 10.1016/j.agwat.2017.10.016 – volume: 48 start-page: 594 year: 2013 ident: ref36 article-title: Multiobjective programming in optimization of the interval function publication-title: Eur J Oper Res – ident: ref5 doi: 10.1109/TCYB.2018.2819361 – ident: ref31 doi: 10.1109/TEVC.2007.892759 – ident: ref14 doi: 10.1016/j.cie.2014.05.014 – ident: ref33 doi: 10.1016/j.ins.2014.05.019 – ident: ref10 doi: 10.1109/TCYB.2018.2842158 – ident: ref23 doi: 10.1109/TEVC.2015.2480780 – ident: ref4 doi: 10.1109/TCYB.2018.2871673 – year: 0 ident: ref29 article-title: UUV's hierarchical DE-based motion planning in a semi dynamic underwater wireless sensor network publication-title: IEEE Trans Cybern – ident: ref34 doi: 10.1137/1.9780898717716 – ident: ref13 doi: 10.1016/j.ins.2011.05.011 – ident: ref18 doi: 10.1016/j.knosys.2018.05.012 – ident: ref22 doi: 10.1016/j.compchemeng.2013.05.004 – ident: ref30 doi: 10.1109/CEC.2016.7743989 – ident: ref15 doi: 10.1109/CEC.2005.1554719 – ident: ref26 doi: 10.1016/j.eswa.2014.08.011 – ident: ref38 doi: 10.1016/j.ins.2013.01.020 – ident: ref11 doi: 10.1109/TCYB.2018.2883914 – ident: ref2 doi: 10.1016/j.jclepro.2018.02.004 – ident: ref32 doi: 10.1162/EVCO_a_00009 – ident: ref42 doi: 10.1109/TEVC.2016.2634625 – ident: ref37 doi: 10.1109/TETCI.2016.2637410 – ident: ref28 doi: 10.1109/TCYB.2018.2789930 – ident: ref3 doi: 10.1109/TCBB.2017.2685320 – ident: ref7 doi: 10.1016/j.ast.2018.07.029 – ident: ref40 doi: 10.1109/4235.996017 – start-page: 825 year: 2002 ident: ref41 article-title: Scalable test problems for evolutionary multiobjective optimization publication-title: Proc World Congr Comput Intell – ident: ref12 doi: 10.1109/TEVC.2005.859464 – ident: ref24 doi: 10.1109/TCYB.2013.2295886 – ident: ref6 doi: 10.1109/TFUZZ.2002.805902 – ident: ref1 doi: 10.1109/TCYB.2017.2771213 – ident: ref27 doi: 10.1109/TEVC.2015.2428292 – ident: ref8 doi: 10.1016/j.compstruc.2012.12.028 – ident: ref21 doi: 10.1109/MCI.2011.2176995 |
| SSID | ssj0000816898 |
| Score | 2.5656893 |
| Snippet | One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3444 |
| SubjectTerms | Algorithms Desalination Evolutionary algorithm (EA) Evolutionary algorithms interval IP networks Linear programming memetic algorithm (MA) Memetics multiobjective optimization Multiple objective analysis Optimization Pareto optimization Search problems Searching Sun Uncertainty |
| Title | Interval Multiobjective Optimization With Memetic Algorithms |
| URI | https://ieeexplore.ieee.org/document/8699097 https://www.ncbi.nlm.nih.gov/pubmed/31034428 https://www.proquest.com/docview/2424189357 https://www.proquest.com/docview/2217482399 |
| Volume | 50 |
| WOSCitedRecordID | wos000548811800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Explore customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH-CaoddxljZVmBVkDgAWmhwEn9IXFhFxWErHDroTpGT2APUNqgf-_t5z3EjDtskblbsONH7sN_z83s_gEMeW0WVv0IeaRMmaWRDrWMKuHJrpVAiclf-b7-L4VCOx-pmA742uTDGGHf5zJxS08Xyy6pY0VFZT3JcO5XYhE0heJ2r1ZynOAAJB33LsBGiVSF8EPMsUr1R_9c3uselTpmiCvIEWEMIW0lCMOwvdiQHsfJva9PtOoOt1_3ve3jnrcvgohaHbdgwsw-w7fV3ERz5ItPHbTh3R4EoZoFLwa3yx3rlC65xDZn65Mzg7mF5H_wwU8p0DC4mv6s5PpguduDn4HLUvwo9kkJYxIlahibVCUfPhIlS2hgd4pwnNhHaFlzzMke9zkVichlbpqxhWhaKI92MFToXAv3tj9CaVTPzGYKysLIsOGcGZ-Axo3qDTNhIxzZNUxN1IFpTMyt8mXFCu5hkzt2IVEa8yIgXmedFB06aV57qGhv_G9wmQjcDPY07sL9mWea1cJFR6ssZGmQpdh803ag_FBTRM1OtcAz5ZJIyfDvwqWZ1M_daQnb__s09eMvI-3bXAfehtZyvzBd4U_xZPizmXRTSsew6IX0GR8Xewg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LbtQwcFRKJbgUSl8LBYLUA1SkdZ3ED4nLUlEVsbvtYYFyipzEplvtbtA--H5mHG8kJFqJmxU7TjQPe94DcCgSp6nyVyyYsXGaMRcbk5DDVTinpJbMh_x_68nBQF1f66s1eN_mwlhrffCZPaah9-VXdbkkU9mJEnh2avkAHmZpylmTrdVaVHwLCd_8luMgRrlCBjfmKdMnw7MfHymSSx9zTTXkqWUN9djCjdRfd5JvsnK3vOnvnfMn__fHT2EzyJdRtyGILViz02ewFTh4Hr0NZabfbcMHbwxEQot8Em5d3DZnX3SJp8gkpGdG30eLm6hvJ5TrGHXHP-sZPpjMd-Dr-afh2UUceinEZZLqRWwzkwrUTbislEtQJS5E6lJpXCmMqArk7EKmtlCJ49pZblSpBcLNOmkKKVHj3oX1aT21-xBVpVNVKQS3uINIOFUc5NIxk7gsyyzrAFtBMy9DoXHqdzHOvcLBdE64yAkXecBFB47aV341VTbuW7xNgG4XBhh34GCFsjzw4Tyn5JdTFMkynH7TTiMHkVvETG29xDWklSnK8e3AXoPqdu8VhTz_9zdfw6OLYb-X9z4PvryAx5x0cR8ceADri9nSvoSN8vdiNJ-98qT6B8ZL4SE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+Multiobjective+Optimization+With+Memetic+Algorithms&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sun%2C+Jing&rft.au=Zhuang+Miao&rft.au=Gong%2C+Dunwei&rft.au=Xiao-Jun%2C+Zeng&rft.date=2020-08-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=8&rft.spage=3444&rft_id=info:doi/10.1109%2FTCYB.2019.2908485&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |