Interval Multiobjective Optimization With Memetic Algorithms

One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 50; H. 8; S. 3444 - 3457
Hauptverfasser: Sun, Jing, Miao, Zhuang, Gong, Dunwei, Zeng, Xiao-Jun, Li, Junqing, Wang, Gaige
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.08.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA.
AbstractList One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA.
One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA.One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The state-of-the-art evolutionary algorithms (EAs) for IMOPs (IMOEAs) need a great deal of objective function evaluations to find a final Pareto front with good convergence and even distribution. Further, the final Pareto front is of great uncertainty. In this paper, we incorporate several local searches into an existing IMOEA, and propose a memetic algorithm (MA) to tackle IMOPs. At the start, the existing IMOEA is utilized to explore the entire decision space; then, the increment of the hypervolume is employed to develop an activation strategy for every local search procedure; finally, the local search procedure is conducted by constituting its initial population, whose center is an individual with a small uncertainty and a big contribution to the hypervolume, taking the contribution of an individual to the hypervolume as its fitness function, and performing the conventional genetic operators. The proposed MA is empirically evaluated on ten benchmark IMOPs as well as an uncertain solar desalination optimization problem and compared with three state-of-the-art algorithms with no local search procedure. The experimental results demonstrate the applicability and effectiveness of the proposed MA.
Author Sun, Jing
Miao, Zhuang
Zeng, Xiao-Jun
Gong, Dunwei
Wang, Gaige
Li, Junqing
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-1485-0247
  surname: Sun
  fullname: Sun, Jing
  email: sunj@hhit.edu.cn
  organization: School of Science, Huaihai Institute of Technology, Lianyungang, China
– sequence: 2
  givenname: Zhuang
  surname: Miao
  fullname: Miao, Zhuang
  email: 15162186171@163.com
  organization: Jiangsu Automation Research Institute of CSIC, Lianyungang, China
– sequence: 3
  givenname: Dunwei
  surname: Gong
  fullname: Gong, Dunwei
  email: dwgong@vip.163.com
  organization: School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China
– sequence: 4
  givenname: Xiao-Jun
  orcidid: 0000-0002-2320-2495
  surname: Zeng
  fullname: Zeng, Xiao-Jun
  email: x.zeng@manchester.ac.uk
  organization: School of Computer Science, University of Manchester, Manchester, U.K
– sequence: 5
  givenname: Junqing
  orcidid: 0000-0001-8440-9601
  surname: Li
  fullname: Li, Junqing
  email: lijunqing@lcu-cs.com
  organization: School of Information Science and Engineering, Shandong Normal University, Jinan, China
– sequence: 6
  givenname: Gaige
  orcidid: 0000-0002-3295-8972
  surname: Wang
  fullname: Wang, Gaige
  email: gaigewang@163.com
  organization: Department of Computer Science and Technology, Ocean University of China, Qingdao
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31034428$$D View this record in MEDLINE/PubMed
BookMark eNp9kElLAzEYhoMo7j9ABBnw4qU122QBL1rcwNKLIp5CZvqNpsxSk4ygv97U1h48mEvCy_PmS549tNl2LSB0RPCQEKzPH0cvV0OKiR5SjRVX-QbapUSoAaUy31yfhdxBhyHMcFoqRVptox1GMOOcql10cd9G8B-2zsZ9HV1XzKCM7gOyyTy6xn3ZlLXZs4tv2RgaiK7MLuvXzqegCQdoq7J1gMPVvo-ebq4fR3eDh8nt_ejyYVAyruMAcsuFkjmVU1UxoXEheMWlrUphxbRgRBWSQ6FYRXUF1KpSi_RFqKQtpISC7aOz5b1z3733EKJpXCihrm0LXR8MpURyRZnWCT39g8663rfpdYZyyonSLJeJOllRfdHA1My9a6z_NL9eEkCWQOm7EDxUa4Rgs9BvFvrNQr9Z6U8d-adTuvjjL3rr6n-bx8umA4D1JCW0xlqybzZkkK4
CODEN ITCEB8
CitedBy_id crossref_primary_10_1007_s00500_024_09893_8
crossref_primary_10_1016_j_swevo_2022_101081
crossref_primary_10_3390_electronics13173579
crossref_primary_10_3390_math8101651
crossref_primary_10_3390_math9040420
crossref_primary_10_3390_math8091403
crossref_primary_10_1155_2021_2149048
crossref_primary_10_1016_j_matcom_2021_04_006
crossref_primary_10_1002_tal_2052
crossref_primary_10_1016_j_ins_2024_121690
crossref_primary_10_1109_TCYB_2019_2932996
crossref_primary_10_1109_TEVC_2020_2987559
crossref_primary_10_1007_s11047_020_09794_3
crossref_primary_10_1109_TGRS_2023_3318003
crossref_primary_10_1007_s40747_024_01418_y
crossref_primary_10_1007_s10910_019_01095_0
crossref_primary_10_1109_ACCESS_2020_2999417
crossref_primary_10_1016_j_jksuci_2023_101666
crossref_primary_10_1109_TCBB_2020_2975181
crossref_primary_10_1016_j_knosys_2022_108447
crossref_primary_10_1109_TCBB_2019_2931717
crossref_primary_10_1016_j_ins_2023_119533
crossref_primary_10_1016_j_swevo_2022_101073
crossref_primary_10_1038_s41598_025_02890_3
crossref_primary_10_3390_math8091415
crossref_primary_10_1109_TASE_2023_3346446
crossref_primary_10_1016_j_swevo_2023_101406
crossref_primary_10_1007_s11227_025_07621_z
crossref_primary_10_3390_math10020276
crossref_primary_10_1016_j_swevo_2024_101749
crossref_primary_10_1007_s00521_022_07105_8
crossref_primary_10_1007_s10479_024_05854_4
crossref_primary_10_1016_j_swevo_2025_102153
crossref_primary_10_3390_math8020149
crossref_primary_10_1016_j_knosys_2021_106856
crossref_primary_10_1016_j_egyr_2021_03_044
crossref_primary_10_1007_s10586_024_04396_5
crossref_primary_10_1016_j_eswa_2021_115082
crossref_primary_10_1016_j_ins_2024_121552
crossref_primary_10_1016_j_cej_2024_156306
crossref_primary_10_1109_ACCESS_2020_2976751
crossref_primary_10_3390_math10122117
crossref_primary_10_1016_j_swevo_2023_101258
crossref_primary_10_1016_j_eswa_2023_120292
crossref_primary_10_1016_j_swevo_2025_101870
crossref_primary_10_1109_TIV_2023_3332594
crossref_primary_10_1002_mma_6170
crossref_primary_10_1109_ACCESS_2020_3042004
crossref_primary_10_3390_math9111233
crossref_primary_10_1007_s12530_023_09495_z
crossref_primary_10_1007_s00366_021_01293_y
crossref_primary_10_1109_TASE_2021_3062979
crossref_primary_10_1109_TCBB_2019_2954315
crossref_primary_10_1080_21642583_2019_1630687
crossref_primary_10_1088_1674_1056_add24b
crossref_primary_10_3390_math9030205
crossref_primary_10_3390_pr9060911
crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_1109_TEVC_2024_3378774
crossref_primary_10_1080_09540091_2022_2075828
crossref_primary_10_1016_j_eswa_2022_117251
crossref_primary_10_1109_TASE_2022_3148459
crossref_primary_10_1016_j_swevo_2021_100864
crossref_primary_10_1109_TCYB_2020_3023932
crossref_primary_10_1016_j_future_2020_01_048
crossref_primary_10_1016_j_desal_2024_117849
crossref_primary_10_1016_j_swevo_2019_100600
crossref_primary_10_1016_j_eswa_2023_122164
crossref_primary_10_1093_jcde_qwab065
crossref_primary_10_1109_ACCESS_2020_3044606
crossref_primary_10_1016_j_knosys_2023_111019
crossref_primary_10_1109_TEVC_2021_3061545
crossref_primary_10_1016_j_eswa_2021_114886
crossref_primary_10_1007_s00366_021_01497_2
crossref_primary_10_1016_j_jclepro_2019_119464
crossref_primary_10_32604_cmes_2021_017310
crossref_primary_10_1109_TCYB_2020_3027962
crossref_primary_10_32604_cmes_2021_016866
crossref_primary_10_1109_TNSM_2022_3224158
crossref_primary_10_1007_s11831_021_09562_1
crossref_primary_10_1007_s12652_021_03391_7
crossref_primary_10_1016_j_engappai_2022_105193
crossref_primary_10_1007_s13042_024_02297_y
crossref_primary_10_1016_j_envsoft_2020_104902
crossref_primary_10_1007_s00521_019_04685_w
crossref_primary_10_1109_TEVC_2024_3418858
crossref_primary_10_1109_TEVC_2022_3193294
crossref_primary_10_3390_electronics10111232
crossref_primary_10_1109_ACCESS_2023_3293523
crossref_primary_10_1016_j_autcon_2021_104107
crossref_primary_10_1016_j_eswa_2022_116544
crossref_primary_10_1109_TCYB_2023_3280175
crossref_primary_10_1016_j_apenergy_2023_121831
crossref_primary_10_1016_j_asoc_2021_107574
crossref_primary_10_1016_j_engappai_2023_107762
crossref_primary_10_1002_adc2_171
crossref_primary_10_1016_j_knosys_2020_105675
crossref_primary_10_1002_ese3_1003
crossref_primary_10_1016_j_future_2021_07_033
crossref_primary_10_1016_j_petsci_2024_09_018
crossref_primary_10_1016_j_cie_2025_111136
crossref_primary_10_1007_s40747_024_01505_0
crossref_primary_10_1016_j_ins_2024_120558
crossref_primary_10_3390_e24050586
Cites_doi 10.1007/s00521-016-2572-5
10.1007/BFb0056872
10.1109/TEVC.2008.2009460
10.1007/s11590-012-0530-4
10.1016/j.ins.2014.09.018
10.1007/978-3-030-02729-2
10.1016/j.agwat.2017.10.016
10.1109/TCYB.2018.2819361
10.1109/TEVC.2007.892759
10.1016/j.cie.2014.05.014
10.1016/j.ins.2014.05.019
10.1109/TCYB.2018.2842158
10.1109/TEVC.2015.2480780
10.1109/TCYB.2018.2871673
10.1137/1.9780898717716
10.1016/j.ins.2011.05.011
10.1016/j.knosys.2018.05.012
10.1016/j.compchemeng.2013.05.004
10.1109/CEC.2016.7743989
10.1109/CEC.2005.1554719
10.1016/j.eswa.2014.08.011
10.1016/j.ins.2013.01.020
10.1109/TCYB.2018.2883914
10.1016/j.jclepro.2018.02.004
10.1162/EVCO_a_00009
10.1109/TEVC.2016.2634625
10.1109/TETCI.2016.2637410
10.1109/TCYB.2018.2789930
10.1109/TCBB.2017.2685320
10.1016/j.ast.2018.07.029
10.1109/4235.996017
10.1109/TEVC.2005.859464
10.1109/TCYB.2013.2295886
10.1109/TFUZZ.2002.805902
10.1109/TCYB.2017.2771213
10.1109/TEVC.2015.2428292
10.1016/j.compstruc.2012.12.028
10.1109/MCI.2011.2176995
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2019.2908485
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEL
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3457
ExternalDocumentID 31034428
10_1109_TCYB_2019_2908485
8699097
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2018YFB1003802-01
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 61873105; 61773384; 61773192; 61703188; 61873106; 61573361; 61573362; 61673404; 61763026
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-e5a4687527d8f3690b64f47afc6a6db318b74eb83f29fe2a8c96110ef7ab77eb3
IEDL.DBID RIE
ISICitedReferencesCount 128
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000548811800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 09:54:38 EST 2025
Sun Jun 29 16:27:39 EDT 2025
Thu Jan 02 23:00:13 EST 2025
Tue Nov 18 22:23:13 EST 2025
Sat Nov 29 02:02:27 EST 2025
Wed Aug 27 02:36:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-e5a4687527d8f3690b64f47afc6a6db318b74eb83f29fe2a8c96110ef7ab77eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8440-9601
0000-0002-2320-2495
0000-0002-3295-8972
0000-0002-1485-0247
PMID 31034428
PQID 2424189357
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2217482399
crossref_primary_10_1109_TCYB_2019_2908485
proquest_journals_2424189357
ieee_primary_8699097
crossref_citationtrail_10_1109_TCYB_2019_2908485
pubmed_primary_31034428
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
ref1
ref39
ref17
ref38
sun (ref16) 2013; 22
ref19
ref18
ishibuchi (ref36) 2013; 48
ref24
ref23
ref26
ref25
ref20
ref42
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
deb (ref41) 2002
ref3
ref6
ref5
mahmoudzadeh (ref29) 0
ref40
References_xml – ident: ref17
  doi: 10.1007/s00521-016-2572-5
– ident: ref39
  doi: 10.1007/BFb0056872
– volume: 22
  start-page: 269
  year: 2013
  ident: ref16
  article-title: Solving interval multi-objective optimization problems using evolutionary algorithms with lower limit of possibility degree
  publication-title: Chin J Electron
– ident: ref20
  doi: 10.1109/TEVC.2008.2009460
– ident: ref35
  doi: 10.1007/s11590-012-0530-4
– ident: ref25
  doi: 10.1016/j.ins.2014.09.018
– ident: ref19
  doi: 10.1007/978-3-030-02729-2
– ident: ref9
  doi: 10.1016/j.agwat.2017.10.016
– volume: 48
  start-page: 594
  year: 2013
  ident: ref36
  article-title: Multiobjective programming in optimization of the interval function
  publication-title: Eur J Oper Res
– ident: ref5
  doi: 10.1109/TCYB.2018.2819361
– ident: ref31
  doi: 10.1109/TEVC.2007.892759
– ident: ref14
  doi: 10.1016/j.cie.2014.05.014
– ident: ref33
  doi: 10.1016/j.ins.2014.05.019
– ident: ref10
  doi: 10.1109/TCYB.2018.2842158
– ident: ref23
  doi: 10.1109/TEVC.2015.2480780
– ident: ref4
  doi: 10.1109/TCYB.2018.2871673
– year: 0
  ident: ref29
  article-title: UUV's hierarchical DE-based motion planning in a semi dynamic underwater wireless sensor network
  publication-title: IEEE Trans Cybern
– ident: ref34
  doi: 10.1137/1.9780898717716
– ident: ref13
  doi: 10.1016/j.ins.2011.05.011
– ident: ref18
  doi: 10.1016/j.knosys.2018.05.012
– ident: ref22
  doi: 10.1016/j.compchemeng.2013.05.004
– ident: ref30
  doi: 10.1109/CEC.2016.7743989
– ident: ref15
  doi: 10.1109/CEC.2005.1554719
– ident: ref26
  doi: 10.1016/j.eswa.2014.08.011
– ident: ref38
  doi: 10.1016/j.ins.2013.01.020
– ident: ref11
  doi: 10.1109/TCYB.2018.2883914
– ident: ref2
  doi: 10.1016/j.jclepro.2018.02.004
– ident: ref32
  doi: 10.1162/EVCO_a_00009
– ident: ref42
  doi: 10.1109/TEVC.2016.2634625
– ident: ref37
  doi: 10.1109/TETCI.2016.2637410
– ident: ref28
  doi: 10.1109/TCYB.2018.2789930
– ident: ref3
  doi: 10.1109/TCBB.2017.2685320
– ident: ref7
  doi: 10.1016/j.ast.2018.07.029
– ident: ref40
  doi: 10.1109/4235.996017
– start-page: 825
  year: 2002
  ident: ref41
  article-title: Scalable test problems for evolutionary multiobjective optimization
  publication-title: Proc World Congr Comput Intell
– ident: ref12
  doi: 10.1109/TEVC.2005.859464
– ident: ref24
  doi: 10.1109/TCYB.2013.2295886
– ident: ref6
  doi: 10.1109/TFUZZ.2002.805902
– ident: ref1
  doi: 10.1109/TCYB.2017.2771213
– ident: ref27
  doi: 10.1109/TEVC.2015.2428292
– ident: ref8
  doi: 10.1016/j.compstruc.2012.12.028
– ident: ref21
  doi: 10.1109/MCI.2011.2176995
SSID ssj0000816898
Score 2.5656893
Snippet One of the most important and widely faced optimization problems in real applications is the interval multiobjective optimization problems (IMOPs). The...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3444
SubjectTerms Algorithms
Desalination
Evolutionary algorithm (EA)
Evolutionary algorithms
interval
IP networks
Linear programming
memetic algorithm (MA)
Memetics
multiobjective optimization
Multiple objective analysis
Optimization
Pareto optimization
Search problems
Searching
Sun
Uncertainty
Title Interval Multiobjective Optimization With Memetic Algorithms
URI https://ieeexplore.ieee.org/document/8699097
https://www.ncbi.nlm.nih.gov/pubmed/31034428
https://www.proquest.com/docview/2424189357
https://www.proquest.com/docview/2217482399
Volume 50
WOSCitedRecordID wos000548811800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC0B4jAXhmWAHhYFiQODCKQdJ7YlLoBAXFgOIJpTZCc2i-jOqJf5fqocdzQHQOJmJc6iWuwq268ewK7VLK1KkcZUHS7mmS5jZRIXc4faZs457ipPNiGur2Wvp25n4KDFwlhr_eEze0hNv5df1eWElsqOZI5jpxKzMCtE3mC12vUUTyDhqW8ZNmKMKkTYxOwm6uju7PGUznGpQ6aogjwR1hDDFudEw_7fjOQpVj6PNv2sc_Hze_-7CAshuoxOGnNYghk7WIal4L-jaC8Umf6zAsd-KRDNLPIQ3Nq8NiNfdINjSD-AM6OHl_FzdGX7hHSMTt6e6iFe6I9-wf3F-d3ZZRyYFOIy5Woc20zzHDMTJirpUkyITc4dF9qVuc4rg35tBLdGpo4pZ5mWpcpRbtYJbYTAfHsV5gb1wK5DlIrMMSGcUkbySnKTcJt0pUtklWQ6lx1IptIsylBmnNgu3gqfbiSqIF0UpIsi6KID--0jf5saG191XiFBtx2DjDuwOVVZEbxwVBD0pYsBWYa3d9rb6D-0KaIHtp5gH8rJJCF8O7DWqLp999RCfn_8zQ34wSj79scBN2FuPJzYLZgv_41fRsNtNNKe3PZG-g40v9-N
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gmsiLgCicgK6JD2pc6HW72zbhBYkEI5w-nBGeNu1uy0e4W3Mf_v3MdHubkKCJb812truZj3am7cwP4J0zPKsrmaVUHS4VualSbZlPhUdpc--98HUAm5CDgTo_1z-W4FOXC-OcC5fP3B41w1l-3VRz2irbVwXOnVo-gse5EJy12VrdjkqAkAjgtxwbKfoVMh5j9pneHx5dfKabXHqPa6ohT5A1hLGFA6l7a1IAWfm7vxnWnePV__vjNXgW_cvksFWIdVhy4-ewHi14mryPZaY_bMBB2AxERUtCEm5jb9q5L_mOs8gopmcmv65nV8mZG1GuY3J4e9lM8MFo-gJ-Hn8ZHp2kEUshrTKhZ6nLjSgwNuGyVj7DkNgWwgtpfFWYorZo2VYKZ1XmufaOG1XpAvnmvDRWSoy4X8LyuBm7LUgymXsupdfaKlErYZlwrK88UzXLTaF6wBbcLKtYaJzwLm7LEHAwXZIsSpJFGWXRg4_dK7_bKhv_It4gRneEkcc92FmIrIx2OC0p-aWPLlmO3W-7brQgOhYxY9fMkYaiMkU5vj3YbEXdjb3QkFcPf_MNPD0Znp2Wp18H37ZhhVMsHi4H7sDybDJ3u_Ck-jO7nk5eB1W9A7pD4ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interval+Multiobjective+Optimization+With+Memetic+Algorithms&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Sun%2C+Jing&rft.au=Miao%2C+Zhuang&rft.au=Gong%2C+Dunwei&rft.au=Zeng%2C+Xiao-Jun&rft.date=2020-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=50&rft.issue=8&rft.spage=3444&rft.epage=3457&rft_id=info:doi/10.1109%2FTCYB.2019.2908485&rft_id=info%3Apmid%2F31034428&rft.externalDocID=8699097
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon