Adaptive Fault-Tolerant Tracking Control for Discrete-Time Multiagent Systems via Reinforcement Learning Algorithm

This article investigates the adaptive fault-tolerant tracking control problem for a class of discrete-time multiagent systems via a reinforcement learning algorithm. The action neural networks (NNs) are used to approximate unknown and desired control input signals, and the critic NNs are employed t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 51; no. 3; pp. 1163 - 1174
Main Authors: Li, Hongyi, Wu, Ying, Chen, Mou
Format: Journal Article
Language:English
Published: United States IEEE 01.03.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article investigates the adaptive fault-tolerant tracking control problem for a class of discrete-time multiagent systems via a reinforcement learning algorithm. The action neural networks (NNs) are used to approximate unknown and desired control input signals, and the critic NNs are employed to estimate the cost function in the design procedure. Furthermore, the direct adaptive optimal controllers are designed by combining the backstepping technique with the reinforcement learning algorithm. Comparing the existing reinforcement learning algorithm, the computational burden can be effectively reduced by using the method of less learning parameters. The adaptive auxiliary signals are established to compensate for the influence of the dead zones and actuator faults on the control performance. Based on the Lyapunov stability theory, it is proved that all signals of the closed-loop system are semiglobally uniformly ultimately bounded. Finally, some simulation results are presented to illustrate the effectiveness of the proposed approach.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2982168