A 6.55 factor primal-dual approximation algorithm for the connected facility location problem

In the connected facility location (ConFL) problem, we are given a graph G =( V , E ) with nonnegative edge cost c e on the edges, a set of facilities ℱ⊆ V , a set of demands (i.e., clients) , and a parameter M ≥1. Each facility i has a nonnegative opening cost f i and each client j has d j units of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 18; číslo 3; s. 258 - 271
Hlavní autoři: Jung, Hyunwoo, Hasan, Mohammad Khairul, Chwa, Kyung-Yong
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Boston Springer US 01.10.2009
Springer
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In the connected facility location (ConFL) problem, we are given a graph G =( V , E ) with nonnegative edge cost c e on the edges, a set of facilities ℱ⊆ V , a set of demands (i.e., clients) , and a parameter M ≥1. Each facility i has a nonnegative opening cost f i and each client j has d j units of demand. Our objective is to open some facilities, say F ⊆ℱ, assign each demand j to some open facility i ( j )∈ F and connect all open facilities using a Steiner tree T such that the total cost, which is , is minimized. We present a primal-dual 6.55-approximation algorithm for the ConFL problem which improves the previous primal-dual 8.55-approximation algorithm given by Swamy and Kumar (Algorithmica 40:245–269, 2004 ).
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-009-9227-8