Predictive Modeling With Multiresolution Pyramid VAE and Industrial Soft Sensor Applications

In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the challenging issue, that is, the multirate modeling in the data-driven soft sensor development. In this work, a multiresolution pyramid variation...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 53; no. 8; pp. 4867 - 4879
Main Authors: Shen, Bingbing, Yao, Le, Ge, Zhiqiang
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the challenging issue, that is, the multirate modeling in the data-driven soft sensor development. In this work, a multiresolution pyramid variational autoencoder (MR-PVAE) predictive model is proposed to solve this problem based on the deep feature extraction and feature pyramid augmentation. First, a multirate data filter is designed through a resolution searching strategy to turn the original process data into a multiresolution dataset. Then, the pyramid variational autoencoder (PVAE) is proposed to extract deep nonlinear features from the data with different resolutions. In PVAE, the augmented feature pyramid is constructed layer by layer to fuse extracted features from low resolution to the high. As a consequence, the extracted features with various resolutions are gathered to form the regression model, where the process information contained in data with discrepant sampling rates can be fully utilized. Due to the layer-by-layer enhanced features, the prediction accuracy of the soft sensing model are gradually improved. Meanwhile, an optimized training strategy is established to select the optimal feature pyramid for prediction. A numerical experiment and an industrial soft sensing case are given to validate the effectiveness and superiority of the proposed MR-PVAE model.
AbstractList In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the challenging issue, that is, the multirate modeling in the data-driven soft sensor development. In this work, a multiresolution pyramid variational autoencoder (MR-PVAE) predictive model is proposed to solve this problem based on the deep feature extraction and feature pyramid augmentation. First, a multirate data filter is designed through a resolution searching strategy to turn the original process data into a multiresolution dataset. Then, the pyramid variational autoencoder (PVAE) is proposed to extract deep nonlinear features from the data with different resolutions. In PVAE, the augmented feature pyramid is constructed layer by layer to fuse extracted features from low resolution to the high. As a consequence, the extracted features with various resolutions are gathered to form the regression model, where the process information contained in data with discrepant sampling rates can be fully utilized. Due to the layer-by-layer enhanced features, the prediction accuracy of the soft sensing model are gradually improved. Meanwhile, an optimized training strategy is established to select the optimal feature pyramid for prediction. A numerical experiment and an industrial soft sensing case are given to validate the effectiveness and superiority of the proposed MR-PVAE model.
In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the challenging issue, that is, the multirate modeling in the data-driven soft sensor development. In this work, a multiresolution pyramid variational autoencoder (MR-PVAE) predictive model is proposed to solve this problem based on the deep feature extraction and feature pyramid augmentation. First, a multirate data filter is designed through a resolution searching strategy to turn the original process data into a multiresolution dataset. Then, the pyramid variational autoencoder (PVAE) is proposed to extract deep nonlinear features from the data with different resolutions. In PVAE, the augmented feature pyramid is constructed layer by layer to fuse extracted features from low resolution to the high. As a consequence, the extracted features with various resolutions are gathered to form the regression model, where the process information contained in data with discrepant sampling rates can be fully utilized. Due to the layer-by-layer enhanced features, the prediction accuracy of the soft sensing model are gradually improved. Meanwhile, an optimized training strategy is established to select the optimal feature pyramid for prediction. A numerical experiment and an industrial soft sensing case are given to validate the effectiveness and superiority of the proposed MR-PVAE model.In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the challenging issue, that is, the multirate modeling in the data-driven soft sensor development. In this work, a multiresolution pyramid variational autoencoder (MR-PVAE) predictive model is proposed to solve this problem based on the deep feature extraction and feature pyramid augmentation. First, a multirate data filter is designed through a resolution searching strategy to turn the original process data into a multiresolution dataset. Then, the pyramid variational autoencoder (PVAE) is proposed to extract deep nonlinear features from the data with different resolutions. In PVAE, the augmented feature pyramid is constructed layer by layer to fuse extracted features from low resolution to the high. As a consequence, the extracted features with various resolutions are gathered to form the regression model, where the process information contained in data with discrepant sampling rates can be fully utilized. Due to the layer-by-layer enhanced features, the prediction accuracy of the soft sensing model are gradually improved. Meanwhile, an optimized training strategy is established to select the optimal feature pyramid for prediction. A numerical experiment and an industrial soft sensing case are given to validate the effectiveness and superiority of the proposed MR-PVAE model.
Author Yao, Le
Ge, Zhiqiang
Shen, Bingbing
Author_xml – sequence: 1
  givenname: Bingbing
  orcidid: 0000-0002-8832-9147
  surname: Shen
  fullname: Shen, Bingbing
  email: shenbingbing@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 2
  givenname: Le
  orcidid: 0000-0002-0881-213X
  surname: Yao
  fullname: Yao, Le
  email: yaole_frank@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 3
  givenname: Zhiqiang
  orcidid: 0000-0002-2071-4380
  surname: Ge
  fullname: Ge, Zhiqiang
  email: gezhiqiang@zju.edu.cn
  organization: State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35175925$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhoMoftUfUAol0BtvdpuPmWRyuV38AqWCVikUQmZyRiPZZJtkCv57Z93VCy-amxPC8xxOznuAtkMMgNBnSqaUEvX9dv77x5QRxqacVlxQvoX2GRXNhDFZb7_fhdxDRzk_kfE045NqdtEer6msFav30Z_rBNZ1xf0DfBUteBce8L0rj_hq8MUlyNEPxcWAr5-TWTiL72Yn2ASLL4IdcknOeHwT-4JvIOSY8Gy59K4zKyV_Qju98RmONvUQ_To9uZ2fTy5_nl3MZ5eTjleqTGyvRG2osAx4X5G24gwEsE4K01SyN9IY20JbEWip4rJpTcOsqDpRCyJMy_khOl73Xab4d4Bc9MLlDrw3AeKQNROcKE4FFSP67QP6FIcUxuk0a7iqaaMkGamvG2poF2D1MrmFSc_6bW8jINdAl2LOCXrdufL66ZKM85oSvQpJr0LSq5D0JqTRpB_Mt-b_c76sHQcA77ySVJCa8RfzZZvu
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TII_2024_3371990
crossref_primary_10_1088_1361_6501_addc87
crossref_primary_10_1109_TIM_2024_3394496
crossref_primary_10_1109_TIM_2025_3565026
crossref_primary_10_1016_j_jtice_2025_106289
crossref_primary_10_1109_JSEN_2024_3384262
crossref_primary_10_1109_TII_2024_3475419
crossref_primary_10_1109_TIM_2024_3443350
crossref_primary_10_1109_TIM_2025_3551122
crossref_primary_10_1109_TCYB_2025_3580633
crossref_primary_10_1016_j_jprocont_2025_103488
crossref_primary_10_3390_pr12091807
crossref_primary_10_1109_TASE_2025_3531850
crossref_primary_10_1109_TCYB_2024_3431636
crossref_primary_10_1109_TII_2023_3295428
crossref_primary_10_1109_JAS_2023_123396
crossref_primary_10_1109_ACCESS_2024_3409899
crossref_primary_10_1016_j_neunet_2024_106482
crossref_primary_10_1016_j_compind_2025_104364
crossref_primary_10_1109_TIM_2023_3323006
crossref_primary_10_1109_TIM_2025_3551426
crossref_primary_10_1109_TIM_2023_3264046
crossref_primary_10_1109_TII_2024_3495779
crossref_primary_10_1109_TASE_2025_3548053
crossref_primary_10_1109_TII_2024_3507937
crossref_primary_10_3390_bioengineering11080803
crossref_primary_10_1016_j_psep_2025_107400
crossref_primary_10_1016_j_jprocont_2024_103355
crossref_primary_10_1109_TNNLS_2024_3360030
crossref_primary_10_1109_TSMC_2024_3495020
crossref_primary_10_1016_j_jprocont_2025_103497
Cites_doi 10.1016/j.conengprac.2019.104198
10.1109/ACCESS.2021.3058305
10.1109/TII.2019.2951622
10.1016/0169-7439(95)00043-7
10.1016/j.jprocont.2014.01.012
10.1038/nature14539
10.1016/j.jprocont.2017.02.010
10.1109/CVPR.2017.106
10.1109/TII.2021.3053128
10.1002/9781118445112.stat03287
10.1109/TIE.2016.2622234
10.1109/TIE.2019.2927197
10.1109/TIE.2017.2682012
10.1109/TII.2018.2889750
10.1016/j.measurement.2020.108200
10.1109/TASE.2019.2896205
10.1002/aic.14299
10.1145/3065386
10.1016/j.chemolab.2015.12.011
10.1016/j.jprocont.2019.11.007
10.1155/2016/3159805
10.1016/j.ifacol.2015.09.062
10.1016/j.ces.2020.115509
10.1109/TCYB.2016.2625419
10.1016/j.isatra.2019.07.001
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3143613
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Aerospace Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 4879
ExternalDocumentID 35175925
10_1109_TCYB_2022_3143613
9716052
Genre orig-research
Journal Article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2021T140597; 2019M662050
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62003300; 62103362; 92167106
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-df965a16d2e3f40b432e6e2c76a847fa7aadbeb40eb19378ba82d64c65606ab33
IEDL.DBID RIE
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761342500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 12:31:20 EST 2025
Sun Nov 09 08:50:27 EST 2025
Mon Jul 21 05:54:58 EDT 2025
Sat Nov 29 02:02:36 EST 2025
Tue Nov 18 22:39:02 EST 2025
Wed Aug 27 02:25:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-df965a16d2e3f40b432e6e2c76a847fa7aadbeb40eb19378ba82d64c65606ab33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0881-213X
0000-0002-8832-9147
0000-0002-2071-4380
PMID 35175925
PQID 2839518970
PQPubID 85422
PageCount 13
ParticipantIDs ieee_primary_9716052
crossref_primary_10_1109_TCYB_2022_3143613
pubmed_primary_35175925
crossref_citationtrail_10_1109_TCYB_2022_3143613
proquest_journals_2839518970
proquest_miscellaneous_2630931616
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref31
ref30
ref32
ref2
liu (ref28) 2020
ref1
ref17
ref19
lecun (ref6) 2015; 521
ref18
wang (ref24) 2021; 70
ref23
ref26
ref25
ref20
ref22
ref21
kingma (ref10) 2013
ref27
sun (ref13) 2020
ref29
ref8
ref9
bishop (ref7) 2006
ref4
ref3
chen (ref16) 2020
ref5
doersch (ref11) 2016
References_xml – ident: ref14
  doi: 10.1016/j.conengprac.2019.104198
– ident: ref29
  doi: 10.1109/ACCESS.2021.3058305
– ident: ref15
  doi: 10.1109/TII.2019.2951622
– ident: ref22
  doi: 10.1016/0169-7439(95)00043-7
– ident: ref5
  doi: 10.1016/j.jprocont.2014.01.012
– volume: 70
  year: 2021
  ident: ref24
  article-title: Dual neural extended Kalman filtering approach for multirate sensor data fusion
  publication-title: IEEE Trans Instrum Meas
– volume: 521
  start-page: 436
  year: 2015
  ident: ref6
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref23
  doi: 10.1016/j.jprocont.2017.02.010
– year: 2020
  ident: ref13
  article-title: Gated stacked target-related autoencoder: A novel deep feature extraction and layerwise ensemble method for industrial soft sensor application
  publication-title: IEEE Trans Cybern
– ident: ref30
  doi: 10.1109/CVPR.2017.106
– ident: ref2
  doi: 10.1109/TII.2021.3053128
– year: 2020
  ident: ref16
  article-title: Discriminative mixture variational autoencoder for semisupervised classification
  publication-title: IEEE Trans Cybern
– ident: ref3
  doi: 10.1002/9781118445112.stat03287
– ident: ref20
  doi: 10.1109/TIE.2016.2622234
– ident: ref12
  doi: 10.1109/TIE.2019.2927197
– ident: ref31
  doi: 10.1109/TIE.2017.2682012
– year: 2016
  ident: ref11
  article-title: Tutorial on variational autoencoders
  publication-title: arXiv 1606 05908
– ident: ref18
  doi: 10.1109/TII.2018.2889750
– ident: ref25
  doi: 10.1016/j.measurement.2020.108200
– ident: ref26
  doi: 10.1109/TASE.2019.2896205
– ident: ref4
  doi: 10.1002/aic.14299
– year: 2020
  ident: ref28
  article-title: Multiresolution convolutional autoencoders
  publication-title: arXiv 2004 04946
– year: 2013
  ident: ref10
  article-title: Auto-encoding variational bayes
  publication-title: arXiv 1312 6114
– year: 2006
  ident: ref7
  publication-title: Pattern Recognition and Machine Learning
– ident: ref32
  doi: 10.1145/3065386
– ident: ref1
  doi: 10.1016/j.chemolab.2015.12.011
– ident: ref27
  doi: 10.1016/j.jprocont.2019.11.007
– ident: ref17
  doi: 10.1155/2016/3159805
– ident: ref21
  doi: 10.1016/j.ifacol.2015.09.062
– ident: ref19
  doi: 10.1016/j.ces.2020.115509
– ident: ref8
  doi: 10.1109/TCYB.2016.2625419
– ident: ref9
  doi: 10.1016/j.isatra.2019.07.001
SSID ssj0000816898
Score 2.5280013
Snippet In industrial processes, the sampling rates of process variables are discrepant because of the nature of instruments and measuring demands, which forms the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4867
SubjectTerms Data mining
Data models
Deep feature extraction
Feature extraction
feature pyramid augmentation
Industrial applications
Measuring instruments
multirate data filter
multiresolution pyramid variational autoencoder (MR-PVAE)
Numerical models
Numerical prediction
Prediction models
Predictive models
Process variables
Regression models
Sampling
soft sensor
Soft sensors
Spatial resolution
Title Predictive Modeling With Multiresolution Pyramid VAE and Industrial Soft Sensor Applications
URI https://ieeexplore.ieee.org/document/9716052
https://www.ncbi.nlm.nih.gov/pubmed/35175925
https://www.proquest.com/docview/2839518970
https://www.proquest.com/docview/2630931616
Volume 53
WOSCitedRecordID wos000761342500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB9Uivhi_TbVyhZ8UDGa2012s49XUfpQ5MCvKwhhk2zwQHMld1fof9-ZzV7qQyv4Fsjmg53Zmd_s7MwP4JArxMBK2BDBsQ3jqleG2uRJSI1ZCHCnxrgmrt_V9XU6HOrBApx2tTDWWnf4zJ7Rpcvll-NiRltl59TuKErQ4C4qJdtarW4_xRFIOOpbjhchogrlk5i9SJ_fXvz4isEg5xijxgJd2AosiwRdpyaO7FceyVGs_B9tOq9z9fF9_7sGqx5dsn6rDuuwYOsNWPfrd8KOfJPp4014HDSUoiFjx4gPjarS2cNo-sRcSS4G4V4n2eB3Y15GJbvvXzJTl-wv2Qe7QRvObjAQHjes_yoTvgV3V5e3F99Cz7QQFiLW07CstExMT5bciiqO8lhwKy0vlDTovSqjjClzm8cRWnbEM2luUl7KuKDOPdLkQmzDUj2u7S6wShmBfrHHcTYwmrKpTqxBEJdWhTJFwgOI5rOdFb4NObFhPGcuHIl0RrLKSFaZl1UAJ90jP9seHG8N3iRBdAO9DALYn4s086t0kiG0QoCZahUF8KW7jeuLkiamtuMZjpGUK0ZcLAPYaVWhe_dcgz79-5t7sELk9O1xwX1YmjYz-xk-FL-mo0lzgEo8TA-cEv8B7aPp9w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED9KN7q-bOuytt6yVYM-rKNuHMm2rMestLQ0DYFk_YCCkW2ZBjpnOMlg__3uFMXrQzfYm8HyB7rT3e90uvsB7HOJGFgK4yM4Nn5Ydgtf6SzyqTELAe5Ea9vEtS8Hg-TmRg3X4LCphTHG2MNn5ogubS6_mOYL2irrULujIEKD-4yYs1y1VrOjYikkLPktxwsfcYV0acxuoDrj49uvGA5yjlFqKNCJbcKGiNB5KmLJfuSTLMnK3_Gm9Tunr_7vj1_DS4cvWW-pEFuwZqo3sOVW8Ix9dm2mD1pwN6wpSUPmjhEjGtWls-vJ_J7ZolwMw51WsuGvWn-fFOyqd8J0VbA_dB9shFacjTAUntas9ygX_ha-nZ6Mj898x7Xg5yJUc78oVRzpblxwI8owyELBTWx4LmON_qvUUusiM1kYoG1HRJNkOuFFHObUuyfWmRDbsF5NK7MLrJRaoGfscpwNjKdMoiKjEcYlZS51HnEPgtVsp7lrRE58GA-pDUgClZKsUpJV6mTlwZfmkR_LLhz_GtwiQTQDnQw8aK9Emrp1OksRXCHETJQMPPjU3MYVRmkTXZnpAsfElC1GZBx7sLNUhebdKw169_Q39-DF2fiyn_bPBxfvYZOo6peHB9uwPq8X5gM8z3_OJ7P6o1Xl38Bj7Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predictive+Modeling+With+Multiresolution+Pyramid+VAE+and+Industrial+Soft+Sensor+Applications&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Shen%2C+Bingbing&rft.au=Yao%2C+Le&rft.au=Ge%2C+Zhiqiang&rft.date=2023-08-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=53&rft.issue=8&rft.spage=4867&rft.epage=4879&rft_id=info:doi/10.1109%2FTCYB.2022.3143613&rft_id=info%3Apmid%2F35175925&rft.externalDocID=9716052
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon