Spillover detection for donor selection in synthetic control models

Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a target unit, SC requires the existence of additional units that are not impacted by the intervention. Given one of these potential donor units,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of causal inference Vol. 13; no. 1; pp. 2 - 5
Main Authors: O’Riordan, Michael, Gilligan-Lee, Ciarán M.
Format: Journal Article
Language:English
Published: De Gruyter 08.10.2025
Subjects:
ISSN:2193-3685, 2193-3685
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a target unit, SC requires the existence of additional units that are not impacted by the intervention. Given one of these potential donor units, how can we decide whether it is in fact a donor – that is, one not subject to spillover effects from the intervention? Such a decision typically requires appealing to strong domain knowledge specifying the units, which becomes infeasible in situations with large pools of potential donors. In this article, we introduce a practical, theoretically grounded donor selection procedure, aiming to weaken this domain knowledge requirement. Our main result is a theorem that yields the assumptions required to identify donor values at post-intervention time points using only pre-intervention data. We show how this theorem – and the assumptions underpinning it – can be turned into a practical method for detecting potential spillover effects and excluding invalid donors when constructing SCs. Importantly, we employ sensitivity analysis to formally bound the bias in our SC causal estimate in situations where an excluded donor was indeed valid, or where a selected donor was invalid. Using ideas from the proximal causal inference and instrumental variables literature, we show that the excluded donors can nevertheless be leveraged to further debias causal effect estimates. Finally, we illustrate our donor selection procedure on both simulated and real-world datasets.
AbstractList Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a target unit, SC requires the existence of additional units that are not impacted by the intervention. Given one of these potential donor units, how can we decide whether it is in fact a donor – that is, one not subject to spillover effects from the intervention? Such a decision typically requires appealing to strong domain knowledge specifying the units, which becomes infeasible in situations with large pools of potential donors. In this article, we introduce a practical, theoretically grounded donor selection procedure, aiming to weaken this domain knowledge requirement. Our main result is a theorem that yields the assumptions required to identify donor values at post-intervention time points using only pre-intervention data. We show how this theorem – and the assumptions underpinning it – can be turned into a practical method for detecting potential spillover effects and excluding invalid donors when constructing SCs. Importantly, we employ sensitivity analysis to formally bound the bias in our SC causal estimate in situations where an excluded donor was indeed valid, or where a selected donor was invalid. Using ideas from the proximal causal inference and instrumental variables literature, we show that the excluded donors can nevertheless be leveraged to further debias causal effect estimates. Finally, we illustrate our donor selection procedure on both simulated and real-world datasets.
Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a target unit, SC requires the existence of additional units that are not impacted by the intervention. Given one of these potential donor units, how can we decide whether it is in fact a valid donor – that is, one not subject to spillover effects from the intervention? Such a decision typically requires appealing to strong a priori domain knowledge specifying the units, which becomes infeasible in situations with large pools of potential donors. In this article, we introduce a practical, theoretically grounded donor selection procedure, aiming to weaken this domain knowledge requirement. Our main result is a theorem that yields the assumptions required to identify donor values at post-intervention time points using only pre-intervention data. We show how this theorem – and the assumptions underpinning it – can be turned into a practical method for detecting potential spillover effects and excluding invalid donors when constructing SCs. Importantly, we employ sensitivity analysis to formally bound the bias in our SC causal estimate in situations where an excluded donor was indeed valid, or where a selected donor was invalid. Using ideas from the proximal causal inference and instrumental variables literature, we show that the excluded donors can nevertheless be leveraged to further debias causal effect estimates. Finally, we illustrate our donor selection procedure on both simulated and real-world datasets.
Author O’Riordan, Michael
Gilligan-Lee, Ciarán M.
Author_xml – sequence: 1
  givenname: Michael
  surname: O’Riordan
  fullname: O’Riordan, Michael
  email: moriordan@spotify.com
  organization: Spotify, London, UK
– sequence: 2
  givenname: Ciarán M.
  surname: Gilligan-Lee
  fullname: Gilligan-Lee, Ciarán M.
  email: ciaran.lee@ucl.ac.uk
  organization: Spotify, Dublin, Ireland
BookMark eNptUMtOwzAQtFCRKKVH7vmBgB3biX1EFS-pEgfgbDn2piRy7cpOQf17HFohDlx2Z1e7o5m5RDMfPCB0TfAN4YTfDqYvK1yxEmNan6F5RSQtaS347A--QMuUBowxqThvGjlHq9dd71z4hFhYGMGMffBFF_IUfK4J3GnX-yId_PgBY28KE_wYgyu2wYJLV-i80y7B8tQX6P3h_m31VK5fHp9Xd-vSUCbH0lpmBNFZi6ZS15jzqoWqZgZoR4xtOSNtY1sprGhEDS0n0kw_FpjJzixdoOcjrw16ULvYb3U8qKB79bMIcaN0zPIcKFEbTQ1mkmnGBJeia6nJMhpBW51B5iqPXCaGlCJ0v3wEqylQlQNVU6BqCjTfi-P9l3YjRAubuD9koIawjz67_v-PUEK_ARgufkk
Cites_doi https://doi.org/10.1111/j.1467-9868.2011.01016.x
10.1515/jci-2016-0013
10.1214/14-AOAS788
10.1257/jep.31.2.3
10.1017/CBO9780511790942
10.1093/biomet/asy038
10.1146/annurev-statistics-100421-044639
10.1257/000282803321455188
10.1080/01621459.1988.10478694
10.1101/2020.09.21.20198762
10.1111/rssb.12348
10.1002/hec.3258
10.1145/3580305.3599778
10.1111/ajps.12116
10.1038/s41467-020-17419-7
10.1257/000282803321946921
10.1007/978-3-031-16452-1_57
10.1609/aaai.v34i04.5789
10.1111/j.1467-9868.2011.01016.x
10.1080/01621459.2021.1920957
10.1111/j.2517-6161.1983.tb01242.x
10.1016/S0262-4079(20)30817-4
10.1198/jasa.2009.ap08746
10.1017/CBO9780511803161
10.1080/01621459.2021.1929245
10.1093/biomet/ast066
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1515/jci-2024-0036
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Philosophy
EISSN 2193-3685
EndPage 5
ExternalDocumentID oai_doaj_org_article_86ca3c0494a448598fb3cc34783bacc3
10_1515_jci_2024_0036
10_1515_jci_2024_0036131
GroupedDBID 0R~
1WD
4.4
AAFPC
AAFWJ
AAGVJ
AAQCX
AASOL
AASQH
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABSOE
ABUVI
ABXMZ
ABYKJ
ACEFL
ACZBO
ADGQD
ADGYE
ADJVZ
ADOZN
AEQDQ
AEQLX
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFPKN
AFQUK
AHGSO
AHQJS
AIERV
AJATJ
AKVCP
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALWYM
AMVHM
BAKPI
BBCWN
BCIFA
CFGNV
E0C
EBS
GROUPED_DOAJ
HZ~
IY9
K.~
M48
M~E
O9-
OK1
QD8
SA.
SLJYH
T2Y
AAYXX
CITATION
ID FETCH-LOGICAL-c349t-dd4c81a193a39a60552be264ce3f1cdb541b7db98d8786eb519cdd4cde4c202d3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001589062700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2193-3685
IngestDate Mon Oct 20 21:12:35 EDT 2025
Thu Oct 16 04:34:52 EDT 2025
Sat Nov 29 01:29:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution 4.0 International License.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-dd4c81a193a39a60552be264ce3f1cdb541b7db98d8786eb519cdd4cde4c202d3
OpenAccessLink https://doaj.org/article/86ca3c0494a448598fb3cc34783bacc3
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_86ca3c0494a448598fb3cc34783bacc3
crossref_primary_10_1515_jci_2024_0036
walterdegruyter_journals_10_1515_jci_2024_0036131
PublicationCentury 2000
PublicationDate 2025-10-08
PublicationDateYYYYMMDD 2025-10-08
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-08
  day: 08
PublicationDecade 2020
PublicationTitle Journal of causal inference
PublicationYear 2025
Publisher De Gruyter
Publisher_xml – name: De Gruyter
References Chernozhukov, V; Wüthrich, K; Zhu, Y. (j_jci-2024-0036_ref_038) 2021; 116
Cinelli, C; Hazlett, C. (j_jci-2024-0036_ref_031) 2020; 82
Nazaret, A; Shi, C; Blei, DM (j_jci-2024-0036_ref_033) 2023
Perov, Y; Graham, L; Gourgoulias, K; Richens, J; Lee, C; Baker, A (j_jci-2024-0036_ref_005) 2020
Miao, W; Shi, X; Tchetgen, ET (j_jci-2024-0036_ref_019) 2020
Mitchell, TJ; Beauchamp, JJ (j_jci-2024-0036_ref_044) 1988; 83
Jeunen, O; Gilligan-Lee, CM; Mehrotra, R; Lalmas, M. (j_jci-2024-0036_ref_008) 2022
Reynaud, H; Vlontzos, A; Dombrowski, M; Lee, C; Beqiri, A; Leeson, P (j_jci-2024-0036_ref_009) 2022
Imbens, GW (j_jci-2024-0036_ref_029) 2003; 93
Brodersen, KH; Gallusser, F; Koehler, J; Remy, N; Scott, SL (j_jci-2024-0036_ref_014) 2015; 9
Van Goffrier, G; Maystre, L; Gilligan-Lee, C. (j_jci-2024-0036_ref_010) 2023
Abadie, A; Gardeazabal, J. (j_jci-2024-0036_ref_011) 2003; 93
Kuroki, M; Pearl, J. (j_jci-2024-0036_ref_022) 2014; 101
Shi, X; Miao, W; Tchetgen, ET (j_jci-2024-0036_ref_034) 2022
Rasines, DG; Young, GA (j_jci-2024-0036_ref_041) 2020
Rosenbaum, PR; Rubin, DB (j_jci-2024-0036_ref_028) 1983; 45
Lin, S; Xu, M; Zhang, X; Chao, SK; Huang, YK; Shi, X. (j_jci-2024-0036_ref_017) 2023
Shpitser, I; Wood-Doughty, Z; Tchetgen, EJT. (j_jci-2024-0036_ref_026) 2021
Lee, CM; Spekkens, RW (j_jci-2024-0036_ref_001) 2017; 5
Abadie, A; Diamond, A; Hainmueller, J. (j_jci-2024-0036_ref_012) 2010; 105
Kreif, N; Grieve, R; Hangartner, D; Turner, AJ; Nikolova, S; Sutton, M. (j_jci-2024-0036_ref_015) 2016; 25
Ben-Michael, E; Feller, A; Rothstein, J. (j_jci-2024-0036_ref_037) 2021; 116
Imbens, G; Kallus, N; Mao, X; Wang, Y. (j_jci-2024-0036_ref_025) 2022
Abadie, A; Diamond, A; Hainmueller, J. (j_jci-2024-0036_ref_013) 2015; 59
Yekutieli, D. (j_jci-2024-0036_ref_040) 2012 02; 74
Gilligan-Lee, CM; Hart, C; Richens, J; Johri, S. (j_jci-2024-0036_ref_007) 2022
Veitch, V; Zaveri, A. (j_jci-2024-0036_ref_030) 2020; 33
Shi, X; Li, K; Miao, W; Hu, M; Tchetgen, ET (j_jci-2024-0036_ref_020) 2023
Richens, JG; Lee, CM; Johri, S. (j_jci-2024-0036_ref_003) 2020; 11
Athey, S; Imbens, GW (j_jci-2024-0036_ref_016) 2017; 31
Miao, W; Geng, Z; Tchetgen Tchetgen, EJ (j_jci-2024-0036_ref_023) 2018; 105
Gilligan-Lee, C. (j_jci-2024-0036_ref_002) 2020; 246
Kuchibhotla, AK; Kolassa, JE; Kuffner, TA (j_jci-2024-0036_ref_042) 2022; 9
Tchetgen, EJT; Ying, A; Cui, Y; Shi, X; Miao, W. (j_jci-2024-0036_ref_024) 2020
2025100816581130426_j_jci-2024-0036_ref_011
2025100816581130426_j_jci-2024-0036_ref_033
2025100816581130426_j_jci-2024-0036_ref_010
2025100816581130426_j_jci-2024-0036_ref_032
2025100816581130426_j_jci-2024-0036_ref_031
2025100816581130426_j_jci-2024-0036_ref_030
2025100816581130426_j_jci-2024-0036_ref_019
2025100816581130426_j_jci-2024-0036_ref_018
2025100816581130426_j_jci-2024-0036_ref_017
2025100816581130426_j_jci-2024-0036_ref_039
2025100816581130426_j_jci-2024-0036_ref_016
2025100816581130426_j_jci-2024-0036_ref_038
2025100816581130426_j_jci-2024-0036_ref_015
2025100816581130426_j_jci-2024-0036_ref_037
2025100816581130426_j_jci-2024-0036_ref_014
2025100816581130426_j_jci-2024-0036_ref_036
2025100816581130426_j_jci-2024-0036_ref_013
2025100816581130426_j_jci-2024-0036_ref_035
2025100816581130426_j_jci-2024-0036_ref_012
2025100816581130426_j_jci-2024-0036_ref_034
2025100816581130426_j_jci-2024-0036_ref_022
2025100816581130426_j_jci-2024-0036_ref_044
2025100816581130426_j_jci-2024-0036_ref_021
2025100816581130426_j_jci-2024-0036_ref_043
2025100816581130426_j_jci-2024-0036_ref_020
2025100816581130426_j_jci-2024-0036_ref_042
2025100816581130426_j_jci-2024-0036_ref_041
2025100816581130426_j_jci-2024-0036_ref_040
2025100816581130426_j_jci-2024-0036_ref_009
2025100816581130426_j_jci-2024-0036_ref_008
2025100816581130426_j_jci-2024-0036_ref_007
2025100816581130426_j_jci-2024-0036_ref_029
2025100816581130426_j_jci-2024-0036_ref_006
2025100816581130426_j_jci-2024-0036_ref_028
2025100816581130426_j_jci-2024-0036_ref_005
2025100816581130426_j_jci-2024-0036_ref_027
2025100816581130426_j_jci-2024-0036_ref_004
2025100816581130426_j_jci-2024-0036_ref_026
2025100816581130426_j_jci-2024-0036_ref_003
2025100816581130426_j_jci-2024-0036_ref_025
2025100816581130426_j_jci-2024-0036_ref_002
2025100816581130426_j_jci-2024-0036_ref_024
2025100816581130426_j_jci-2024-0036_ref_001
2025100816581130426_j_jci-2024-0036_ref_023
References_xml – volume: 83
  start-page: 1023
  issue: 404
  year: 1988
  end-page: 32
  ident: j_jci-2024-0036_ref_044
  article-title: Bayesian variable selection in linear regression
  publication-title: J Am Stat Assoc.
– year: 2022
  ident: j_jci-2024-0036_ref_034
  publication-title: A selective review of negative control methods in epidemiology.
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  ident: j_jci-2024-0036_ref_003
  article-title: Improving the accuracy of medical diagnosis with causal machine learning
  publication-title: Nat Commun.
– year: 2022
  ident: j_jci-2024-0036_ref_009
  publication-title: DaARTAGNAN: counterfactual video generation
– volume: 45
  start-page: 212
  issue: 2
  year: 1983
  end-page: 8
  ident: j_jci-2024-0036_ref_028
  article-title: Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
  publication-title: J R Stat Soc Ser B (Methodological)
– volume: 116
  start-page: 1789
  issue: (536)
  year: 2021
  end-page: 803
  ident: j_jci-2024-0036_ref_037
  article-title: The augmented synthetic control method
  publication-title: J Am Stat Assoc.
– volume: 59
  start-page: 495
  issue: 2
  year: 2015
  end-page: 510
  ident: j_jci-2024-0036_ref_013
  article-title: Comparative politics and the synthetic control method
  publication-title: Am J Polit Sci.
– volume: 74
  issue: (3)
  year: 2012 02
  ident: j_jci-2024-0036_ref_040
  article-title: Adjusted Bayesian inference for selected parameters
  publication-title: J R Stat Soc Ser B Stat Methodol.
  doi: https://doi.org/10.1111/j.1467-9868.2011.01016.x
– year: 2023
  ident: j_jci-2024-0036_ref_017
  publication-title: Balancing approach for causal inference at scale.
– year: 2022
  ident: j_jci-2024-0036_ref_008
  publication-title: Disentangling causal effects from sets of interventions in the presence of unobserved confounders.
– volume: 93
  start-page: 113
  issue: 1
  year: 2003
  end-page: 32
  ident: j_jci-2024-0036_ref_011
  article-title: The economic costs of conflict: A case study of the Basque Country
  publication-title: Am Econ Rev.
– year: 2020
  ident: j_jci-2024-0036_ref_019
  publication-title: A confounding bridge approach for double negative control inference on causal effects.
– volume: 5
  start-page: 2
  year: 2017
  ident: j_jci-2024-0036_ref_001
  article-title: Causal inference via algebraic geometry: feasibility tests for functional causal structures with two binary observed variables
  publication-title: J Causal Inference.
– volume: 25
  start-page: 1514
  issue: 12
  year: 2016
  end-page: 28
  ident: j_jci-2024-0036_ref_015
  article-title: Examination of the synthetic control method for evaluating health policies with multiple treated units
  publication-title: Health Econom.
– year: 2023
  ident: j_jci-2024-0036_ref_020
  publication-title: Theory for identification and inference with synthetic controls: a proximal causal inference framework.
– volume: 9
  start-page: 247
  issue: 1
  year: 2015
  end-page: 74
  ident: j_jci-2024-0036_ref_014
  article-title: Inferring causal impact using Bayesian structural time-series models
  publication-title: An Appl Stat.
– year: 2021
  ident: j_jci-2024-0036_ref_026
  publication-title: The proximal id algorithm.
– year: 2022
  ident: j_jci-2024-0036_ref_007
  article-title: Leveraging directed causal discovery to detect latent common causes in cause-effect Pairs
  publication-title: IEEE Transactions on Neural Networks and Learning Systems.
– volume: 116
  start-page: 1849
  issue: (536)
  year: 2021
  end-page: 64
  ident: j_jci-2024-0036_ref_038
  article-title: An exact and robust conformal inference method for counterfactual and synthetic controls
  publication-title: J Am Stat Assoc.
– volume: 101
  start-page: 423
  issue: 2
  year: 2014
  end-page: 37
  ident: j_jci-2024-0036_ref_022
  article-title: Measurement bias and effect restoration in causal inference
  publication-title: Biometrika.
– volume: 9
  start-page: 505
  year: 2022
  end-page: 27
  ident: j_jci-2024-0036_ref_042
  article-title: Post-selection inference
  publication-title: An Rev Stat Appl.
– volume: 31
  start-page: 3
  issue: 2
  year: 2017
  end-page: 32
  ident: j_jci-2024-0036_ref_016
  article-title: The state of applied econometrics: Causality and policy evaluation
  publication-title: J Econ Perspectives.
– year: 2020
  ident: j_jci-2024-0036_ref_024
  publication-title: An introduction to proximal causal learning.
– volume: 93
  start-page: 126
  issue: 2
  year: 2003
  end-page: 32
  ident: j_jci-2024-0036_ref_029
  article-title: Sensitivity to exogeneity assumptions in program evaluation
  publication-title: Am Econ Rev.
– volume: 82
  start-page: 39
  issue: 1
  year: 2020
  end-page: 67
  ident: j_jci-2024-0036_ref_031
  article-title: Making sense of sensitivity: Extending omitted variable bias
  publication-title: J R Stat Soc Ser B (Stat Meth).
– year: 2023
  ident: j_jci-2024-0036_ref_033
  publication-title: On the misspecification of linear assumptions in synthetic control.
– volume: 33
  start-page: 10999
  year: 2020
  end-page: 1009
  ident: j_jci-2024-0036_ref_030
  article-title: Sense and sensitivity analysis: Simple post-hoc analysis of bias due to unobserved confounding
  publication-title: Adv Neural Inform Proces Syst.
– year: 2022
  ident: j_jci-2024-0036_ref_025
  publication-title: Long-term causal inference under persistent confounding via data combination.
– volume: 246
  start-page: 32
  issue: 3279
  year: 2020
  end-page: 5
  ident: j_jci-2024-0036_ref_002
  article-title: Causing trouble
  publication-title: New Sci.
– year: 2020
  ident: j_jci-2024-0036_ref_041
  publication-title: Bayesian selective inference: non-informative priors
– volume: 105
  start-page: 987
  issue: 4
  year: 2018
  end-page: 93
  ident: j_jci-2024-0036_ref_023
  article-title: Identifying causal effects with proxy variables of an unmeasured confounder
  publication-title: Biometrika.
– start-page: p. 1
  year: 2020
  end-page: 36
  ident: j_jci-2024-0036_ref_005
  article-title: Multiverse: causal reasoning using importance sampling in probabilistic programming
  publication-title: Symposium on advances in approximate bayesian inference. PMLR
– year: 2023
  ident: j_jci-2024-0036_ref_010
  publication-title: Estimating long-term causal effects from short-term experiments and long-term observational data with unobserved confounding.
– volume: 105
  start-page: 493
  issue: 490
  year: 2010
  end-page: 505
  ident: j_jci-2024-0036_ref_012
  article-title: Synthetic control methods for comparative case studies: Estimating the effect of California - tobacco control program
  publication-title: J Am Stat Assoc
– ident: 2025100816581130426_j_jci-2024-0036_ref_001
  doi: 10.1515/jci-2016-0013
– ident: 2025100816581130426_j_jci-2024-0036_ref_026
– ident: 2025100816581130426_j_jci-2024-0036_ref_014
  doi: 10.1214/14-AOAS788
– ident: 2025100816581130426_j_jci-2024-0036_ref_005
– ident: 2025100816581130426_j_jci-2024-0036_ref_030
– ident: 2025100816581130426_j_jci-2024-0036_ref_020
– ident: 2025100816581130426_j_jci-2024-0036_ref_032
– ident: 2025100816581130426_j_jci-2024-0036_ref_018
– ident: 2025100816581130426_j_jci-2024-0036_ref_016
  doi: 10.1257/jep.31.2.3
– ident: 2025100816581130426_j_jci-2024-0036_ref_039
  doi: 10.1017/CBO9780511790942
– ident: 2025100816581130426_j_jci-2024-0036_ref_023
  doi: 10.1093/biomet/asy038
– ident: 2025100816581130426_j_jci-2024-0036_ref_036
– ident: 2025100816581130426_j_jci-2024-0036_ref_042
  doi: 10.1146/annurev-statistics-100421-044639
– ident: 2025100816581130426_j_jci-2024-0036_ref_034
– ident: 2025100816581130426_j_jci-2024-0036_ref_011
  doi: 10.1257/000282803321455188
– ident: 2025100816581130426_j_jci-2024-0036_ref_044
  doi: 10.1080/01621459.1988.10478694
– ident: 2025100816581130426_j_jci-2024-0036_ref_008
– ident: 2025100816581130426_j_jci-2024-0036_ref_024
  doi: 10.1101/2020.09.21.20198762
– ident: 2025100816581130426_j_jci-2024-0036_ref_025
– ident: 2025100816581130426_j_jci-2024-0036_ref_031
  doi: 10.1111/rssb.12348
– ident: 2025100816581130426_j_jci-2024-0036_ref_015
  doi: 10.1002/hec.3258
– ident: 2025100816581130426_j_jci-2024-0036_ref_027
– ident: 2025100816581130426_j_jci-2024-0036_ref_017
  doi: 10.1145/3580305.3599778
– ident: 2025100816581130426_j_jci-2024-0036_ref_006
– ident: 2025100816581130426_j_jci-2024-0036_ref_021
– ident: 2025100816581130426_j_jci-2024-0036_ref_013
  doi: 10.1111/ajps.12116
– ident: 2025100816581130426_j_jci-2024-0036_ref_019
– ident: 2025100816581130426_j_jci-2024-0036_ref_003
  doi: 10.1038/s41467-020-17419-7
– ident: 2025100816581130426_j_jci-2024-0036_ref_029
  doi: 10.1257/000282803321946921
– ident: 2025100816581130426_j_jci-2024-0036_ref_033
– ident: 2025100816581130426_j_jci-2024-0036_ref_009
  doi: 10.1007/978-3-031-16452-1_57
– ident: 2025100816581130426_j_jci-2024-0036_ref_004
  doi: 10.1609/aaai.v34i04.5789
– ident: 2025100816581130426_j_jci-2024-0036_ref_040
  doi: 10.1111/j.1467-9868.2011.01016.x
– ident: 2025100816581130426_j_jci-2024-0036_ref_038
  doi: 10.1080/01621459.2021.1920957
– ident: 2025100816581130426_j_jci-2024-0036_ref_028
  doi: 10.1111/j.2517-6161.1983.tb01242.x
– ident: 2025100816581130426_j_jci-2024-0036_ref_010
– ident: 2025100816581130426_j_jci-2024-0036_ref_041
– ident: 2025100816581130426_j_jci-2024-0036_ref_002
  doi: 10.1016/S0262-4079(20)30817-4
– ident: 2025100816581130426_j_jci-2024-0036_ref_007
– ident: 2025100816581130426_j_jci-2024-0036_ref_012
  doi: 10.1198/jasa.2009.ap08746
– ident: 2025100816581130426_j_jci-2024-0036_ref_035
  doi: 10.1017/CBO9780511803161
– ident: 2025100816581130426_j_jci-2024-0036_ref_037
  doi: 10.1080/01621459.2021.1929245
– ident: 2025100816581130426_j_jci-2024-0036_ref_043
– ident: 2025100816581130426_j_jci-2024-0036_ref_022
  doi: 10.1093/biomet/ast066
SSID ssj0001255779
Score 2.3058672
Snippet Synthetic control (SC) models are widely used to estimate causal effects in settings with observational time-series data. To identify the causal effect on a...
SourceID doaj
crossref
walterdegruyter
SourceType Open Website
Index Database
Publisher
StartPage 2
SubjectTerms 60A99
62A01
62D20
68T37
sensitivity analysis
structural causal models
synthetic control
Title Spillover detection for donor selection in synthetic control models
URI https://www.degruyter.com/doi/10.1515/jci-2024-0036
https://doaj.org/article/86ca3c0494a448598fb3cc34783bacc3
Volume 13
WOSCitedRecordID wos001589062700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2193-3685
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255779
  issn: 2193-3685
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2193-3685
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255779
  issn: 2193-3685
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8NAFB6keKiH4op1IwfxFtrJTGY5amnxYimo0FuYLVKRVJpU6cXf7ptJKlUEL16GMCSZzHuzfC_z-D6ELinvs0TnInY5TmJq_DpIDIsVM1qkgOa4M0Fsgo_HYjqVkw2pL58TVtMD14brCWYUMZ7FREEkkUqRa2IMoVwQreDCr76AejaCqfrvSppyLhtSTdize89mBiMiobFnYPm2CQWu_h3UeQ_n09Y9LZaran0eGraZ0S7qNPgwuq6_aw9tuWIftSdrwYHVARrcv85eQuZlZF0VMqmKCKBnZOcFlGUQtvF1syIqVwUAPHhV1KSkR0H5pjxEj6Phw-A2bqQQYuiqrGJrqRFYAdpSRCoIQdJEO8AyxpEcG6tTijW3WgoruGBOAy4z_hnrqIFeW3KEWsW8cMco4lJxmNeAqzChCveVj7g0kzmRlhGXdNHV2jbZa814kflIAYyYgREzb0TPKMq66MZb7usmT1QdKsB9WeO-7C_3dRH-YfesmUTl761igk_-o-FT1E68lG9I5ztDrWqxdOdo27xVs3JxEUYTlHcfw0_cW9Dg
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spillover+detection+for+donor+selection+in+synthetic+control+models&rft.jtitle=Journal+of+causal+inference&rft.au=O%E2%80%99Riordan+Michael&rft.au=Gilligan-Lee+Ciar%C3%A1n+M.&rft.date=2025-10-08&rft.pub=De+Gruyter&rft.eissn=2193-3685&rft.volume=13&rft.issue=1&rft.spage=2&rft.epage=5&rft_id=info:doi/10.1515%2Fjci-2024-0036&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_86ca3c0494a448598fb3cc34783bacc3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-3685&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-3685&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-3685&client=summon