A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification
In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjec...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on cybernetics Jg. 52; H. 3; S. 1602 - 1615 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms. |
|---|---|
| AbstractList | In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms. In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms. |
| Author | Yang, Shengxiang Zhu, Zexuan Wu, Tiancheng Liang, Zhengping Ma, Xiaoliang |
| Author_xml | – sequence: 1 givenname: Zhengping orcidid: 0000-0001-6210-8373 surname: Liang fullname: Liang, Zhengping email: liangzp@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Tiancheng surname: Wu fullname: Wu, Tiancheng email: wutianchengsz@163.com organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 3 givenname: Xiaoliang orcidid: 0000-0002-8047-3224 surname: Ma fullname: Ma, Xiaoliang email: maxiaoliang@yeah.net organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Zexuan orcidid: 0000-0001-8479-6904 surname: Zhu fullname: Zhu, Zexuan email: zhuzx@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Shengxiang orcidid: 0000-0001-7222-4917 surname: Yang fullname: Yang, Shengxiang email: syang@dmu.ac.uk organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32386181$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uGyEUhVGVqvlpHqCKFCFlk43dC3gYWNpO0lZK1Y1VKSvE4DsNFjMkMBMpbx9cu15kUTagw3cu6JxTctTHHgn5wmDKGOivq-XDYsqBw5RrJSXAB3LCmVQTzuvq6HCW9TE5z3kDZakiafWJHAsulGSKnZCHOb157W3nHf05hsHHZoNu8C9Ib19iGIvQ2_RK5-FPTH547OjCZlzT2NMbdD6Xa_rbJm-bgHQZbM6-9c5ubZ_Jx9aGjOf7_Yys7m5Xy--T-1_ffizn9xMnZnqYrG2ruYC2rvhMy6bVWDkm10qLmXBVXUsLbQNC1AJdY0EBk1YIrGXRWtmIM3K9G_uU4vOIeTCdzw5DsD3GMRs-A6i4YFwU9Ooduolj6svnDJdCMa51VRXqck-NTYdr85R8VyIw_zIrANsBLsWcE7YHhIHZVmO21ZhtNWZfTfHU7zzOD39jGpL14b_Oi53TI-LhJQ1KQsntDdl-mYM |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2025_102012 crossref_primary_10_3390_app13084795 crossref_primary_10_1109_TSMC_2024_3443143 crossref_primary_10_1016_j_knosys_2023_111227 crossref_primary_10_1016_j_swevo_2025_102092 crossref_primary_10_1016_j_tre_2025_104232 crossref_primary_10_1016_j_asoc_2024_112022 crossref_primary_10_1016_j_comcom_2025_108269 crossref_primary_10_1109_ACCESS_2025_3554402 crossref_primary_10_1109_TEVC_2022_3144180 crossref_primary_10_1016_j_swevo_2025_102067 crossref_primary_10_1016_j_ins_2023_119256 crossref_primary_10_1016_j_knosys_2024_111998 crossref_primary_10_1007_s40747_024_01656_0 crossref_primary_10_1109_TNNLS_2023_3295461 crossref_primary_10_1109_TSMC_2023_3249123 crossref_primary_10_1109_TSMC_2023_3298804 crossref_primary_10_1109_TFUZZ_2024_3443207 crossref_primary_10_1016_j_eswa_2023_121768 crossref_primary_10_1016_j_asoc_2024_111756 crossref_primary_10_1016_j_ins_2023_03_100 crossref_primary_10_1109_TEVC_2024_3418858 crossref_primary_10_1016_j_jmsy_2023_02_015 crossref_primary_10_3390_ai5040107 crossref_primary_10_1109_TCSS_2023_3293331 crossref_primary_10_1109_TEVC_2023_3234113 crossref_primary_10_1109_TEVC_2023_3241762 crossref_primary_10_1007_s11227_024_06553_4 crossref_primary_10_1038_s41598_023_41855_2 crossref_primary_10_1016_j_eswa_2025_127792 crossref_primary_10_1109_ACCESS_2025_3538537 crossref_primary_10_1016_j_eswa_2024_123592 crossref_primary_10_1016_j_eswa_2024_124441 crossref_primary_10_1016_j_swevo_2024_101773 crossref_primary_10_1109_TEVC_2023_3253850 crossref_primary_10_1109_TCYB_2024_3364375 crossref_primary_10_1186_s42162_024_00406_3 crossref_primary_10_1016_j_ejor_2023_08_023 crossref_primary_10_1109_TEVC_2024_3424393 crossref_primary_10_1007_s10586_024_04739_2 crossref_primary_10_3390_pr12010189 crossref_primary_10_1016_j_swevo_2024_101648 crossref_primary_10_1016_j_ins_2022_08_072 crossref_primary_10_1093_jcde_qwac124 crossref_primary_10_1109_TETCI_2025_3529882 crossref_primary_10_1016_j_future_2024_06_059 crossref_primary_10_1016_j_swevo_2023_101420 crossref_primary_10_1016_j_swevo_2025_101900 crossref_primary_10_1016_j_swevo_2025_101981 |
| Cites_doi | 10.1109/TEVC.2017.2749619 10.1145/1143997.1144187 10.1109/TEVC.2019.2912204 10.1007/s00500-014-1433-3 10.1007/s00500-014-1477-4 10.1016/j.patrec.2014.02.013 10.1109/TEVC.2010.2104156 10.1109/TEVC.2017.2669638 10.1016/j.ejor.2009.05.005 10.1109/TEVC.2007.892759 10.1007/978-3-642-19893-9_28 10.1109/CEC.2009.4983013 10.1109/TCYB.2015.2510698 10.1109/TEVC.2017.2767023 10.1109/4235.996017 10.1162/evco.2008.16.1.1 10.1109/TCYB.2019.2960515 10.1109/CEC.2002.1007032 10.1016/j.asoc.2017.05.008 10.1007/978-3-540-70928-2_60 10.1109/TEVC.2017.2744328 10.1109/CEC.2011.5949865 10.1109/TEVC.2016.2600642 10.1109/TEVC.2015.2455812 10.1109/TCYB.2015.2490738 10.1109/TCYB.2016.2602561 10.1109/TEVC.2012.2204403 10.1007/978-3-642-24958-7_51 10.1109/TEVC.2013.2239648 10.1109/TEVC.2014.2301794 10.1162/106365600568202 10.1016/j.procs.2013.10.028 10.1080/0305215X.2013.846333 10.1109/TEVC.2016.2631279 10.2307/3001968 10.1016/j.ins.2016.01.046 10.1007/978-3-642-15461-4_17 10.1109/TEVC.2017.2704118 10.1109/TEVC.2008.920671 10.1109/CEC.2014.6900303 10.1109/TEVC.2017.2771451 10.1109/CEC.2014.6900569 10.1109/TEVC.2008.925798 10.1109/TCYB.2016.2638902 10.1007/s12293-009-0026-7 10.1109/TEVC.2015.2433266 10.1109/TEVC.2008.2009031 10.1007/s00500-013-1085-8 10.1109/TCBB.2017.2652453 10.1109/4235.985692 10.1016/j.asoc.2007.07.005 10.1109/TCYB.2013.2245892 10.1109/CEC.2010.5585979 10.1109/CEC.2015.7257120 10.1109/TEVC.2016.2574621 10.1109/TEVC.2005.861417 10.1109/TEVC.2015.2433672 10.1109/CEC.2012.6256137 10.1016/j.swevo.2015.04.001 10.1109/TEVC.2004.831456 10.1109/ICIST.2013.6747683 10.1016/j.asoc.2017.05.005 10.1093/biomet/6.1.1 10.1109/TEVC.2019.2925358 10.1109/TEVC.2013.2281543 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2020.2986600 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Aerospace Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1615 |
| ExternalDocumentID | 32386181 10_1109_TCYB_2020_2986600 9086092 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61871272; 61976143; 61673331 funderid: 10.13039/501100001809 – fundername: Shenzhen Scientific Research and Development Funding Program grantid: JCYJ20190808173617147; GGFW2018020518310863 funderid: 10.13039/501100017622 – fundername: Zhejiang Lab’s International Talent Fund for Young Professionals – fundername: Natural Science Foundation of Guangdong Province, China grantid: 2020A1515010479; 2019A1515010869; 2020A151501946 funderid: 10.13039/501100003453 – fundername: Scientific Research Foundation of Shenzhen University for newly introduced teachers grantid: 2019048; 85304/00000247 funderid: 10.13039/501100009019 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-daf9230f752496bf9e5c16d89343c5776a0fb03373ecba08016a33e76033f6b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 67 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795863600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sat Sep 27 22:28:37 EDT 2025 Mon Nov 24 22:36:58 EST 2025 Thu Apr 03 07:02:30 EDT 2025 Sat Nov 29 02:02:30 EST 2025 Tue Nov 18 21:25:30 EST 2025 Wed Aug 27 02:49:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-daf9230f752496bf9e5c16d89343c5776a0fb03373ecba08016a33e76033f6b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6210-8373 0000-0001-7222-4917 0000-0002-8047-3224 0000-0001-8479-6904 |
| PMID | 32386181 |
| PQID | 2638129955 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_journals_2638129955 crossref_primary_10_1109_TCYB_2020_2986600 crossref_citationtrail_10_1109_TCYB_2020_2986600 proquest_miscellaneous_2400523123 ieee_primary_9086092 pubmed_primary_32386181 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref16 ref19 ref18 Greeff (ref23) ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Jiang (ref43) 2018 ref24 ref68 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 Larrañaga (ref62) 2001 ref65 Zhang (ref17) 2008 ref28 ref27 ref29 ref60 ref61 |
| References_xml | – ident: ref12 doi: 10.1109/TEVC.2017.2749619 – ident: ref27 doi: 10.1145/1143997.1144187 – ident: ref69 doi: 10.1109/TEVC.2019.2912204 – ident: ref28 doi: 10.1007/s00500-014-1433-3 – ident: ref31 doi: 10.1007/s00500-014-1477-4 – ident: ref55 doi: 10.1016/j.patrec.2014.02.013 – ident: ref6 doi: 10.1109/TEVC.2010.2104156 – ident: ref36 doi: 10.1109/TEVC.2017.2669638 – ident: ref47 doi: 10.1016/j.ejor.2009.05.005 – ident: ref8 doi: 10.1109/TEVC.2007.892759 – ident: ref2 doi: 10.1007/978-3-642-19893-9_28 – ident: ref22 doi: 10.1109/CEC.2009.4983013 – ident: ref42 doi: 10.1109/TCYB.2015.2510698 – ident: ref13 doi: 10.1109/TEVC.2017.2767023 – ident: ref7 doi: 10.1109/4235.996017 – ident: ref58 doi: 10.1162/evco.2008.16.1.1 – ident: ref18 doi: 10.1109/TCYB.2019.2960515 – ident: ref16 doi: 10.1109/CEC.2002.1007032 – ident: ref30 doi: 10.1016/j.asoc.2017.05.008 – year: 2008 ident: ref17 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – ident: ref1 doi: 10.1007/978-3-540-70928-2_60 – ident: ref14 doi: 10.1109/TEVC.2017.2744328 – ident: ref37 doi: 10.1109/CEC.2011.5949865 – ident: ref45 doi: 10.1109/TEVC.2016.2600642 – ident: ref46 doi: 10.1109/TEVC.2015.2455812 – ident: ref26 doi: 10.1109/TCYB.2015.2490738 – ident: ref34 doi: 10.1109/TCYB.2016.2602561 – ident: ref9 doi: 10.1109/TEVC.2012.2204403 – ident: ref32 doi: 10.1007/978-3-642-24958-7_51 – ident: ref66 doi: 10.1109/TEVC.2013.2239648 – ident: ref56 doi: 10.1109/TEVC.2014.2301794 – ident: ref15 doi: 10.1162/106365600568202 – ident: ref44 doi: 10.1016/j.procs.2013.10.028 – ident: ref57 doi: 10.1080/0305215X.2013.846333 – ident: ref64 doi: 10.1109/TEVC.2016.2631279 – start-page: 2917 volume-title: Proc. IEEE Congr. Evol. Comput. (CEC) ident: ref23 article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization – ident: ref61 doi: 10.2307/3001968 – ident: ref65 doi: 10.1016/j.ins.2016.01.046 – ident: ref21 doi: 10.1007/978-3-642-15461-4_17 – ident: ref11 doi: 10.1109/TEVC.2017.2704118 – ident: ref19 doi: 10.1109/TEVC.2008.920671 – ident: ref20 doi: 10.1109/CEC.2014.6900303 – ident: ref35 doi: 10.1109/TEVC.2017.2771451 – ident: ref38 doi: 10.1109/CEC.2014.6900569 – ident: ref40 doi: 10.1109/TEVC.2008.925798 – ident: ref59 doi: 10.1109/TCYB.2016.2638902 – ident: ref41 doi: 10.1007/s12293-009-0026-7 – year: 2018 ident: ref43 article-title: Benchmark functions for the CEC’2018 competition on dynamic multiobjective optimization – ident: ref60 doi: 10.1109/TEVC.2015.2433266 – ident: ref51 doi: 10.1109/TEVC.2008.2009031 – ident: ref39 doi: 10.1007/s00500-013-1085-8 – volume-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation year: 2001 ident: ref62 – ident: ref52 doi: 10.1109/TCBB.2017.2652453 – ident: ref63 doi: 10.1109/4235.985692 – ident: ref3 doi: 10.1016/j.asoc.2007.07.005 – ident: ref25 doi: 10.1109/TCYB.2013.2245892 – ident: ref50 doi: 10.1109/CEC.2010.5585979 – ident: ref24 doi: 10.1109/CEC.2015.7257120 – ident: ref33 doi: 10.1109/TEVC.2016.2574621 – ident: ref53 doi: 10.1109/TEVC.2005.861417 – ident: ref10 doi: 10.1109/TEVC.2015.2433672 – ident: ref29 doi: 10.1109/CEC.2012.6256137 – ident: ref5 doi: 10.1016/j.swevo.2015.04.001 – ident: ref4 doi: 10.1109/TEVC.2004.831456 – ident: ref49 doi: 10.1109/ICIST.2013.6747683 – ident: ref67 doi: 10.1016/j.asoc.2017.05.005 – ident: ref54 doi: 10.1093/biomet/6.1.1 – ident: ref68 doi: 10.1109/TEVC.2019.2925358 – ident: ref48 doi: 10.1109/TEVC.2013.2281543 |
| SSID | ssj0000816898 |
| Score | 2.538394 |
| Snippet | In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1602 |
| SubjectTerms | Algorithms Benchmark testing Classification Convergence Decision variable classification dynamic multiobjective evolutionary algorithm (DMOEA) dynamic multiobjective optimization problem (DMOP) Evolutionary algorithms Evolutionary computation Genetic algorithms Heuristic algorithms multiobjective evolutionary algorithm multiobjective optimization problem (MOP) Multiple objective analysis Optimization Sociology Statistics |
| Title | A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification |
| URI | https://ieeexplore.ieee.org/document/9086092 https://www.ncbi.nlm.nih.gov/pubmed/32386181 https://www.proquest.com/docview/2638129955 https://www.proquest.com/docview/2400523123 |
| Volume | 52 |
| WOSCitedRecordID | wos000795863600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7SMkpetrVpN29dUWEP3agb2Yol6zFJW_ZQwh7CSJ6MbMnbSmqPNCnsv9_pRwyDbbA3Ycuy8Z1035109wG8r9EqmASdHCmMDd2oEuecqmMllc4VozrzicJ3YjbLFwv5uQeXXS6MMcYdPjNXtun28nVbbW2obCgRf1OJC-6eEMLnanXxFEcg4ahvU2zEiCpE2MRMqBzOp8sJOoMpvUplztHI9-GAobXiSZ78ZpEcxcrf0aazOrcv_u97X8LzgC7J2KvDIfRMcwSHYf4-kotQZPrDEfQtyvRFmgewHJNrz0xPXEJuW977dZDcPAXVVOufZLz62q6_b749kAnaPk3ahlwHih7yBX1um4VFHMumPX_kRH4M89ub-fRTHDgX4oqN5CbWqkbIR2uRoV_Gy1qarEq4RlQzYlUmBFe0LiljgpmqVAg3E64YM4LjtZqX7AT2m7Yxr4EkmrJS43hGWpTCcypVJrniOqtoWqsI6O63F1WoR25pMVaF80uoLKzQCiu0Iggtgo_dIz98MY5_dR5YiXQdgzAiON3JtgjT9bFIcRVC4COzLILz7jZONLt7ohrTbrHPyIXQ0dJH8MrrRDf2TpXe_Pmdb6Gf2qwJd3TtFPY36615B8-qJ5Tz-gy1eZGfOW3-BTLp7Ok |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBcFe6AvalBaMxKEgsnXi2ImP25eKWFY9rFB7ipzYaYtKUu1L6r9n7HgjVWqRuFmJ40SZseebsWc-gM8VWgUToZMjU2NDN6rAOaeqUEmlM8Wo5m2i8DAdjbLLS3mxAt-6XBhjjDt8Zvq26fbydVPObajsUCL-phIX3Bc8SeKozdbqIiqOQsKR38bYCBFXpH4bM6LycHx8dYTuYEz7scwEmvkevGJor0SURY9skiNZeR5vOrtztvZ_X7wObzy-JINWITZgxdSbsOFn8JQc-DLTXzahZ3FmW6Z5C64G5KTlpicuJbcpfrcrITldeOVUkwcyuLtuJrezmz_kCK2fJk1NTjxJD_mFXrfNwyKOZ9OeQHJCfwvjs9Px8XnoWRfCkiVyFmpVIeijVcrRMxNFJQ0vI6ER1ySs5GkqFK0KyljKTFkoBJyRUIyZVOC1ShTsHazWTW12gESaskLjeEZanCIyKhWXQgnNSxpXKgC6_O156SuSW2KMu9x5JlTmVmi5FVruhRbA1-6R-7Ycx786b1mJdB29MALYW8o29xN2mse4DiH0kZwH8Km7jVPN7p-o2jRz7JO4IDra-gC2W53oxl6q0u7T7_wIr8_HP4f58Pvox3voxTaHwh1k24PV2WRu9uFluUCZTz44nf4LFxXvSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Multiobjective+Evolutionary+Algorithm+Based+on+Decision+Variable+Classification&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liang%2C+Zhengping&rft.au=Wu%2C+Tiancheng&rft.au=Ma%2C+Xiaoliang&rft.au=Zhu%2C+Zexuan&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=3&rft.spage=1602&rft_id=info:doi/10.1109%2FTCYB.2020.2986600&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |