A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification

In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics Jg. 52; H. 3; S. 1602 - 1615
Hauptverfasser: Liang, Zhengping, Wu, Tiancheng, Ma, Xiaoliang, Zhu, Zexuan, Yang, Shengxiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2267, 2168-2275, 2168-2275
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.
AbstractList In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.
In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms (DMOEAs) have been put forward to solve DMOPs mainly by incorporating diversity introduction or prediction approaches with conventional multiobjective evolutionary algorithms. Maintaining a good balance of population diversity and convergence is critical to the performance of DMOEAs. To address the above issue, a DMOEA based on decision variable classification (DMOEA-DVC) is proposed in this article. DMOEA-DVC divides the decision variables into two and three different groups in static optimization and changes response stages, respectively. In static optimization, two different crossover operators are used for the two decision variable groups to accelerate the convergence while maintaining good diversity. In change response, DMOEA-DVC reinitializes the three decision variable groups by maintenance, prediction, and diversity introduction strategies, respectively. DMOEA-DVC is compared with the other six state-of-the-art DMOEAs on 33 benchmark DMOPs. The experimental results demonstrate that the overall performance of the DMOEA-DVC is superior or comparable to that of the compared algorithms.
Author Yang, Shengxiang
Zhu, Zexuan
Wu, Tiancheng
Liang, Zhengping
Ma, Xiaoliang
Author_xml – sequence: 1
  givenname: Zhengping
  orcidid: 0000-0001-6210-8373
  surname: Liang
  fullname: Liang, Zhengping
  email: liangzp@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Tiancheng
  surname: Wu
  fullname: Wu, Tiancheng
  email: wutianchengsz@163.com
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 3
  givenname: Xiaoliang
  orcidid: 0000-0002-8047-3224
  surname: Ma
  fullname: Ma, Xiaoliang
  email: maxiaoliang@yeah.net
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Zexuan
  orcidid: 0000-0001-8479-6904
  surname: Zhu
  fullname: Zhu, Zexuan
  email: zhuzx@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Shengxiang
  orcidid: 0000-0001-7222-4917
  surname: Yang
  fullname: Yang, Shengxiang
  email: syang@dmu.ac.uk
  organization: Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32386181$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uGyEUhVGVqvlpHqCKFCFlk43dC3gYWNpO0lZK1Y1VKSvE4DsNFjMkMBMpbx9cu15kUTagw3cu6JxTctTHHgn5wmDKGOivq-XDYsqBw5RrJSXAB3LCmVQTzuvq6HCW9TE5z3kDZakiafWJHAsulGSKnZCHOb157W3nHf05hsHHZoNu8C9Ib19iGIvQ2_RK5-FPTH547OjCZlzT2NMbdD6Xa_rbJm-bgHQZbM6-9c5ubZ_Jx9aGjOf7_Yys7m5Xy--T-1_ffizn9xMnZnqYrG2ruYC2rvhMy6bVWDkm10qLmXBVXUsLbQNC1AJdY0EBk1YIrGXRWtmIM3K9G_uU4vOIeTCdzw5DsD3GMRs-A6i4YFwU9Ooduolj6svnDJdCMa51VRXqck-NTYdr85R8VyIw_zIrANsBLsWcE7YHhIHZVmO21ZhtNWZfTfHU7zzOD39jGpL14b_Oi53TI-LhJQ1KQsntDdl-mYM
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_swevo_2025_102012
crossref_primary_10_3390_app13084795
crossref_primary_10_1109_TSMC_2024_3443143
crossref_primary_10_1016_j_knosys_2023_111227
crossref_primary_10_1016_j_swevo_2025_102092
crossref_primary_10_1016_j_tre_2025_104232
crossref_primary_10_1016_j_asoc_2024_112022
crossref_primary_10_1016_j_comcom_2025_108269
crossref_primary_10_1109_ACCESS_2025_3554402
crossref_primary_10_1109_TEVC_2022_3144180
crossref_primary_10_1016_j_swevo_2025_102067
crossref_primary_10_1016_j_ins_2023_119256
crossref_primary_10_1016_j_knosys_2024_111998
crossref_primary_10_1007_s40747_024_01656_0
crossref_primary_10_1109_TNNLS_2023_3295461
crossref_primary_10_1109_TSMC_2023_3249123
crossref_primary_10_1109_TSMC_2023_3298804
crossref_primary_10_1109_TFUZZ_2024_3443207
crossref_primary_10_1016_j_eswa_2023_121768
crossref_primary_10_1016_j_asoc_2024_111756
crossref_primary_10_1016_j_ins_2023_03_100
crossref_primary_10_1109_TEVC_2024_3418858
crossref_primary_10_1016_j_jmsy_2023_02_015
crossref_primary_10_3390_ai5040107
crossref_primary_10_1109_TCSS_2023_3293331
crossref_primary_10_1109_TEVC_2023_3234113
crossref_primary_10_1109_TEVC_2023_3241762
crossref_primary_10_1007_s11227_024_06553_4
crossref_primary_10_1038_s41598_023_41855_2
crossref_primary_10_1016_j_eswa_2025_127792
crossref_primary_10_1109_ACCESS_2025_3538537
crossref_primary_10_1016_j_eswa_2024_123592
crossref_primary_10_1016_j_eswa_2024_124441
crossref_primary_10_1016_j_swevo_2024_101773
crossref_primary_10_1109_TEVC_2023_3253850
crossref_primary_10_1109_TCYB_2024_3364375
crossref_primary_10_1186_s42162_024_00406_3
crossref_primary_10_1016_j_ejor_2023_08_023
crossref_primary_10_1109_TEVC_2024_3424393
crossref_primary_10_1007_s10586_024_04739_2
crossref_primary_10_3390_pr12010189
crossref_primary_10_1016_j_swevo_2024_101648
crossref_primary_10_1016_j_ins_2022_08_072
crossref_primary_10_1093_jcde_qwac124
crossref_primary_10_1109_TETCI_2025_3529882
crossref_primary_10_1016_j_future_2024_06_059
crossref_primary_10_1016_j_swevo_2023_101420
crossref_primary_10_1016_j_swevo_2025_101900
crossref_primary_10_1016_j_swevo_2025_101981
Cites_doi 10.1109/TEVC.2017.2749619
10.1145/1143997.1144187
10.1109/TEVC.2019.2912204
10.1007/s00500-014-1433-3
10.1007/s00500-014-1477-4
10.1016/j.patrec.2014.02.013
10.1109/TEVC.2010.2104156
10.1109/TEVC.2017.2669638
10.1016/j.ejor.2009.05.005
10.1109/TEVC.2007.892759
10.1007/978-3-642-19893-9_28
10.1109/CEC.2009.4983013
10.1109/TCYB.2015.2510698
10.1109/TEVC.2017.2767023
10.1109/4235.996017
10.1162/evco.2008.16.1.1
10.1109/TCYB.2019.2960515
10.1109/CEC.2002.1007032
10.1016/j.asoc.2017.05.008
10.1007/978-3-540-70928-2_60
10.1109/TEVC.2017.2744328
10.1109/CEC.2011.5949865
10.1109/TEVC.2016.2600642
10.1109/TEVC.2015.2455812
10.1109/TCYB.2015.2490738
10.1109/TCYB.2016.2602561
10.1109/TEVC.2012.2204403
10.1007/978-3-642-24958-7_51
10.1109/TEVC.2013.2239648
10.1109/TEVC.2014.2301794
10.1162/106365600568202
10.1016/j.procs.2013.10.028
10.1080/0305215X.2013.846333
10.1109/TEVC.2016.2631279
10.2307/3001968
10.1016/j.ins.2016.01.046
10.1007/978-3-642-15461-4_17
10.1109/TEVC.2017.2704118
10.1109/TEVC.2008.920671
10.1109/CEC.2014.6900303
10.1109/TEVC.2017.2771451
10.1109/CEC.2014.6900569
10.1109/TEVC.2008.925798
10.1109/TCYB.2016.2638902
10.1007/s12293-009-0026-7
10.1109/TEVC.2015.2433266
10.1109/TEVC.2008.2009031
10.1007/s00500-013-1085-8
10.1109/TCBB.2017.2652453
10.1109/4235.985692
10.1016/j.asoc.2007.07.005
10.1109/TCYB.2013.2245892
10.1109/CEC.2010.5585979
10.1109/CEC.2015.7257120
10.1109/TEVC.2016.2574621
10.1109/TEVC.2005.861417
10.1109/TEVC.2015.2433672
10.1109/CEC.2012.6256137
10.1016/j.swevo.2015.04.001
10.1109/TEVC.2004.831456
10.1109/ICIST.2013.6747683
10.1016/j.asoc.2017.05.005
10.1093/biomet/6.1.1
10.1109/TEVC.2019.2925358
10.1109/TEVC.2013.2281543
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2020.2986600
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Aerospace Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Sciences (General)
EISSN 2168-2275
EndPage 1615
ExternalDocumentID 32386181
10_1109_TCYB_2020_2986600
9086092
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61871272; 61976143; 61673331
  funderid: 10.13039/501100001809
– fundername: Shenzhen Scientific Research and Development Funding Program
  grantid: JCYJ20190808173617147; GGFW2018020518310863
  funderid: 10.13039/501100017622
– fundername: Zhejiang Lab’s International Talent Fund for Young Professionals
– fundername: Natural Science Foundation of Guangdong Province, China
  grantid: 2020A1515010479; 2019A1515010869; 2020A151501946
  funderid: 10.13039/501100003453
– fundername: Scientific Research Foundation of Shenzhen University for newly introduced teachers
  grantid: 2019048; 85304/00000247
  funderid: 10.13039/501100009019
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-daf9230f752496bf9e5c16d89343c5776a0fb03373ecba08016a33e76033f6b3
IEDL.DBID RIE
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795863600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sat Sep 27 22:28:37 EDT 2025
Mon Nov 24 22:36:58 EST 2025
Thu Apr 03 07:02:30 EDT 2025
Sat Nov 29 02:02:30 EST 2025
Tue Nov 18 21:25:30 EST 2025
Wed Aug 27 02:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-daf9230f752496bf9e5c16d89343c5776a0fb03373ecba08016a33e76033f6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6210-8373
0000-0001-7222-4917
0000-0002-8047-3224
0000-0001-8479-6904
PMID 32386181
PQID 2638129955
PQPubID 85422
PageCount 14
ParticipantIDs proquest_journals_2638129955
crossref_primary_10_1109_TCYB_2020_2986600
crossref_citationtrail_10_1109_TCYB_2020_2986600
proquest_miscellaneous_2400523123
ieee_primary_9086092
pubmed_primary_32386181
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref16
ref19
ref18
Greeff (ref23)
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Jiang (ref43) 2018
ref24
ref68
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
Larrañaga (ref62) 2001
ref65
Zhang (ref17) 2008
ref28
ref27
ref29
ref60
ref61
References_xml – ident: ref12
  doi: 10.1109/TEVC.2017.2749619
– ident: ref27
  doi: 10.1145/1143997.1144187
– ident: ref69
  doi: 10.1109/TEVC.2019.2912204
– ident: ref28
  doi: 10.1007/s00500-014-1433-3
– ident: ref31
  doi: 10.1007/s00500-014-1477-4
– ident: ref55
  doi: 10.1016/j.patrec.2014.02.013
– ident: ref6
  doi: 10.1109/TEVC.2010.2104156
– ident: ref36
  doi: 10.1109/TEVC.2017.2669638
– ident: ref47
  doi: 10.1016/j.ejor.2009.05.005
– ident: ref8
  doi: 10.1109/TEVC.2007.892759
– ident: ref2
  doi: 10.1007/978-3-642-19893-9_28
– ident: ref22
  doi: 10.1109/CEC.2009.4983013
– ident: ref42
  doi: 10.1109/TCYB.2015.2510698
– ident: ref13
  doi: 10.1109/TEVC.2017.2767023
– ident: ref7
  doi: 10.1109/4235.996017
– ident: ref58
  doi: 10.1162/evco.2008.16.1.1
– ident: ref18
  doi: 10.1109/TCYB.2019.2960515
– ident: ref16
  doi: 10.1109/CEC.2002.1007032
– ident: ref30
  doi: 10.1016/j.asoc.2017.05.008
– year: 2008
  ident: ref17
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref1
  doi: 10.1007/978-3-540-70928-2_60
– ident: ref14
  doi: 10.1109/TEVC.2017.2744328
– ident: ref37
  doi: 10.1109/CEC.2011.5949865
– ident: ref45
  doi: 10.1109/TEVC.2016.2600642
– ident: ref46
  doi: 10.1109/TEVC.2015.2455812
– ident: ref26
  doi: 10.1109/TCYB.2015.2490738
– ident: ref34
  doi: 10.1109/TCYB.2016.2602561
– ident: ref9
  doi: 10.1109/TEVC.2012.2204403
– ident: ref32
  doi: 10.1007/978-3-642-24958-7_51
– ident: ref66
  doi: 10.1109/TEVC.2013.2239648
– ident: ref56
  doi: 10.1109/TEVC.2014.2301794
– ident: ref15
  doi: 10.1162/106365600568202
– ident: ref44
  doi: 10.1016/j.procs.2013.10.028
– ident: ref57
  doi: 10.1080/0305215X.2013.846333
– ident: ref64
  doi: 10.1109/TEVC.2016.2631279
– start-page: 2917
  volume-title: Proc. IEEE Congr. Evol. Comput. (CEC)
  ident: ref23
  article-title: Solving dynamic multi-objective problems with vector evaluated particle swarm optimization
– ident: ref61
  doi: 10.2307/3001968
– ident: ref65
  doi: 10.1016/j.ins.2016.01.046
– ident: ref21
  doi: 10.1007/978-3-642-15461-4_17
– ident: ref11
  doi: 10.1109/TEVC.2017.2704118
– ident: ref19
  doi: 10.1109/TEVC.2008.920671
– ident: ref20
  doi: 10.1109/CEC.2014.6900303
– ident: ref35
  doi: 10.1109/TEVC.2017.2771451
– ident: ref38
  doi: 10.1109/CEC.2014.6900569
– ident: ref40
  doi: 10.1109/TEVC.2008.925798
– ident: ref59
  doi: 10.1109/TCYB.2016.2638902
– ident: ref41
  doi: 10.1007/s12293-009-0026-7
– year: 2018
  ident: ref43
  article-title: Benchmark functions for the CEC’2018 competition on dynamic multiobjective optimization
– ident: ref60
  doi: 10.1109/TEVC.2015.2433266
– ident: ref51
  doi: 10.1109/TEVC.2008.2009031
– ident: ref39
  doi: 10.1007/s00500-013-1085-8
– volume-title: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation
  year: 2001
  ident: ref62
– ident: ref52
  doi: 10.1109/TCBB.2017.2652453
– ident: ref63
  doi: 10.1109/4235.985692
– ident: ref3
  doi: 10.1016/j.asoc.2007.07.005
– ident: ref25
  doi: 10.1109/TCYB.2013.2245892
– ident: ref50
  doi: 10.1109/CEC.2010.5585979
– ident: ref24
  doi: 10.1109/CEC.2015.7257120
– ident: ref33
  doi: 10.1109/TEVC.2016.2574621
– ident: ref53
  doi: 10.1109/TEVC.2005.861417
– ident: ref10
  doi: 10.1109/TEVC.2015.2433672
– ident: ref29
  doi: 10.1109/CEC.2012.6256137
– ident: ref5
  doi: 10.1016/j.swevo.2015.04.001
– ident: ref4
  doi: 10.1109/TEVC.2004.831456
– ident: ref49
  doi: 10.1109/ICIST.2013.6747683
– ident: ref67
  doi: 10.1016/j.asoc.2017.05.005
– ident: ref54
  doi: 10.1093/biomet/6.1.1
– ident: ref68
  doi: 10.1109/TEVC.2019.2925358
– ident: ref48
  doi: 10.1109/TEVC.2013.2281543
SSID ssj0000816898
Score 2.538394
Snippet In recent years, dynamic multiobjective optimization problems (DMOPs) have drawn increasing interest. Many dynamic multiobjective evolutionary algorithms...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1602
SubjectTerms Algorithms
Benchmark testing
Classification
Convergence
Decision variable classification
dynamic multiobjective evolutionary algorithm (DMOEA)
dynamic multiobjective optimization problem (DMOP)
Evolutionary algorithms
Evolutionary computation
Genetic algorithms
Heuristic algorithms
multiobjective evolutionary algorithm
multiobjective optimization problem (MOP)
Multiple objective analysis
Optimization
Sociology
Statistics
Title A Dynamic Multiobjective Evolutionary Algorithm Based on Decision Variable Classification
URI https://ieeexplore.ieee.org/document/9086092
https://www.ncbi.nlm.nih.gov/pubmed/32386181
https://www.proquest.com/docview/2638129955
https://www.proquest.com/docview/2400523123
Volume 52
WOSCitedRecordID wos000795863600018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7SMkpetrVpN29dUWEP3agb2Yol6zFJW_ZQwh7CSJ6MbMnbSmqPNCnsv9_pRwyDbbA3Ycuy8Z1035109wG8r9EqmASdHCmMDd2oEuecqmMllc4VozrzicJ3YjbLFwv5uQeXXS6MMcYdPjNXtun28nVbbW2obCgRf1OJC-6eEMLnanXxFEcg4ahvU2zEiCpE2MRMqBzOp8sJOoMpvUplztHI9-GAobXiSZ78ZpEcxcrf0aazOrcv_u97X8LzgC7J2KvDIfRMcwSHYf4-kotQZPrDEfQtyvRFmgewHJNrz0xPXEJuW977dZDcPAXVVOufZLz62q6_b749kAnaPk3ahlwHih7yBX1um4VFHMumPX_kRH4M89ub-fRTHDgX4oqN5CbWqkbIR2uRoV_Gy1qarEq4RlQzYlUmBFe0LiljgpmqVAg3E64YM4LjtZqX7AT2m7Yxr4EkmrJS43hGWpTCcypVJrniOqtoWqsI6O63F1WoR25pMVaF80uoLKzQCiu0Iggtgo_dIz98MY5_dR5YiXQdgzAiON3JtgjT9bFIcRVC4COzLILz7jZONLt7ohrTbrHPyIXQ0dJH8MrrRDf2TpXe_Pmdb6Gf2qwJd3TtFPY36615B8-qJ5Tz-gy1eZGfOW3-BTLp7Ok
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VBcFe6AvalBaMxKEgsnXi2ImP25eKWFY9rFB7ipzYaYtKUu1L6r9n7HgjVWqRuFmJ40SZseebsWc-gM8VWgUToZMjU2NDN6rAOaeqUEmlM8Wo5m2i8DAdjbLLS3mxAt-6XBhjjDt8Zvq26fbydVPObajsUCL-phIX3Bc8SeKozdbqIiqOQsKR38bYCBFXpH4bM6LycHx8dYTuYEz7scwEmvkevGJor0SURY9skiNZeR5vOrtztvZ_X7wObzy-JINWITZgxdSbsOFn8JQc-DLTXzahZ3FmW6Z5C64G5KTlpicuJbcpfrcrITldeOVUkwcyuLtuJrezmz_kCK2fJk1NTjxJD_mFXrfNwyKOZ9OeQHJCfwvjs9Px8XnoWRfCkiVyFmpVIeijVcrRMxNFJQ0vI6ER1ySs5GkqFK0KyljKTFkoBJyRUIyZVOC1ShTsHazWTW12gESaskLjeEZanCIyKhWXQgnNSxpXKgC6_O156SuSW2KMu9x5JlTmVmi5FVruhRbA1-6R-7Ycx786b1mJdB29MALYW8o29xN2mse4DiH0kZwH8Km7jVPN7p-o2jRz7JO4IDra-gC2W53oxl6q0u7T7_wIr8_HP4f58Pvox3voxTaHwh1k24PV2WRu9uFluUCZTz44nf4LFxXvSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Multiobjective+Evolutionary+Algorithm+Based+on+Decision+Variable+Classification&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Liang%2C+Zhengping&rft.au=Wu%2C+Tiancheng&rft.au=Ma%2C+Xiaoliang&rft.au=Zhu%2C+Zexuan&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=52&rft.issue=3&rft.spage=1602&rft_id=info:doi/10.1109%2FTCYB.2020.2986600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon