Mixing parameterizations in ocean climate modeling

Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Izvestiya. Atmospheric and oceanic physics Ročník 52; číslo 2; s. 196 - 206
Hlavní autoři: Moshonkin, S. N., Gusev, A. V., Zalesny, V. B., Byshev, V. I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Moscow Pleiades Publishing 01.03.2016
Springer Nature B.V
Témata:
ISSN:0001-4338, 1555-628X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Results of numerical experiments with an eddy-permitting ocean circulation model on the simulation of the climatic variability of the North Atlantic and the Arctic Ocean are analyzed. We compare the ocean simulation quality with using different subgrid mixing parameterizations. The circulation model is found to be sensitive to a mixing parametrization. The computation of viscosity and diffusivity coefficients by an original splitting algorithm of the evolution equations for turbulence characteristics is found to be as efficient as traditional Monin–Obukhov parameterizations. At the same time, however, the variability of ocean climate characteristics is simulated more adequately. The simulation of salinity fields in the entire study region improves most significantly. Turbulent processes have a large effect on the circulation in the long-term through changes in the density fields. The velocity fields in the Gulf Stream and in the entire North Atlantic Subpolar Cyclonic Gyre are reproduced more realistically. The surface level height in the Arctic Basin is simulated more faithfully, marking the Beaufort Gyre better. The use of the Prandtl number as a function of the Richardson number improves the quality of ocean modeling.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0001-4338
1555-628X
DOI:10.1134/S0001433816010084