Improved multi-objective gray wolf optimization for task allocation in multi-UAV heterogeneous targets reconnaissance
In recent years, unmanned aerial vehicles (UAVs) reconnaissance task allocation are attracting more and more research attention. The efficient allocation of UAV resources is a fundamental and challenging problem. In this paper, the heterogeneous reconnaissance targets are categorized into point, lin...
Gespeichert in:
| Veröffentlicht in: | Cluster computing Jg. 28; H. 6; S. 397 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.10.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 1386-7857, 1573-7543 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In recent years, unmanned aerial vehicles (UAVs) reconnaissance task allocation are attracting more and more research attention. The efficient allocation of UAV resources is a fundamental and challenging problem. In this paper, the heterogeneous reconnaissance targets are categorized into point, line, and area targets. Considering the constraints of UAV flight path and remaining resources, we construct a multi-objective optimization model with fuel cost and total task time cost as the optimization objectives. To solve this model, an improved multi-objective gray wolf optimization (IMOGWO) algorithm is proposed, which employs three novel improved strategies to balance the exploration and exploitation abilities. Firstly, a nonlinear convergence factor is designed to strengthen the global search ability of the algorithm. Secondly, an evolutionary strategy is introduced to improve the population diversity to help the population jumps out of the local optimum. Finally, a Pareto front optimization strategy is adopted to remove the sub equivalent solutions and maintain the Pareto front set. Compared with the popular and classic multi-objective algorithms, the simulation results verify the effectiveness and superiority of the IMOGWO algorithm in solving the task allocation problem. Furthermore, its superiority becomes more pronounced as the problem scale increases. |
|---|---|
| AbstractList | In recent years, unmanned aerial vehicles (UAVs) reconnaissance task allocation are attracting more and more research attention. The efficient allocation of UAV resources is a fundamental and challenging problem. In this paper, the heterogeneous reconnaissance targets are categorized into point, line, and area targets. Considering the constraints of UAV flight path and remaining resources, we construct a multi-objective optimization model with fuel cost and total task time cost as the optimization objectives. To solve this model, an improved multi-objective gray wolf optimization (IMOGWO) algorithm is proposed, which employs three novel improved strategies to balance the exploration and exploitation abilities. Firstly, a nonlinear convergence factor is designed to strengthen the global search ability of the algorithm. Secondly, an evolutionary strategy is introduced to improve the population diversity to help the population jumps out of the local optimum. Finally, a Pareto front optimization strategy is adopted to remove the sub equivalent solutions and maintain the Pareto front set. Compared with the popular and classic multi-objective algorithms, the simulation results verify the effectiveness and superiority of the IMOGWO algorithm in solving the task allocation problem. Furthermore, its superiority becomes more pronounced as the problem scale increases. |
| ArticleNumber | 397 |
| Author | Yao, Chenyang Xiong, Hui Liu, Jinzhen Shi, Xiuzhi |
| Author_xml | – sequence: 1 givenname: Hui surname: Xiong fullname: Xiong, Hui email: xionghui@tiangong.edu.cn organization: School of Control Science and Engineering, Tiangong University, Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 2 givenname: Chenyang surname: Yao fullname: Yao, Chenyang organization: School of Artificial Intelligence, Tiangong University, Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 3 givenname: Jinzhen surname: Liu fullname: Liu, Jinzhen organization: School of Control Science and Engineering, Tiangong University, Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University – sequence: 4 givenname: Xiuzhi surname: Shi fullname: Shi, Xiuzhi organization: School of Control Science and Engineering, Tiangong University, Tianjin Key Laboratory of Intelligent Control of Electrical Equipment, Tiangong University |
| BookMark | eNp9kU1v3CAQhlGVSk22_QM9IfXsdjC2gWMUNU2klXJJekUsjLdsvbAFnCj59aFxpEg57IkR8z7z9Z6RkxADEvKVwXcGIH5kBr0cGmi7BnroZNN9IKesF7wRfcdPasxrWshefCJnOe8AQIlWnZL5en9I8R4d3c9T8U3c7NAWf490m8wjfYjTSOOh-L1_MsXHQMeYaDH5LzXTFO3y58MrfXf-m_7BgiluMWCcc5WmLZZME9oYgvE5m2DxM_k4minjl9d3Re4uf95eXDXrm1_XF-frxvJOlcYxZYQRTg5C9QNDxawAq6TkXHGJ3IE0gOPGSeEGYMB7kG5wYoOuHw1aviLflrp1x38z5qJ3cU6httS87YaWi3aQx1VMsQ5UveSKyEVlU8w54aitLy_7l2T8pBno_1boxQpdrdAvVuiuou079JD83qTH4xBfoFzFYYvpbaoj1DPV95-X |
| CitedBy_id | crossref_primary_10_3390_drones9090623 |
| Cites_doi | 10.1007/s13369-023-07649-4 10.1016/j.jpdc.2023.104766 10.1109/ACCESS.2023.3328344 10.1023/A:1015516501242 10.3390/electronics9040687 10.3390/rs15030865 10.1016/j.cie.2009.05.009 10.1109/TEVC.2020.2991040 10.1016/j.eswa.2015.10.039 10.1016/j.cja.2014.04.024 10.2307/2372560 10.1016/j.cja.2017.09.005 10.1109/TAES.2023.3235864 10.1016/j.cja.2020.02.009 10.3390/drones8060236 10.1016/j.egyr.2024.04.016 10.1109/ACCESS.2024.3368851 10.1016/j.automatica.2020.108996 10.1016/j.asoc.2022.109784 10.1016/j.jii.2019.100106 10.1016/j.jocs.2021.101545 10.3390/drones8040138 10.1109/JIOT.2018.2828943 10.1016/j.eswa.2024.124618 10.1007/s11370-021-00393-4 10.1016/S0377-2217(02)00710-5 10.1109/TCYB.2020.3029748 10.1007/s00500-021-05675-8 10.1109/TEVC.2010.2059031 10.1007/s10462-022-10281-7 10.3390/s19030734 10.1016/j.eswa.2019.112844 10.1016/0377-2217(95)00077-1 10.1016/j.vehcom.2022.100469 10.1016/j.neucom.2023.126906 10.1007/s11276-022-03045-2 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Oct 2025 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Oct 2025 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s10586-024-05048-4 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-7543 |
| ExternalDocumentID | 10_1007_s10586_024_05048_4 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62071329 |
| GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 1N0 203 29B 2J2 2JN 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFDZB AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 PT5 QOS R89 R9I RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 -Y2 1SB 2P1 2VQ AAIAL AARHV AAYTO AAYXX ABQSL ABULA ACBXY ADHKG AEBTG AEKMD AFFHD AFGCZ AFKRA AGGDS AGQPQ AHSBF AJBLW ARAPS BDATZ BENPR BGLVJ CAG CCPQU CITATION COF EJD FINBP FSGXE H13 HCIFZ HZ~ IHE K7- N2Q O9- OVD PHGZM PHGZT PQGLB RNI RZC RZE RZK TEORI JQ2 |
| ID | FETCH-LOGICAL-c349t-d19a7a7d8679561e91c70c98833938e3d08a0efbd87d60103508d6d7bed5faec3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001509965400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1386-7857 |
| IngestDate | Wed Nov 26 14:54:41 EST 2025 Wed Nov 26 14:52:48 EST 2025 Sat Nov 29 07:35:53 EST 2025 Tue Nov 18 21:24:01 EST 2025 Thu Sep 04 04:30:02 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Reconnaissance task allocation Unmanned aerial vehicles Multi-objective optimization Gray wolf optimization algorithm Dubins vehicles |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-d19a7a7d8679561e91c70c98833938e3d08a0efbd87d60103508d6d7bed5faec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3219140957 |
| PQPubID | 2043865 |
| ParticipantIDs | proquest_journals_3246237268 proquest_journals_3219140957 crossref_citationtrail_10_1007_s10586_024_05048_4 crossref_primary_10_1007_s10586_024_05048_4 springer_journals_10_1007_s10586_024_05048_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-01 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationSubtitle | The Journal of Networks, Software Tools and Applications |
| PublicationTitle | Cluster computing |
| PublicationTitleAbbrev | Cluster Comput |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | Z Liang (5048_CR34) 2024; 255 W Wu (5048_CR14) 2023; 59 M Petrović (5048_CR22) 2022; 131 X Cai (5048_CR35) 2021; 25 J Zhang (5048_CR2) 2020; 33 S Chatterjee (5048_CR6) 1996; 93 JG Martin (5048_CR17) 2021; 14 S Haddadi (5048_CR8) 2004; 153 S Poudel (5048_CR4) 2022; 35 L Chen (5048_CR21) 2022; 58 A Caruso (5048_CR18) 2018; 5 N Zeng (5048_CR20) 2022; 52 S Das (5048_CR29) 2011; 15 Z Wang (5048_CR11) 2018; 31 S Mirjalili (5048_CR28) 2016; 47 J Tang (5048_CR3) 2023; 56 LE Dubins (5048_CR9) 1957; 79 A Gupta (5048_CR23) 2022; 28 B Eksioglu (5048_CR7) 2009; 57 Z Li (5048_CR1) 2023; 15 D Han (5048_CR24) 2024; 8 X Tian (5048_CR15) 2024; 12 S Gao (5048_CR13) 2021; 25 I Behera (5048_CR25) 2024; 183 Y Yu (5048_CR16) 2023; 48 F Ye (5048_CR19) 2020; 9 X Zhang (5048_CR10) 2014; 27 Z Chen (5048_CR27) 2020; 117 SB Pandya (5048_CR32) 2024; 11 H Huang (5048_CR26) 2024; 8 W Yafei (5048_CR31) 2023; 11 A Tahir (5048_CR5) 2019; 16 H-X Chen (5048_CR12) 2019; 19 W Xu (5048_CR30) 2020; 140 X Yi (5048_CR33) 2024; 563 KC Tan (5048_CR36) 2002; 17 |
| References_xml | – volume: 48 start-page: 7195 year: 2023 ident: 5048_CR16 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-023-07649-4 – volume: 183 start-page: 104766 year: 2024 ident: 5048_CR25 publication-title: J. Parallel Distr. Comput. doi: 10.1016/j.jpdc.2023.104766 – volume: 11 start-page: 123519 year: 2023 ident: 5048_CR31 publication-title: IEEE Access. doi: 10.1109/ACCESS.2023.3328344 – volume: 17 start-page: 251 year: 2002 ident: 5048_CR36 publication-title: Artif. Intell. Rev. doi: 10.1023/A:1015516501242 – volume: 9 start-page: 687 year: 2020 ident: 5048_CR19 publication-title: Electronics doi: 10.3390/electronics9040687 – volume: 15 start-page: 865 year: 2023 ident: 5048_CR1 publication-title: Remote Sens. doi: 10.3390/rs15030865 – volume: 57 start-page: 1472 year: 2009 ident: 5048_CR7 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2009.05.009 – volume: 25 start-page: 21 year: 2021 ident: 5048_CR35 publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2020.2991040 – volume: 47 start-page: 106 year: 2016 ident: 5048_CR28 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.039 – volume: 27 start-page: 622 year: 2014 ident: 5048_CR10 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2014.04.024 – volume: 79 start-page: 497 year: 1957 ident: 5048_CR9 publication-title: Am. J. Math. doi: 10.2307/2372560 – volume: 31 start-page: 339 year: 2018 ident: 5048_CR11 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2017.09.005 – volume: 59 start-page: 4018 year: 2023 ident: 5048_CR14 publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2023.3235864 – volume: 33 start-page: 2825 year: 2020 ident: 5048_CR2 publication-title: Chin. J. Aeronaut. doi: 10.1016/j.cja.2020.02.009 – volume: 8 start-page: 236 year: 2024 ident: 5048_CR26 publication-title: Drones doi: 10.3390/drones8060236 – volume: 11 start-page: 4423 year: 2024 ident: 5048_CR32 publication-title: Energy Rep. doi: 10.1016/j.egyr.2024.04.016 – volume: 12 start-page: 30989 year: 2024 ident: 5048_CR15 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3368851 – volume: 117 start-page: 108996 year: 2020 ident: 5048_CR27 publication-title: Automatica doi: 10.1016/j.automatica.2020.108996 – volume: 131 start-page: 109784 year: 2022 ident: 5048_CR22 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109784 – volume: 16 start-page: 100106 year: 2019 ident: 5048_CR5 publication-title: J. Ind. Inf. Integr. doi: 10.1016/j.jii.2019.100106 – volume: 58 start-page: 101545 year: 2022 ident: 5048_CR21 publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2021.101545 – volume: 8 start-page: 138 year: 2024 ident: 5048_CR24 publication-title: Drones doi: 10.3390/drones8040138 – volume: 5 start-page: 2234 year: 2018 ident: 5048_CR18 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2828943 – volume: 255 start-page: 124618 year: 2024 ident: 5048_CR34 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124618 – volume: 14 start-page: 707 year: 2021 ident: 5048_CR17 publication-title: Intel. Serv. Robot. doi: 10.1007/s11370-021-00393-4 – volume: 153 start-page: 184 year: 2004 ident: 5048_CR8 publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(02)00710-5 – volume: 52 start-page: 9290 year: 2022 ident: 5048_CR20 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.3029748 – volume: 25 start-page: 7155 year: 2021 ident: 5048_CR13 publication-title: Soft. Comput. doi: 10.1007/s00500-021-05675-8 – volume: 15 start-page: 4 year: 2011 ident: 5048_CR29 publication-title: IEEE Trans. Evol. Computat. doi: 10.1109/TEVC.2010.2059031 – volume: 56 start-page: 4295 year: 2023 ident: 5048_CR3 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10281-7 – volume: 19 start-page: 734 year: 2019 ident: 5048_CR12 publication-title: Sensors. doi: 10.3390/s19030734 – volume: 140 start-page: 112844 year: 2020 ident: 5048_CR30 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.112844 – volume: 93 start-page: 490 year: 1996 ident: 5048_CR6 publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(95)00077-1 – volume: 35 start-page: 100469 year: 2022 ident: 5048_CR4 publication-title: Veh. Commun. doi: 10.1016/j.vehcom.2022.100469 – volume: 563 start-page: 126906 year: 2024 ident: 5048_CR33 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126906 – volume: 28 start-page: 3199 year: 2022 ident: 5048_CR23 publication-title: Wirel. Netw. doi: 10.1007/s11276-022-03045-2 |
| SSID | ssj0009729 |
| Score | 2.3699229 |
| Snippet | In recent years, unmanned aerial vehicles (UAVs) reconnaissance task allocation are attracting more and more research attention. The efficient allocation of... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 397 |
| SubjectTerms | Assignment problem Collaboration Computer Communication Networks Computer Science Decision making Efficiency Evolutionary algorithms Genetic algorithms Multiple objective analysis Mutation Operating Systems Optimization Optimization models Pareto optimization Processor Architectures Reconnaissance aircraft Sensors Traveling salesman problem Unmanned aerial vehicles |
| Title | Improved multi-objective gray wolf optimization for task allocation in multi-UAV heterogeneous targets reconnaissance |
| URI | https://link.springer.com/article/10.1007/s10586-024-05048-4 https://www.proquest.com/docview/3219140957 https://www.proquest.com/docview/3246237268 |
| Volume | 28 |
| WOSCitedRecordID | wos001509965400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-7543 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009729 issn: 1386-7857 databaseCode: RSV dateStart: 19980101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8MgGCc6PXhxPuN0Gg7elKSlD-C4GI2nxahbdmugMJ3O1qydxv9eoNSqcSZ65tGG7-PjB9_jB8AxpzjFgo0RZcJDoRQx0qiaIGZI77nAGiNXZBOk36ejEbtySWFFHe1euyStpf6U7BZREzAbIi_yzDPYMljRxx0xhA3XN8Om1C6x3GR-oHsTGhGXKvPzHF-PowZjfnOL2tPmov2__9wA6w5dwl6lDptgSWVboF0zN0C3kbfBvHpLUBLagEKUi4fK8MG7GX-Dr_l0DHNtTJ5clibU0BaWvHiExk9fvfLBSeZGD3pDeG_CanKtjSqfF7CKLy-gvW5nXAvXKNcOGFyc355dIkfAgNIgZCWSPuOEE2mK8mmcpZifEi9lhp-YBVQF0qPcU2MhKZHmYhdotCdjSYSS0ZirNNgFrSzP1B6AmMZSYSYEZsbXy5kxFCxmemrsxx7vAL-WQ5K66uSGJGOaNHWVzbomel0Tu65J2AEnH2Oeq9ocv_bu1uJN3D4tkgCb-nYaZpIFzaGGhwTHtANOa2k3zYs_tv-37gdgDRteYRsk2AWtcjZXh2A1fSknxezIqvc7vqrzrw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4aHdL2sg0YWkfZ_MAbWEqci-3HaWIqWlch0VZ9i-zY3QYlmZp2iH8_n8ShgOik8exLIp_j488-lw_gnRIsZ1rOqJA6oLHRKXWomlOJpPdKM4eRG7IJPhyK6VR-9klhVRvt3roka0v9W7JbIjBgNqZBEuAz2DPYjrHiF97Rv0zWpXZ5zU0WRq43Fwn3qTL_nuPP42iNMf9yi9anzcX-__3nAex5dEnOGnV4AVu2eAn7LXMD8Rv5FayatwRrSB1QSEv9tTF85HqhfpIf5XxGSmdMvvssTeKgLVmq6htBP33zykduCz96fDYhNxhWUzpttOWqIk18eUXq63ahnHBRuQ5hfPFxdN6nnoCB5lEsl9SEUnHFDRblczjLyjDnQS6Rn1hGwkYmECqwM20EN3ixixzaM6nh2ppkpmwevYZOURb2CAgTqbFMas0k-nqVREMhU-mmZmEaqC6ErRyy3FcnR5KMebauq4zrmrl1zep1zeIuvP815q6pzfFo714r3szv0yqLGNa3czCTb2iOHTzkLBVd-NBKe928-WPHT-t-Cjv90dUgG3waXr6BXYYcw3XAYA86y8XKvoXn-f3ytlqc1Kr-ADJJ9pM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD7aOoT2QsdNKyubH3gDa4lzsf1YDSqmTVUFtNpbZMcOjG1J1aQg_j0-udCCKBLas4-dyOfY_uxz-QBeKcFSpmVGhdQeDY2OqUPVnEokvVeaOYzckE3wyURcXcnpRhZ_He3euSSbnAas0pRXpwuTnW4kvkUCg2dD6kUePontwl7objIY1Pfh43xddpfXPGV-4KS5iHibNvP3MX4_mtZ48w8XaX3yjPv3_-cDeNSiTjJqzOQx7Nj8CfQ7RgfSLvCnsGreGKwhdaAhLfTXZkMkn5fqB_le3GakcJvMXZu9SRzkJZUqbwj675vXP3Kdt71nozn5guE2hbNSW6xK0sSdl6S-hufKKR2N7hnMxu8-nb2nLTEDTYNQVtT4UnHFDRbrc_jLSj_lXiqRt1gGwgbGE8qzmTaCG7zwBQ4FmthwbU2UKZsGz6GXF7k9BMJEbCyTWjOJPmAlcQORsXRDMz_21AD8TidJ2lYtR_KM22RdbxnnNXHzmtTzmoQDeP2rz6Kp2fFP6WGn6qRdv2USMKx75-An39IcOtjIWSwG8KbT_Lp5-8de_J_4CTycvh0nl-eTiyPYZ0g9XMcRDqFXLVf2JTxIv1XX5fK4tvqf8E7_dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+multi-objective+gray+wolf+optimization+for+task+allocation+in+multi-UAV+heterogeneous+targets+reconnaissance&rft.jtitle=Cluster+computing&rft.date=2025-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1386-7857&rft.eissn=1573-7543&rft.volume=28&rft.issue=6&rft.spage=397&rft_id=info:doi/10.1007%2Fs10586-024-05048-4&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-7857&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-7857&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-7857&client=summon |