Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis

Objective: Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on biomedical engineering Vol. 65; no. 11; pp. 2519 - 2528
Main Authors: Iqbal, Asif, Seghouane, Abd-Krim, Adali, Tulay
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9294, 1558-2531, 1558-2531
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Objective: Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis. Methods: The proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries. Results: The performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components. Conclusion: In addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps. Significance: The proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.
AbstractList Objective: Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis. Methods: The proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries. Results: The performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components. Conclusion: In addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps. Significance: The proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.
Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis. The proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries. The performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components. In addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps. The proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.
Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis.OBJECTIVEAnalysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on dictionary learning (DL) are recently noted as promising solutions to the problem. However, the DL-based methods for fMRI analysis proposed to date do not naturally extend to multisubject analysis. In this paper, we propose a DL algorithm for multisubject fMRI data analysis.The proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries.METHODSThe proposed algorithm [named shared and subject-specific dictionary learning (ShSSDL)] is derived based on a temporal concatenation, which is particularly attractive for the analysis of multisubject task-related fMRI datasets. It differs from existing DL algorithms in both its sparse coding and dictionary update stages and has the advantage of learning a dictionary shared by all subjects as well as a set of subject-specific dictionaries.The performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components.RESULTSThe performance of the proposed DL algorithm is illustrated using simulated and real fMRI datasets. The results show that it can successfully extract shared as well as subject-specific latent components.In addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps.CONCLUSIONIn addition to offering a new DL approach, when applied on multisubject fMRI data analysis, the proposed algorithm generates a group level as well as a set of subject-specific spatial maps.The proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.SIGNIFICANCEThe proposed algorithm has the advantage of learning simultaneously multiple dictionaries providing us with a shared as well discriminative source of information about the analyzed fMRI datasets.
Author Seghouane, Abd-Krim
Iqbal, Asif
Adali, Tulay
Author_xml – sequence: 1
  givenname: Asif
  orcidid: 0000-0002-4657-4451
  surname: Iqbal
  fullname: Iqbal, Asif
  organization: Department of Electrical and Electronic EngineeringThe University of Melbourne
– sequence: 2
  givenname: Abd-Krim
  orcidid: 0000-0003-4619-734X
  surname: Seghouane
  fullname: Seghouane, Abd-Krim
  email: abd-krim.seghouane@unimelb.edu.au
  organization: Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, VIC, Australia
– sequence: 3
  givenname: Tulay
  orcidid: 0000-0003-0594-2796
  surname: Adali
  fullname: Adali, Tulay
  organization: Department of Computer Science and Electrical EngineeringUniversity of Maryland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29993508$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9r20AQxZeSkjhpPkAplIVe0oOc_Sdp9-jGaRuwCVTpWYxWs_EaWXJ3pUO-fdfYzSGHnoZhfm9meO-SnPVDj4R85GzOOTO3T9_W93PBuJ4LzQqT63dkxvNcZyKX_IzMWBplRhh1QS5j3KZWaVWckwthjJE50zPiqg0EbCn0La2mZot2zKo9Wu-8pUtvRz_0EF7oCiH0vn-mN9Wmqparr3TRPQ_Bj5sddUOg66kbfTwuoG7964EuYQS66KF7iT5-IO8ddBGvT_WK_P5-_3T3M1s9_ni4W6wyK5UZM6udLSVrcqOdck6BhRKEbNCWhWVYFijzFgpnC9WCMrxpSyWhbRQYQAAmr8jNce8-DH8mjGO989Fi10GPwxRrwQotlRRcJPTLG3Q7TCH9myguuJGaySJRn0_U1OywrffB75If9T8HE8CPgA1DjAHdK8JZfUipPqRUH1KqTyklTflGY_0IB6vHAL77r_LTUekR8fWSFulbruVfcwWepQ
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TIP_2019_2922074
crossref_primary_10_1007_s11432_023_3876_1
crossref_primary_10_1002_hbm_26289
crossref_primary_10_1007_s12021_022_09580_9
crossref_primary_10_1038_s41598_023_47420_1
crossref_primary_10_1109_TNSRE_2022_3198679
crossref_primary_10_1038_s41598_024_69647_2
crossref_primary_10_1109_ACCESS_2022_3194651
crossref_primary_10_1109_JSTSP_2020_2992430
crossref_primary_10_1109_ACCESS_2024_3373437
crossref_primary_10_1109_TCYB_2019_2931914
crossref_primary_10_1016_j_neuroimage_2021_118719
crossref_primary_10_1007_s11042_020_09062_7
crossref_primary_10_1155_2021_6598631
crossref_primary_10_1016_j_jvcir_2022_103458
crossref_primary_10_1109_TBME_2022_3161292
crossref_primary_10_3390_s23115333
crossref_primary_10_1016_j_dsp_2019_04_010
crossref_primary_10_1016_j_tins_2024_05_011
crossref_primary_10_1109_ACCESS_2025_3606236
crossref_primary_10_1109_TBME_2020_3008707
Cites_doi 10.1109/TSP.2009.2021636
10.1006/nimg.1997.0306
10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2
10.1016/j.neuroimage.2013.05.033
10.1109/LSP.2013.2258912
10.1016/j.tics.2010.01.008
10.1016/j.imavis.2014.02.007
10.1016/S0730-725X(99)00028-4
10.1109/TMI.2015.2418734
10.1002/hbm.1048
10.1109/TIP.2014.2331760
10.1109/ISBI.2013.6556468
10.1109/TSP.2006.881199
10.1162/089976600300015826
10.1109/ISBI.2016.7493501
10.1109/ICASSP.1999.760624
10.1109/MSP.2013.2296790
10.1371/journal.pone.0073309
10.1006/nimg.2002.1067
10.1109/ICASSP.2015.7178697
10.1016/j.neuroimage.2013.04.127
10.1073/pnas.0903525106
10.3389/fnhum.2012.00145
10.1109/ISBI.2015.7163965
10.1016/j.media.2014.10.011
10.1073/pnas.95.3.803
10.1109/TIP.2017.2686014
10.1007/s11760-013-0429-2
10.1162/089976603762552951
10.1016/S1053-8119(03)00435-X
10.21236/ADA633835
10.1152/jn.00339.2011
10.1109/ACCESS.2015.2430359
10.1109/ICIP.2003.1246891
10.1109/TSP.2010.2040671
10.1109/RBME.2012.2211076
10.1016/j.neuroimage.2011.11.088
10.1109/TMI.2010.2097275
10.1073/pnas.0905267106
10.1109/TMI.2017.2699225
10.1126/science.1174521
10.1038/381607a0
10.1007/978-3-642-40760-4_78
10.1561/2200000016
10.1109/TIP.2017.2729885
10.1109/TIT.2007.909108
10.1214/09-STS282
10.1006/nimg.2002.1122
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2018.2806958
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2528
ExternalDocumentID 29993508
10_1109_TBME_2018_2806958
8293818
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  grantid: FT 130101394
  funderid: 10.13039/501100000923
– fundername: National Science Foundation
  grantid: NSF-NCS-FO 1631838; NSF-CCF 1618551
  funderid: 10.13039/501100008982
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
NPM
PKN
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-c8fc730b598f4ff4aca7a23bec76c0e76e35da6fc64da491bd743adb4a9aeaa03
IEDL.DBID RIE
ISICitedReferencesCount 23
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447801800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Mon Sep 29 06:19:47 EDT 2025
Mon Jun 30 08:34:25 EDT 2025
Wed Feb 19 02:32:57 EST 2025
Sat Nov 29 05:34:21 EST 2025
Tue Nov 18 22:18:33 EST 2025
Wed Aug 27 02:53:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c8fc730b598f4ff4aca7a23bec76c0e76e35da6fc64da491bd743adb4a9aeaa03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0594-2796
0000-0002-4657-4451
0000-0003-4619-734X
PMID 29993508
PQID 2121938036
PQPubID 85474
PageCount 10
ParticipantIDs pubmed_primary_29993508
ieee_primary_8293818
proquest_miscellaneous_2068343212
crossref_citationtrail_10_1109_TBME_2018_2806958
proquest_journals_2121938036
crossref_primary_10_1109_TBME_2018_2806958
PublicationCentury 2000
PublicationDate 2018-11-01
PublicationDateYYYYMMDD 2018-11-01
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
varoquaux (ref33) 0
ref15
ref14
ref52
ref11
ref10
ref17
ref18
ref51
ref50
ref46
ref45
ref48
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
yubao (ref44) 2014; 23
ref35
ref34
ref37
ref36
ref31
ref30
ref32
mairal (ref19) 2010; 11
ref2
ref1
ref39
ref38
eckstein (ref47) 2012
olshausen (ref23) 1996; 381
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
mckeown (ref16) 1997
yuanqing (ref24) 2014; 31
References_xml – ident: ref12
  doi: 10.1109/TSP.2009.2021636
– ident: ref4
  doi: 10.1006/nimg.1997.0306
– ident: ref3
  doi: 10.1002/(SICI)1097-0193(1997)5:4<254::AID-HBM9>3.0.CO;2-2
– ident: ref48
  doi: 10.1016/j.neuroimage.2013.05.033
– ident: ref41
  doi: 10.1109/LSP.2013.2258912
– ident: ref7
  doi: 10.1016/j.tics.2010.01.008
– ident: ref21
  doi: 10.1016/j.imavis.2014.02.007
– ident: ref8
  doi: 10.1016/S0730-725X(99)00028-4
– ident: ref32
  doi: 10.1109/TMI.2015.2418734
– ident: ref10
  doi: 10.1002/hbm.1048
– volume: 23
  start-page: 3816
  year: 2014
  ident: ref44
  article-title: Learning discriminative dictionary for group sparse representation
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2014.2331760
– ident: ref26
  doi: 10.1109/ISBI.2013.6556468
– ident: ref18
  doi: 10.1109/TSP.2006.881199
– ident: ref40
  doi: 10.1162/089976600300015826
– ident: ref35
  doi: 10.1109/ISBI.2016.7493501
– ident: ref37
  doi: 10.1109/ICASSP.1999.760624
– volume: 31
  start-page: 96
  year: 2014
  ident: ref24
  article-title: Sparse representation for brain signal processing: A tutorial on methods and applications
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2013.2296790
– ident: ref15
  doi: 10.1371/journal.pone.0073309
– ident: ref11
  doi: 10.1006/nimg.2002.1067
– ident: ref20
  doi: 10.1109/ICASSP.2015.7178697
– ident: ref51
  doi: 10.1016/j.neuroimage.2013.04.127
– ident: ref14
  doi: 10.1073/pnas.0903525106
– ident: ref2
  doi: 10.3389/fnhum.2012.00145
– ident: ref34
  doi: 10.1109/ISBI.2015.7163965
– ident: ref30
  doi: 10.1016/j.media.2014.10.011
– year: 1997
  ident: ref16
  article-title: Analysis of fMRI data by blind separation into independent spatial components
– ident: ref9
  doi: 10.1073/pnas.95.3.803
– ident: ref28
  doi: 10.1109/TIP.2017.2686014
– ident: ref27
  doi: 10.1007/s11760-013-0429-2
– year: 2012
  ident: ref47
  article-title: Augmented lagrangian and alternating direction methods for convex optimization: A tutorial and some illustrative computational results
– ident: ref39
  doi: 10.1162/089976603762552951
– ident: ref5
  doi: 10.1016/S1053-8119(03)00435-X
– ident: ref36
  doi: 10.21236/ADA633835
– ident: ref52
  doi: 10.1152/jn.00339.2011
– ident: ref17
  doi: 10.1109/ACCESS.2015.2430359
– ident: ref43
  doi: 10.1109/ICIP.2003.1246891
– ident: ref38
  doi: 10.1109/TSP.2010.2040671
– ident: ref13
  doi: 10.1109/RBME.2012.2211076
– ident: ref49
  doi: 10.1016/j.neuroimage.2011.11.088
– ident: ref25
  doi: 10.1109/TMI.2010.2097275
– ident: ref50
  doi: 10.1073/pnas.0905267106
– ident: ref29
  doi: 10.1109/TMI.2017.2699225
– ident: ref1
  doi: 10.1126/science.1174521
– volume: 381
  start-page: 607
  year: 1996
  ident: ref23
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
  doi: 10.1038/381607a0
– ident: ref31
  doi: 10.1007/978-3-642-40760-4_78
– volume: 11
  start-page: 19
  year: 2010
  ident: ref19
  article-title: Online learning for matrix factorization and sparse coding
  publication-title: J Mach Learn Res
– ident: ref46
  doi: 10.1561/2200000016
– ident: ref22
  doi: 10.1109/TIP.2017.2729885
– ident: ref45
  doi: 10.1109/TIT.2007.909108
– ident: ref6
  doi: 10.1214/09-STS282
– start-page: 562
  year: 0
  ident: ref33
  article-title: Multi-subject dictionary learning to segment an atlas of brain spontaneous activity
  publication-title: Biennial Int Conf on Inform Process in Med l Imag
– ident: ref42
  doi: 10.1006/nimg.2002.1122
SSID ssj0014846
Score 2.4123154
Snippet Objective: Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches...
Analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects is at the heart of many medical imaging studies, and approaches based on...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2519
SubjectTerms Algorithms
Computer simulation
Data analysis
Data processing
Datasets
Dictionaries
Dictionary learning
Encoding
Functional magnetic resonance imaging
functional magnetic resonance imaging (fMRI)
Heart
Learning
Machine learning
Magnetic resonance imaging
Medical imaging
multi-subject analysis
sparse decomposition
Sparse matrices
Task analysis
temporal concatenation
Title Shared and Subject-Specific Dictionary Learning (ShSSDL) Algorithm for Multisubject fMRI Data Analysis
URI https://ieeexplore.ieee.org/document/8293818
https://www.ncbi.nlm.nih.gov/pubmed/29993508
https://www.proquest.com/docview/2121938036
https://www.proquest.com/docview/2068343212
Volume 65
WOSCitedRecordID wos000447801800015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUL0QKEFGiiVkTgAIq2zcfxxbNlWIHUrxBa0t8jxR7tSm622u0j8e8aON-oBkLhFiuNEeWO_scfzBuBtZQWSTFPi7Gd8zgRzuUSizxvFmpIzXvgopfTjTJyfy8lEfV2Dj30ujHMuHj5zB-EyxvLtzCzDVtmhRG5CglmHdSF4l6vVRwyY7JJyaIEDeKBYimAWVB1eHI9OwiEueRDCiKoKNfpwFlZlFYpK3qOjWF_l765mpJzTrf_72CfwOLmW5Kizhaew5tpt2LwnOLgND0cplL4DPkg1O0t0awnOHmE7Jo_F6P3UkOE0pjvo-S-SBFgvybvx1Xg8PHtPjq4vZ_Pp4uqGoMNLYgbvXdcB8aNvX8hQLzRZiZ08g--nJxefPuep6EJuSqYWuZHe4KhvKiU9855po4UelAi14IY6wV1ZWc294cxqporGog-ibcOCzLfWtHwOG-2sdbtA4o6zEppL51g1aGRJtaUSF4iicWg8GdDVv69NUiQPhTGu67gyoaoOyNUBuTohl8GH_pHbTo7jX413Aix9w4RIBnsrgOs0YO9qZHB0ZSXyeQZv-ts41EL8RLdutsQ2lMuQh1sMMnjRGUbf98qeXv75na_gUfiyLolxDzYW86V7DQ_MT0Rovo_2PJH70Z5_A-kO7dU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VFlE4UOgXgVKMxAFQ0zqJk9jHwrZqxe4KsQvqLXL80a7UZtF2F4l_z9jxRj0UJG6R4jhR3thv7PG8AXiX6xJJps5w9lM2ZiUzMUeij2vB6qxgRWK9lNKPfjkc8osL8XUFDrpcGGOMP3xmDt2lj-XrqVq4rbIjjtyEBPMA1nLGUtpma3UxA8bbtBya4BBOBQsxzISKo_GnwYk7xsUPXSBR5K5KH87DIstdWck7hOQrrPzd2fSkc7rxf5_7DJ4G55Ict9bwHFZMswlP7kgObsKjQQimb4F1Ys1GE9logvOH25CJfTl6O1GkN_EJD3L2mwQJ1kvyfnQ1GvX6H8jx9eV0Nplf3RB0eYnP4b1tOyB28O2c9ORckqXcyTZ8Pz0Zfz6LQ9mFWGVMzGPFrcJxX-eCW2Ytk0qWMs0Q7LJQ1JSFyXItC6sKpiUTSa3RC5G6Zk7oW0qa7cBqM23MCyB-z1mUsuDGsDyteUalphyXiGVt0HwioMt_X6mgSe5KY1xXfm1CReWQqxxyVUAugo_dIz9bQY5_Nd5ysHQNAyIR7C0BrsKQva2Qw9GZ5cjoEbztbuNgcxEU2ZjpAtvQgrtM3CSNYLc1jK7vpT29vP-db2D9bDzoV_3z4ZdX8Nh9ZZvSuAer89nCvIaH6heiNdv3Vv0H0YTwNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shared+and+Subject-Specific+Dictionary+Learning+%28ShSSDL%29+Algorithm+for+Multisubject+fMRI+Data+Analysis&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Iqbal%2C+Asif&rft.au=Seghouane%2C+Abd-Krim&rft.au=Adali%2C+Tulay&rft.date=2018-11-01&rft.eissn=1558-2531&rft.volume=65&rft.issue=11&rft.spage=2519&rft_id=info:doi/10.1109%2FTBME.2018.2806958&rft_id=info%3Apmid%2F29993508&rft.externalDocID=29993508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon