Adaptive Dynamic Programming for Model-Free Global Stabilization of Control Constrained Continuous-Time Systems

This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of pa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 52; číslo 2; s. 1048 - 1060
Hlavní autoři: Rizvi, Syed Ali Asad, Lin, Zongli
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This article addresses the problem of global stabilization of continuous-time linear systems subject to control constraints using a model-free approach. We propose a gain-scheduled low-gain feedback scheme that prevents saturation from occurring and achieves global stabilization. The framework of parameterized algebraic Riccati equations (AREs) is employed to design the low-gain feedback control laws. An adaptive dynamic programming (ADP) method is presented to find the solution of the parameterized ARE without requiring the knowledge of the system dynamics. In particular, we present an iterative ADP algorithm that searches for an appropriate value of the low-gain parameter and iteratively solves the parameterized ADP Bellman equation. We present both state feedback and output feedback algorithms. The closed-loop stability and the convergence of the algorithm to the nominal solution of the parameterized ARE are shown. The simulation results validate the effectiveness of the proposed scheme.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2020.2989419