A comprehensive intrusion detection framework using boosting algorithms
•A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data...
Gespeichert in:
| Veröffentlicht in: | Computers & electrical engineering Jg. 100; S. 107869 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier Ltd
01.05.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0045-7906, 1879-0755 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data received over the network quickly and successfully.•The data sets were classified using high performance GBM, LGBM, XGBoost, catboost algorithms.
Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance.
[Display omitted] |
|---|---|
| AbstractList | •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data received over the network quickly and successfully.•The data sets were classified using high performance GBM, LGBM, XGBoost, catboost algorithms.
Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance.
[Display omitted] Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance. |
| ArticleNumber | 107869 |
| Author | Kilincer, Ilhan Firat Ertam, Fatih Sengur, Abdulkadir |
| Author_xml | – sequence: 1 givenname: Ilhan Firat surname: Kilincer fullname: Kilincer, Ilhan Firat organization: Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey – sequence: 2 givenname: Fatih orcidid: 0000-0002-9736-8068 surname: Ertam fullname: Ertam, Fatih email: fatih.ertam@firat.edu.tr organization: Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey – sequence: 3 givenname: Abdulkadir surname: Sengur fullname: Sengur, Abdulkadir organization: Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey |
| BookMark | eNqNkLFOwzAQhi1UJNrCOwQxpzhuYscTqiooSJVYYLYc59I6JHax3SLeHkdhQEyd7s7-7zvpm6GJsQYQus3wIsMZvW8XyvYH6ECB2S0IJiS-s5LyCzTNSsZTzIpigqYY50XKOKZXaOZ9i-NMs3KKNqtkADjYg_H6BIk2wR29tiapIYAKQ9c42cOXdR9J_DG7pLLWh6GR3c46Hfa9v0aXjew83PzWOXp_enxbP6fb183LerVN1TLnIVW0rumyaqApKWkqVeSVrCtS5TVmilW4lowWOaESU2hyHhOQA2YNB4aBg1rO0d3IPTj7eQQfRGuPzsSTgtAyJ7jklMUUH1PKWe8dNOLgdC_dt8iwGLyJVvzxJgZvYvQWdx_-7Sod5OAhOKm7swjrkQBRxEmDE15pMApq7aJRUVt9BuUHOiCWmA |
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_03_004 crossref_primary_10_1038_s41598_024_80021_0 crossref_primary_10_1109_ACCESS_2024_3420080 crossref_primary_10_4018_IJAIML_370316 crossref_primary_10_1007_s10586_023_04168_7 crossref_primary_10_3390_app13127328 crossref_primary_10_1016_j_eiar_2025_108174 crossref_primary_10_1007_s10115_025_02366_w crossref_primary_10_1038_s41598_025_02008_9 crossref_primary_10_32604_cmc_2024_051769 crossref_primary_10_1371_journal_pone_0317713 crossref_primary_10_1016_j_cose_2025_104392 crossref_primary_10_3390_app13169363 crossref_primary_10_1109_ACCESS_2022_3172304 crossref_primary_10_1109_ACCESS_2024_3431534 crossref_primary_10_1016_j_procs_2025_04_377 crossref_primary_10_1016_j_iswa_2025_200543 crossref_primary_10_1007_s10586_024_04422_6 crossref_primary_10_1016_j_iot_2025_101545 crossref_primary_10_1016_j_knosys_2023_110966 crossref_primary_10_1002_cpe_7299 crossref_primary_10_1177_01423312241299859 crossref_primary_10_1016_j_micpro_2022_104752 crossref_primary_10_1007_s11042_024_19695_7 crossref_primary_10_1094_PHYTO_07_24_0202_R crossref_primary_10_1007_s11227_025_07271_1 crossref_primary_10_1016_j_adhoc_2025_103982 crossref_primary_10_1142_S0219649223500661 crossref_primary_10_1016_j_bbe_2022_11_005 crossref_primary_10_1016_j_compeleceng_2024_109420 crossref_primary_10_1016_j_eswa_2023_121668 crossref_primary_10_1016_j_heliyon_2022_e12343 crossref_primary_10_1007_s41870_024_02129_w crossref_primary_10_1155_2022_4565968 crossref_primary_10_3390_app13042576 crossref_primary_10_1007_s10586_025_05374_1 crossref_primary_10_1007_s11276_024_03890_3 crossref_primary_10_1016_j_ipm_2023_103303 |
| Cites_doi | 10.1016/j.cose.2019.05.016 10.1016/j.icte.2019.03.003 10.1016/j.matpr.2021.01.619 10.1049/cit2.12032 10.1016/j.matpr.2020.09.614 10.1080/19393555.2015.1125974 10.1186/s40537-020-00349-y 10.1016/j.cose.2017.06.005 10.1109/TBDATA.2017.2715166 10.1088/1742-6596/1192/1/012018 10.1016/j.procs.2020.03.367 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV May 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV May 2022 |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.compeleceng.2022.107869 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0755 |
| ExternalDocumentID | 10_1016_j_compeleceng_2022_107869 S0045790622001598 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c349t-c6dd63bfef862fbc54badb2b4d07c7b0da765426a06ef49fbce4e07f9e70e9ec3 |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810044800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7906 |
| IngestDate | Sun Oct 05 00:21:13 EDT 2025 Sat Nov 29 07:29:21 EST 2025 Tue Nov 18 22:32:58 EST 2025 Sun Apr 06 06:53:49 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | IDS Extra tree algorithm Cyber security Boosting algorithms Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-c6dd63bfef862fbc54badb2b4d07c7b0da765426a06ef49fbce4e07f9e70e9ec3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9736-8068 |
| PQID | 2684208967 |
| PQPubID | 2045266 |
| ParticipantIDs | proquest_journals_2684208967 crossref_primary_10_1016_j_compeleceng_2022_107869 crossref_citationtrail_10_1016_j_compeleceng_2022_107869 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_107869 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Tavallaee, Bagheri, Lu, Ghorbani (bib0006) 2009 Ferrag, Maglaras, Moschoyiannis, Janicke (bib0003) 2020; 50 Dash, Chakravarty, Satpathy (bib0009) 2021 Moustafa, Slay (bib0005) 2016; 25 Tanha, Abdi, Samadi, Razzaghi, Asadpour (bib0021) 2020; 7 Mohindru, Mondal, Banka (bib0022) 2021; 6 Moustafa, Creech, Sitnikova, Keshk (bib0016) 2017 Uddin, Uddiny (bib0018) 2015 Digital (bib0001) 2021 Dahiya, Srivastava (bib0011) 2018; 906 Moustafa, Slay, Creech (bib0014) 2019; 5 Choudhary, Kesswani (bib0010) 2020; 167 Habibi Lashkari, Draper Gil, Mamun, Ghorbani (bib0025) 2017 Kunang, Nurmaini, Stiawan, Suprapto (bib0008) 2021; 58 Schapire (bib0019) 2013 Kanimozhi, Jacob (bib0007) 2019; 04 Moustafa, Slay (bib0023) 2015 Yulianto, Sukarno, Suwastika (bib0020) 2019; 1192 Sharafaldin, Habibi Lashkari, Ghorbani (bib0024) 2018 Samriya, Kumar (bib0004) 2020 Research (bib0002) 2017 Khammassi, Krichen (bib0015) 2017; 70 Kanimozhi, Jacob (bib0013) 2019; 5 Okoro, Obomanu, Sanni, Olatunji, Igbinedion (bib0017) 2021 Patil, Dudeja, Modi (bib0012) 2019; 85 Sharafaldin (10.1016/j.compeleceng.2022.107869_bib0024) 2018 Okoro (10.1016/j.compeleceng.2022.107869_bib0017) 2021 Digital (10.1016/j.compeleceng.2022.107869_bib0001) 2021 Ferrag (10.1016/j.compeleceng.2022.107869_bib0003) 2020; 50 Mohindru (10.1016/j.compeleceng.2022.107869_bib0022) 2021; 6 Kunang (10.1016/j.compeleceng.2022.107869_bib0008) 2021; 58 Tavallaee (10.1016/j.compeleceng.2022.107869_bib0006) 2009 Yulianto (10.1016/j.compeleceng.2022.107869_bib0020) 2019; 1192 Moustafa (10.1016/j.compeleceng.2022.107869_bib0023) 2015 Moustafa (10.1016/j.compeleceng.2022.107869_bib0016) 2017 Samriya (10.1016/j.compeleceng.2022.107869_bib0004) 2020 Tanha (10.1016/j.compeleceng.2022.107869_bib0021) 2020; 7 Research (10.1016/j.compeleceng.2022.107869_bib0002) 2017 Schapire (10.1016/j.compeleceng.2022.107869_bib0019) 2013 Kanimozhi (10.1016/j.compeleceng.2022.107869_bib0013) 2019; 5 Choudhary (10.1016/j.compeleceng.2022.107869_bib0010) 2020; 167 Moustafa (10.1016/j.compeleceng.2022.107869_bib0014) 2019; 5 Dahiya (10.1016/j.compeleceng.2022.107869_bib0011) 2018; 906 Habibi Lashkari (10.1016/j.compeleceng.2022.107869_bib0025) 2017 Patil (10.1016/j.compeleceng.2022.107869_bib0012) 2019; 85 Moustafa (10.1016/j.compeleceng.2022.107869_bib0005) 2016; 25 Uddin (10.1016/j.compeleceng.2022.107869_bib0018) 2015 Dash (10.1016/j.compeleceng.2022.107869_bib0009) 2021 Kanimozhi (10.1016/j.compeleceng.2022.107869_bib0007) 2019; 04 Khammassi (10.1016/j.compeleceng.2022.107869_bib0015) 2017; 70 |
| References_xml | – volume: 906 start-page: 279 year: 2018 end-page: 287 ident: bib0011 article-title: A comparative evolution of unsupervised techniques for effective network intrusion detection in hadoop publication-title: Commun Comput Inf Sci – volume: 5 start-page: 481 year: 2019 end-page: 494 ident: bib0014 article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks publication-title: IEEE Trans Big Data – year: 2021 ident: bib0017 article-title: Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model publication-title: Petroleum – start-page: 37 year: 2013 end-page: 52 ident: bib0019 article-title: Explaining adaboost. empir. inference, berlin, heidelberg: springer berlin heidelberg – start-page: 1 year: 2015 end-page: 6 ident: bib0018 article-title: Human activity recognition from wearable sensors using extremely randomized trees publication-title: Int. Conf. Electr. Eng. Inf. Commun. Technol. – volume: 25 start-page: 18 year: 2016 end-page: 31 ident: bib0005 article-title: The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set publication-title: Inf Secur J A Glob Perspect – year: 2020 ident: bib0004 article-title: A novel intrusion detection system using hybrid clustering-optimization approach in cloud computing publication-title: Mater Today Proc – start-page: 1 year: 2009 end-page: 6 ident: bib0006 article-title: A detailed analysis of the KDD CUP 99 data set publication-title: IEEE Symp Comput Intell Secur Def Appl – volume: 7 start-page: 70 year: 2020 ident: bib0021 article-title: Boosting methods for multi-class imbalanced data classification: an experimental review publication-title: J Big Data – volume: 70 start-page: 255 year: 2017 end-page: 277 ident: bib0015 article-title: A GA-LR wrapper approach for feature selection in network intrusion detection publication-title: Comput Secur – start-page: 1 year: 2017 end-page: 6 ident: bib0016 article-title: Collaborative anomaly detection framework for handling big data of cloud computing publication-title: Proceedings of the 2017 Mil. Commun. Inf. Syst. Conf. MilCIS 2017 - Proc. – volume: 1192 year: 2019 ident: bib0020 article-title: Improving AdaBoost-based intrusion detection system (IDS) performance on CIC IDS 2017 dataset publication-title: J Phys Conf Ser – start-page: 1 year: 2015 end-page: 6 ident: bib0023 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015 publication-title: Mil. Commun. Inf. Syst. Conf. – volume: 5 start-page: 211 year: 2019 end-page: 214 ident: bib0013 article-title: Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing publication-title: ICT Express – volume: 167 start-page: 1561 year: 2020 end-page: 1573 ident: bib0010 article-title: Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT publication-title: Procedia Comput Sci – start-page: 108 year: 2018 end-page: 116 ident: bib0024 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization publication-title: Proceedings of the Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018- Janua, SCITEPRESS - Science and Technology Publications – year: 2021 ident: bib0009 article-title: An improved harmony search based extreme learning machine for intrusion detection system publication-title: Mater Today Proc – volume: 6 start-page: 405 year: 2021 end-page: 416 ident: bib0022 article-title: Different hybrid machine intelligence techniques for handling IoT-based imbalanced data publication-title: CAAI Trans Intell Technol – volume: 85 start-page: 402 year: 2019 end-page: 422 ident: bib0012 article-title: Designing an efficient security framework for detecting intrusions in virtual network of cloud computing publication-title: Comput Secur – start-page: 253 year: 2017 end-page: 262 ident: bib0025 article-title: Characterization of tor traffic using time based features publication-title: Proceedings of the Proc. 3rd Int. Conf. Inf. Syst. Secur. Priv., vol. 2017- Janua, SCITEPRESS - Science and Technology Publications – volume: 50 year: 2020 ident: bib0003 article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study publication-title: J Inf Secur Appl – volume: 04 start-page: 209 year: 2019 end-page: 213 ident: bib0007 article-title: Calibration of various optimized machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing publication-title: Int J Eng Appl Sci Technol – volume: 58 year: 2021 ident: bib0008 article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization publication-title: J Inf Secur Appl – start-page: 202 year: 2017 ident: bib0002 article-title: Cyber security market by component, security type, deployment, organization and application - Global Industry analysis and forecast to 2022 – year: 2021 ident: bib0001 article-title: Global Overview Report – start-page: 1 year: 2009 ident: 10.1016/j.compeleceng.2022.107869_bib0006 article-title: A detailed analysis of the KDD CUP 99 data set publication-title: IEEE Symp Comput Intell Secur Def Appl – volume: 85 start-page: 402 year: 2019 ident: 10.1016/j.compeleceng.2022.107869_bib0012 article-title: Designing an efficient security framework for detecting intrusions in virtual network of cloud computing publication-title: Comput Secur doi: 10.1016/j.cose.2019.05.016 – volume: 5 start-page: 211 year: 2019 ident: 10.1016/j.compeleceng.2022.107869_bib0013 article-title: Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing publication-title: ICT Express doi: 10.1016/j.icte.2019.03.003 – year: 2021 ident: 10.1016/j.compeleceng.2022.107869_bib0009 article-title: An improved harmony search based extreme learning machine for intrusion detection system publication-title: Mater Today Proc doi: 10.1016/j.matpr.2021.01.619 – volume: 6 start-page: 405 year: 2021 ident: 10.1016/j.compeleceng.2022.107869_bib0022 article-title: Different hybrid machine intelligence techniques for handling IoT-based imbalanced data publication-title: CAAI Trans Intell Technol doi: 10.1049/cit2.12032 – start-page: 253 year: 2017 ident: 10.1016/j.compeleceng.2022.107869_bib0025 article-title: Characterization of tor traffic using time based features – year: 2020 ident: 10.1016/j.compeleceng.2022.107869_bib0004 article-title: A novel intrusion detection system using hybrid clustering-optimization approach in cloud computing publication-title: Mater Today Proc doi: 10.1016/j.matpr.2020.09.614 – start-page: 37 year: 2013 ident: 10.1016/j.compeleceng.2022.107869_bib0019 – start-page: 108 year: 2018 ident: 10.1016/j.compeleceng.2022.107869_bib0024 article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization – start-page: 1 year: 2015 ident: 10.1016/j.compeleceng.2022.107869_bib0018 article-title: Human activity recognition from wearable sensors using extremely randomized trees publication-title: Int. Conf. Electr. Eng. Inf. Commun. Technol. – volume: 25 start-page: 18 year: 2016 ident: 10.1016/j.compeleceng.2022.107869_bib0005 article-title: The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set publication-title: Inf Secur J A Glob Perspect doi: 10.1080/19393555.2015.1125974 – volume: 7 start-page: 70 year: 2020 ident: 10.1016/j.compeleceng.2022.107869_bib0021 article-title: Boosting methods for multi-class imbalanced data classification: an experimental review publication-title: J Big Data doi: 10.1186/s40537-020-00349-y – volume: 70 start-page: 255 year: 2017 ident: 10.1016/j.compeleceng.2022.107869_bib0015 article-title: A GA-LR wrapper approach for feature selection in network intrusion detection publication-title: Comput Secur doi: 10.1016/j.cose.2017.06.005 – start-page: 1 year: 2015 ident: 10.1016/j.compeleceng.2022.107869_bib0023 article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015 publication-title: Mil. Commun. Inf. Syst. Conf. – volume: 5 start-page: 481 year: 2019 ident: 10.1016/j.compeleceng.2022.107869_bib0014 article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks publication-title: IEEE Trans Big Data doi: 10.1109/TBDATA.2017.2715166 – volume: 1192 year: 2019 ident: 10.1016/j.compeleceng.2022.107869_bib0020 article-title: Improving AdaBoost-based intrusion detection system (IDS) performance on CIC IDS 2017 dataset publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1192/1/012018 – year: 2021 ident: 10.1016/j.compeleceng.2022.107869_bib0001 – volume: 50 year: 2020 ident: 10.1016/j.compeleceng.2022.107869_bib0003 article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study publication-title: J Inf Secur Appl – volume: 167 start-page: 1561 year: 2020 ident: 10.1016/j.compeleceng.2022.107869_bib0010 article-title: Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2020.03.367 – volume: 04 start-page: 209 year: 2019 ident: 10.1016/j.compeleceng.2022.107869_bib0007 article-title: Calibration of various optimized machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing publication-title: Int J Eng Appl Sci Technol – year: 2021 ident: 10.1016/j.compeleceng.2022.107869_bib0017 article-title: Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model publication-title: Petroleum – volume: 906 start-page: 279 year: 2018 ident: 10.1016/j.compeleceng.2022.107869_bib0011 article-title: A comparative evolution of unsupervised techniques for effective network intrusion detection in hadoop publication-title: Commun Comput Inf Sci – start-page: 202 year: 2017 ident: 10.1016/j.compeleceng.2022.107869_bib0002 – volume: 58 year: 2021 ident: 10.1016/j.compeleceng.2022.107869_bib0008 article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization publication-title: J Inf Secur Appl – start-page: 1 year: 2017 ident: 10.1016/j.compeleceng.2022.107869_bib0016 article-title: Collaborative anomaly detection framework for handling big data of cloud computing |
| SSID | ssj0004618 |
| Score | 2.471091 |
| Snippet | •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet... Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107869 |
| SubjectTerms | Algorithms Boosting algorithms Classification Classifiers Cyber security Cybersecurity Datasets Extra tree algorithm IDS Intrusion detection systems Machine learning Optimization Parameters System effectiveness |
| Title | A comprehensive intrusion detection framework using boosting algorithms |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2022.107869 https://www.proquest.com/docview/2684208967 |
| Volume | 100 |
| WOSCitedRecordID | wos000810044800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0755 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004618 issn: 0045-7906 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhhAcED_FxkBBYicU5CRObEtcKmhhaCpIdKg3y46dtSPKuv6YduNf5zl20gwxVA5coippIsffl-dn-73vIfTaRBKG4bgIMZMwQaGpCmWeZqHRhueEM4WprItN0NGITSb8a6_3s8mFuSxpVbGrKz7_r1DDOQDbps7-A9ztQ-EE_AbQ4Qiww3Er4Pt1mPjCTH1o-qyyeRUWZW1WxlUGL5qQrDfreq0AXO1lHf8sy9PzxWw19RrmjYSBL_2wrIniKufU4JqNmmFnM38GRKqJcFROwXwM7VZ-67mDt19TcAjNbZeiv8GD1q6sttLr8oeEkba7HgFT2Tb6zy2StYky37t2l1hhTOxFr52pZdSmTzmR3tYWY9yxptEfbbxbbjizEM3tG0ML39qGwBXKXN2X67raoy9ieHJ8LMaDyfgwGc4vQlt0zG7OHyYfHAFuod2YphzM4m7_aDD53Emtjdxg7l_gDnq1CRG8oQU3uTi_Dfa1BzN-gO77qUfQd5R5iHqmeoTudQQpH6OP_eAaeYKWPEFLnqAlT1CTJ2jIE2zI8wSdDAfj959CX2ojzBPCV2GeaZ0lqjAFzHALladESa1iRTSmOVVYS2orm2USZ6YgHP5hiMG04IZiw02ePEU71XllnqFARTnBjJgiSighKeMpSXQsE51KcKaN2UOs6R2Rex16Ww6lFE3A4ZnodKywHStcx-6huL117sRYtrnpXQOB8F6l8xYFEGqb2w8a2IT_ypfCSiTFmPGM7v_98nN0d_ONHKAdwMy8QLfzy9VsuXjpyfYLDleo7Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+intrusion+detection+framework+using+boosting+algorithms&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Kilincer%2C+Ilhan+Firat&rft.au=Ertam%2C+Fatih&rft.au=Sengur%2C+Abdulkadir&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=100&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.107869&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |