A comprehensive intrusion detection framework using boosting algorithms

•A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & electrical engineering Jg. 100; S. 107869
Hauptverfasser: Kilincer, Ilhan Firat, Ertam, Fatih, Sengur, Abdulkadir
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier Ltd 01.05.2022
Elsevier BV
Schlagworte:
ISSN:0045-7906, 1879-0755
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data received over the network quickly and successfully.•The data sets were classified using high performance GBM, LGBM, XGBoost, catboost algorithms. Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance. [Display omitted]
AbstractList •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet applications.•The most optimum features of the data sets have been selected with the extra tree algorithm in order to process the data received over the network quickly and successfully.•The data sets were classified using high performance GBM, LGBM, XGBoost, catboost algorithms. Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance. [Display omitted]
Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber Security Intrusion Detection Dataset (CCiDD) was created. The CCiDD_A and CCiDD_B datasets are derived from the created dataset. Two datasets were compared with the NSL-KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets. In the study, the most optimal features for all datasets were determined by the Extra Tree algorithm and the new sub-datasets were classified by machine learning methods with default parameters. As a result of the classification, LGBM and XGBoost algorithms were selected as the most successful algorithms. Hyper parameter optimization was applied to LGBM and XGBoost algorithms to increase classification performance. LGBM classifier surpassed XGBoost classifier in terms of performance and processing time. LGBM algorithm achieved performance values of 99.84%, 98.02%, 99.94%, 95.68% and 99.98% for NSL-KDD, UNSW-NB15, CSE-CIC-IDS2018, CCiDD_A and CCiDD_B datasets, respectively. Since detection time of attacks is a critical issue, the LGBM classifier is recommended for attack detection in terms of time and performance.
ArticleNumber 107869
Author Kilincer, Ilhan Firat
Ertam, Fatih
Sengur, Abdulkadir
Author_xml – sequence: 1
  givenname: Ilhan Firat
  surname: Kilincer
  fullname: Kilincer, Ilhan Firat
  organization: Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey
– sequence: 2
  givenname: Fatih
  orcidid: 0000-0002-9736-8068
  surname: Ertam
  fullname: Ertam, Fatih
  email: fatih.ertam@firat.edu.tr
  organization: Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
– sequence: 3
  givenname: Abdulkadir
  surname: Sengur
  fullname: Sengur, Abdulkadir
  organization: Department of Electrical-Electronics Engineering, Technology Faculty, Firat University, Elazig, Turkey
BookMark eNqNkLFOwzAQhi1UJNrCOwQxpzhuYscTqiooSJVYYLYc59I6JHax3SLeHkdhQEyd7s7-7zvpm6GJsQYQus3wIsMZvW8XyvYH6ECB2S0IJiS-s5LyCzTNSsZTzIpigqYY50XKOKZXaOZ9i-NMs3KKNqtkADjYg_H6BIk2wR29tiapIYAKQ9c42cOXdR9J_DG7pLLWh6GR3c46Hfa9v0aXjew83PzWOXp_enxbP6fb183LerVN1TLnIVW0rumyaqApKWkqVeSVrCtS5TVmilW4lowWOaESU2hyHhOQA2YNB4aBg1rO0d3IPTj7eQQfRGuPzsSTgtAyJ7jklMUUH1PKWe8dNOLgdC_dt8iwGLyJVvzxJgZvYvQWdx_-7Sod5OAhOKm7swjrkQBRxEmDE15pMApq7aJRUVt9BuUHOiCWmA
CitedBy_id crossref_primary_10_1016_j_ins_2023_03_004
crossref_primary_10_1038_s41598_024_80021_0
crossref_primary_10_1109_ACCESS_2024_3420080
crossref_primary_10_4018_IJAIML_370316
crossref_primary_10_1007_s10586_023_04168_7
crossref_primary_10_3390_app13127328
crossref_primary_10_1016_j_eiar_2025_108174
crossref_primary_10_1007_s10115_025_02366_w
crossref_primary_10_1038_s41598_025_02008_9
crossref_primary_10_32604_cmc_2024_051769
crossref_primary_10_1371_journal_pone_0317713
crossref_primary_10_1016_j_cose_2025_104392
crossref_primary_10_3390_app13169363
crossref_primary_10_1109_ACCESS_2022_3172304
crossref_primary_10_1109_ACCESS_2024_3431534
crossref_primary_10_1016_j_procs_2025_04_377
crossref_primary_10_1016_j_iswa_2025_200543
crossref_primary_10_1007_s10586_024_04422_6
crossref_primary_10_1016_j_iot_2025_101545
crossref_primary_10_1016_j_knosys_2023_110966
crossref_primary_10_1002_cpe_7299
crossref_primary_10_1177_01423312241299859
crossref_primary_10_1016_j_micpro_2022_104752
crossref_primary_10_1007_s11042_024_19695_7
crossref_primary_10_1094_PHYTO_07_24_0202_R
crossref_primary_10_1007_s11227_025_07271_1
crossref_primary_10_1016_j_adhoc_2025_103982
crossref_primary_10_1142_S0219649223500661
crossref_primary_10_1016_j_bbe_2022_11_005
crossref_primary_10_1016_j_compeleceng_2024_109420
crossref_primary_10_1016_j_eswa_2023_121668
crossref_primary_10_1016_j_heliyon_2022_e12343
crossref_primary_10_1007_s41870_024_02129_w
crossref_primary_10_1155_2022_4565968
crossref_primary_10_3390_app13042576
crossref_primary_10_1007_s10586_025_05374_1
crossref_primary_10_1007_s11276_024_03890_3
crossref_primary_10_1016_j_ipm_2023_103303
Cites_doi 10.1016/j.cose.2019.05.016
10.1016/j.icte.2019.03.003
10.1016/j.matpr.2021.01.619
10.1049/cit2.12032
10.1016/j.matpr.2020.09.614
10.1080/19393555.2015.1125974
10.1186/s40537-020-00349-y
10.1016/j.cose.2017.06.005
10.1109/TBDATA.2017.2715166
10.1088/1742-6596/1192/1/012018
10.1016/j.procs.2020.03.367
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2022.107869
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2022_107869
S0045790622001598
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-c6dd63bfef862fbc54badb2b4d07c7b0da765426a06ef49fbce4e07f9e70e9ec3
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000810044800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sun Oct 05 00:21:13 EDT 2025
Sat Nov 29 07:29:21 EST 2025
Tue Nov 18 22:32:58 EST 2025
Sun Apr 06 06:53:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords IDS
Extra tree algorithm
Cyber security
Boosting algorithms
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-c6dd63bfef862fbc54badb2b4d07c7b0da765426a06ef49fbce4e07f9e70e9ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9736-8068
PQID 2684208967
PQPubID 2045266
ParticipantIDs proquest_journals_2684208967
crossref_primary_10_1016_j_compeleceng_2022_107869
crossref_citationtrail_10_1016_j_compeleceng_2022_107869
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2022_107869
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Tavallaee, Bagheri, Lu, Ghorbani (bib0006) 2009
Ferrag, Maglaras, Moschoyiannis, Janicke (bib0003) 2020; 50
Dash, Chakravarty, Satpathy (bib0009) 2021
Moustafa, Slay (bib0005) 2016; 25
Tanha, Abdi, Samadi, Razzaghi, Asadpour (bib0021) 2020; 7
Mohindru, Mondal, Banka (bib0022) 2021; 6
Moustafa, Creech, Sitnikova, Keshk (bib0016) 2017
Uddin, Uddiny (bib0018) 2015
Digital (bib0001) 2021
Dahiya, Srivastava (bib0011) 2018; 906
Moustafa, Slay, Creech (bib0014) 2019; 5
Choudhary, Kesswani (bib0010) 2020; 167
Habibi Lashkari, Draper Gil, Mamun, Ghorbani (bib0025) 2017
Kunang, Nurmaini, Stiawan, Suprapto (bib0008) 2021; 58
Schapire (bib0019) 2013
Kanimozhi, Jacob (bib0007) 2019; 04
Moustafa, Slay (bib0023) 2015
Yulianto, Sukarno, Suwastika (bib0020) 2019; 1192
Sharafaldin, Habibi Lashkari, Ghorbani (bib0024) 2018
Samriya, Kumar (bib0004) 2020
Research (bib0002) 2017
Khammassi, Krichen (bib0015) 2017; 70
Kanimozhi, Jacob (bib0013) 2019; 5
Okoro, Obomanu, Sanni, Olatunji, Igbinedion (bib0017) 2021
Patil, Dudeja, Modi (bib0012) 2019; 85
Sharafaldin (10.1016/j.compeleceng.2022.107869_bib0024) 2018
Okoro (10.1016/j.compeleceng.2022.107869_bib0017) 2021
Digital (10.1016/j.compeleceng.2022.107869_bib0001) 2021
Ferrag (10.1016/j.compeleceng.2022.107869_bib0003) 2020; 50
Mohindru (10.1016/j.compeleceng.2022.107869_bib0022) 2021; 6
Kunang (10.1016/j.compeleceng.2022.107869_bib0008) 2021; 58
Tavallaee (10.1016/j.compeleceng.2022.107869_bib0006) 2009
Yulianto (10.1016/j.compeleceng.2022.107869_bib0020) 2019; 1192
Moustafa (10.1016/j.compeleceng.2022.107869_bib0023) 2015
Moustafa (10.1016/j.compeleceng.2022.107869_bib0016) 2017
Samriya (10.1016/j.compeleceng.2022.107869_bib0004) 2020
Tanha (10.1016/j.compeleceng.2022.107869_bib0021) 2020; 7
Research (10.1016/j.compeleceng.2022.107869_bib0002) 2017
Schapire (10.1016/j.compeleceng.2022.107869_bib0019) 2013
Kanimozhi (10.1016/j.compeleceng.2022.107869_bib0013) 2019; 5
Choudhary (10.1016/j.compeleceng.2022.107869_bib0010) 2020; 167
Moustafa (10.1016/j.compeleceng.2022.107869_bib0014) 2019; 5
Dahiya (10.1016/j.compeleceng.2022.107869_bib0011) 2018; 906
Habibi Lashkari (10.1016/j.compeleceng.2022.107869_bib0025) 2017
Patil (10.1016/j.compeleceng.2022.107869_bib0012) 2019; 85
Moustafa (10.1016/j.compeleceng.2022.107869_bib0005) 2016; 25
Uddin (10.1016/j.compeleceng.2022.107869_bib0018) 2015
Dash (10.1016/j.compeleceng.2022.107869_bib0009) 2021
Kanimozhi (10.1016/j.compeleceng.2022.107869_bib0007) 2019; 04
Khammassi (10.1016/j.compeleceng.2022.107869_bib0015) 2017; 70
References_xml – volume: 906
  start-page: 279
  year: 2018
  end-page: 287
  ident: bib0011
  article-title: A comparative evolution of unsupervised techniques for effective network intrusion detection in hadoop
  publication-title: Commun Comput Inf Sci
– volume: 5
  start-page: 481
  year: 2019
  end-page: 494
  ident: bib0014
  article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks
  publication-title: IEEE Trans Big Data
– year: 2021
  ident: bib0017
  article-title: Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model
  publication-title: Petroleum
– start-page: 37
  year: 2013
  end-page: 52
  ident: bib0019
  article-title: Explaining adaboost. empir. inference, berlin, heidelberg: springer berlin heidelberg
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0018
  article-title: Human activity recognition from wearable sensors using extremely randomized trees
  publication-title: Int. Conf. Electr. Eng. Inf. Commun. Technol.
– volume: 25
  start-page: 18
  year: 2016
  end-page: 31
  ident: bib0005
  article-title: The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set
  publication-title: Inf Secur J A Glob Perspect
– year: 2020
  ident: bib0004
  article-title: A novel intrusion detection system using hybrid clustering-optimization approach in cloud computing
  publication-title: Mater Today Proc
– start-page: 1
  year: 2009
  end-page: 6
  ident: bib0006
  article-title: A detailed analysis of the KDD CUP 99 data set
  publication-title: IEEE Symp Comput Intell Secur Def Appl
– volume: 7
  start-page: 70
  year: 2020
  ident: bib0021
  article-title: Boosting methods for multi-class imbalanced data classification: an experimental review
  publication-title: J Big Data
– volume: 70
  start-page: 255
  year: 2017
  end-page: 277
  ident: bib0015
  article-title: A GA-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Comput Secur
– start-page: 1
  year: 2017
  end-page: 6
  ident: bib0016
  article-title: Collaborative anomaly detection framework for handling big data of cloud computing
  publication-title: Proceedings of the 2017 Mil. Commun. Inf. Syst. Conf. MilCIS 2017 - Proc.
– volume: 1192
  year: 2019
  ident: bib0020
  article-title: Improving AdaBoost-based intrusion detection system (IDS) performance on CIC IDS 2017 dataset
  publication-title: J Phys Conf Ser
– start-page: 1
  year: 2015
  end-page: 6
  ident: bib0023
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015
  publication-title: Mil. Commun. Inf. Syst. Conf.
– volume: 5
  start-page: 211
  year: 2019
  end-page: 214
  ident: bib0013
  article-title: Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing
  publication-title: ICT Express
– volume: 167
  start-page: 1561
  year: 2020
  end-page: 1573
  ident: bib0010
  article-title: Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT
  publication-title: Procedia Comput Sci
– start-page: 108
  year: 2018
  end-page: 116
  ident: bib0024
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: Proceedings of the Proc. 4th Int. Conf. Inf. Syst. Secur. Priv., vol. 2018- Janua, SCITEPRESS - Science and Technology Publications
– year: 2021
  ident: bib0009
  article-title: An improved harmony search based extreme learning machine for intrusion detection system
  publication-title: Mater Today Proc
– volume: 6
  start-page: 405
  year: 2021
  end-page: 416
  ident: bib0022
  article-title: Different hybrid machine intelligence techniques for handling IoT-based imbalanced data
  publication-title: CAAI Trans Intell Technol
– volume: 85
  start-page: 402
  year: 2019
  end-page: 422
  ident: bib0012
  article-title: Designing an efficient security framework for detecting intrusions in virtual network of cloud computing
  publication-title: Comput Secur
– start-page: 253
  year: 2017
  end-page: 262
  ident: bib0025
  article-title: Characterization of tor traffic using time based features
  publication-title: Proceedings of the Proc. 3rd Int. Conf. Inf. Syst. Secur. Priv., vol. 2017- Janua, SCITEPRESS - Science and Technology Publications
– volume: 50
  year: 2020
  ident: bib0003
  article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study
  publication-title: J Inf Secur Appl
– volume: 04
  start-page: 209
  year: 2019
  end-page: 213
  ident: bib0007
  article-title: Calibration of various optimized machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing
  publication-title: Int J Eng Appl Sci Technol
– volume: 58
  year: 2021
  ident: bib0008
  article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
  publication-title: J Inf Secur Appl
– start-page: 202
  year: 2017
  ident: bib0002
  article-title: Cyber security market by component, security type, deployment, organization and application - Global Industry analysis and forecast to 2022
– year: 2021
  ident: bib0001
  article-title: Global Overview Report
– start-page: 1
  year: 2009
  ident: 10.1016/j.compeleceng.2022.107869_bib0006
  article-title: A detailed analysis of the KDD CUP 99 data set
  publication-title: IEEE Symp Comput Intell Secur Def Appl
– volume: 85
  start-page: 402
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107869_bib0012
  article-title: Designing an efficient security framework for detecting intrusions in virtual network of cloud computing
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2019.05.016
– volume: 5
  start-page: 211
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107869_bib0013
  article-title: Artificial Intelligence based Network Intrusion Detection with hyper-parameter optimization tuning on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing
  publication-title: ICT Express
  doi: 10.1016/j.icte.2019.03.003
– year: 2021
  ident: 10.1016/j.compeleceng.2022.107869_bib0009
  article-title: An improved harmony search based extreme learning machine for intrusion detection system
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2021.01.619
– volume: 6
  start-page: 405
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107869_bib0022
  article-title: Different hybrid machine intelligence techniques for handling IoT-based imbalanced data
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/cit2.12032
– start-page: 253
  year: 2017
  ident: 10.1016/j.compeleceng.2022.107869_bib0025
  article-title: Characterization of tor traffic using time based features
– year: 2020
  ident: 10.1016/j.compeleceng.2022.107869_bib0004
  article-title: A novel intrusion detection system using hybrid clustering-optimization approach in cloud computing
  publication-title: Mater Today Proc
  doi: 10.1016/j.matpr.2020.09.614
– start-page: 37
  year: 2013
  ident: 10.1016/j.compeleceng.2022.107869_bib0019
– start-page: 108
  year: 2018
  ident: 10.1016/j.compeleceng.2022.107869_bib0024
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
– start-page: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2022.107869_bib0018
  article-title: Human activity recognition from wearable sensors using extremely randomized trees
  publication-title: Int. Conf. Electr. Eng. Inf. Commun. Technol.
– volume: 25
  start-page: 18
  year: 2016
  ident: 10.1016/j.compeleceng.2022.107869_bib0005
  article-title: The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set
  publication-title: Inf Secur J A Glob Perspect
  doi: 10.1080/19393555.2015.1125974
– volume: 7
  start-page: 70
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107869_bib0021
  article-title: Boosting methods for multi-class imbalanced data classification: an experimental review
  publication-title: J Big Data
  doi: 10.1186/s40537-020-00349-y
– volume: 70
  start-page: 255
  year: 2017
  ident: 10.1016/j.compeleceng.2022.107869_bib0015
  article-title: A GA-LR wrapper approach for feature selection in network intrusion detection
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2017.06.005
– start-page: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2022.107869_bib0023
  article-title: UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015
  publication-title: Mil. Commun. Inf. Syst. Conf.
– volume: 5
  start-page: 481
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107869_bib0014
  article-title: Novel geometric area analysis technique for anomaly detection using trapezoidal area estimation on large-scale networks
  publication-title: IEEE Trans Big Data
  doi: 10.1109/TBDATA.2017.2715166
– volume: 1192
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107869_bib0020
  article-title: Improving AdaBoost-based intrusion detection system (IDS) performance on CIC IDS 2017 dataset
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1192/1/012018
– year: 2021
  ident: 10.1016/j.compeleceng.2022.107869_bib0001
– volume: 50
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107869_bib0003
  article-title: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study
  publication-title: J Inf Secur Appl
– volume: 167
  start-page: 1561
  year: 2020
  ident: 10.1016/j.compeleceng.2022.107869_bib0010
  article-title: Analysis of KDD-Cup’99, NSL-KDD and UNSW-NB15 datasets using deep learning in IoT
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2020.03.367
– volume: 04
  start-page: 209
  year: 2019
  ident: 10.1016/j.compeleceng.2022.107869_bib0007
  article-title: Calibration of various optimized machine learning classifiers in network intrusion detection system on the realistic cyber dataset CSE-CIC-IDS2018 using cloud computing
  publication-title: Int J Eng Appl Sci Technol
– year: 2021
  ident: 10.1016/j.compeleceng.2022.107869_bib0017
  article-title: Application of artificial intelligence in predicting the dynamics of bottom hole pressure for under-balanced drilling: extra tree compared with feed forward neural network model
  publication-title: Petroleum
– volume: 906
  start-page: 279
  year: 2018
  ident: 10.1016/j.compeleceng.2022.107869_bib0011
  article-title: A comparative evolution of unsupervised techniques for effective network intrusion detection in hadoop
  publication-title: Commun Comput Inf Sci
– start-page: 202
  year: 2017
  ident: 10.1016/j.compeleceng.2022.107869_bib0002
– volume: 58
  year: 2021
  ident: 10.1016/j.compeleceng.2022.107869_bib0008
  article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
  publication-title: J Inf Secur Appl
– start-page: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2022.107869_bib0016
  article-title: Collaborative anomaly detection framework for handling big data of cloud computing
SSID ssj0004618
Score 2.471091
Snippet •A new cyber security intrusion detection dataset (CCiDD) has been created by performing various scenarios with today's widely used attack methods and internet...
Intrusion Detection Systems are one of the most effective technologies that protect systems against cyber-attacks. In this study, a new Comprehensive Cyber...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107869
SubjectTerms Algorithms
Boosting algorithms
Classification
Classifiers
Cyber security
Cybersecurity
Datasets
Extra tree algorithm
IDS
Intrusion detection systems
Machine learning
Optimization
Parameters
System effectiveness
Title A comprehensive intrusion detection framework using boosting algorithms
URI https://dx.doi.org/10.1016/j.compeleceng.2022.107869
https://www.proquest.com/docview/2684208967
Volume 100
WOSCitedRecordID wos000810044800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLbKhhAcED_FxkBBYicU5CRObEtcKmhhaCpIdKg3y46dtSPKuv6YduNf5zl20gwxVA5coippIsffl-dn-73vIfTaRBKG4bgIMZMwQaGpCmWeZqHRhueEM4WprItN0NGITSb8a6_3s8mFuSxpVbGrKz7_r1DDOQDbps7-A9ztQ-EE_AbQ4Qiww3Er4Pt1mPjCTH1o-qyyeRUWZW1WxlUGL5qQrDfreq0AXO1lHf8sy9PzxWw19RrmjYSBL_2wrIniKufU4JqNmmFnM38GRKqJcFROwXwM7VZ-67mDt19TcAjNbZeiv8GD1q6sttLr8oeEkba7HgFT2Tb6zy2StYky37t2l1hhTOxFr52pZdSmTzmR3tYWY9yxptEfbbxbbjizEM3tG0ML39qGwBXKXN2X67raoy9ieHJ8LMaDyfgwGc4vQlt0zG7OHyYfHAFuod2YphzM4m7_aDD53Emtjdxg7l_gDnq1CRG8oQU3uTi_Dfa1BzN-gO77qUfQd5R5iHqmeoTudQQpH6OP_eAaeYKWPEFLnqAlT1CTJ2jIE2zI8wSdDAfj959CX2ojzBPCV2GeaZ0lqjAFzHALladESa1iRTSmOVVYS2orm2USZ6YgHP5hiMG04IZiw02ePEU71XllnqFARTnBjJgiSighKeMpSXQsE51KcKaN2UOs6R2Rex16Ww6lFE3A4ZnodKywHStcx-6huL117sRYtrnpXQOB8F6l8xYFEGqb2w8a2IT_ypfCSiTFmPGM7v_98nN0d_ONHKAdwMy8QLfzy9VsuXjpyfYLDleo7Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comprehensive+intrusion+detection+framework+using+boosting+algorithms&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Kilincer%2C+Ilhan+Firat&rft.au=Ertam%2C+Fatih&rft.au=Sengur%2C+Abdulkadir&rft.date=2022-05-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=100&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compeleceng.2022.107869&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon