A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints
This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information....
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 48; číslo 6; s. 1773 - 1785 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption. |
|---|---|
| AbstractList | This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption. This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption. |
| Author | Xiao, Hu Xu, Demin Cui, Rongxin |
| Author_xml | – sequence: 1 givenname: Hu surname: Xiao fullname: Xiao, Hu email: hu.x@mail.nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Rongxin orcidid: 0000-0002-8006-3620 surname: Cui fullname: Cui, Rongxin email: r.cui@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Demin surname: Xu fullname: Xu, Demin email: xudm@nwpu.edu.cn organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28678726$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kcFrHCEYxaWkNGmaP6AUitBLLrNRZ9TxuLskbSEh0KSUnsRxvkkMszpRp5D_Pi67ySGHelHk9z7e995HdOCDB4Q-U7KglKiz2_Xf1YIRKhdMUs5Y-w4dMSraijHJD17fQh6ik5QeSDlt-VLtB3TIWiFbycQRgiW-MZtpdP6uWpkEPV6ZJ0jOeLycphiMvcdDiHgdwgTRZPcP8NU8ZmfuwGd87YsS8A2YWMA_Lt_jX5DCHC0UiU85Gudz-oTeD2ZMcLK_j9Hvi_Pb9Y_q8vr7z_XysrJ1o3JlORG1qi0ZZMd7y2xPWlAdKKa6TvSDAdZ3glDBBsUNE6ZrhO056VvV2IaJ-hid7uYW548zpKw3LlkYR-MhzElTRYWkJQle0G9v0Idi2xd3mlHZcCY4bQv1dU_N3QZ6PUW3MfFJvwRYALkDbAwpRRi0dbnEFPx29VFTordt6W1betuW3rdVlPSN8mX4_zRfdhoHAK-8VFwJqupnz-mfDA |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TNNLS_2020_3010690 crossref_primary_10_1016_j_oceaneng_2020_106949 crossref_primary_10_1109_TSMC_2019_2903203 crossref_primary_10_1109_TCYB_2021_3114403 crossref_primary_10_1016_j_neucom_2019_03_045 crossref_primary_10_1109_ACCESS_2020_3048178 crossref_primary_10_1109_ACCESS_2020_3048974 crossref_primary_10_1109_TIE_2020_3040686 crossref_primary_10_1109_JSYST_2020_2999314 crossref_primary_10_1080_01605682_2019_1685362 crossref_primary_10_1155_2019_6268127 crossref_primary_10_1109_TFUZZ_2020_2994991 crossref_primary_10_1016_j_automatica_2021_109908 crossref_primary_10_1007_s12555_019_0898_3 crossref_primary_10_1016_j_oceaneng_2022_112065 crossref_primary_10_1016_j_oceaneng_2023_114981 crossref_primary_10_1016_j_ins_2021_03_056 crossref_primary_10_1108_AA_10_2018_0152 crossref_primary_10_1016_j_ast_2022_107528 crossref_primary_10_1016_j_ast_2024_109669 crossref_primary_10_1155_2018_4359036 crossref_primary_10_1016_j_oceaneng_2023_114140 crossref_primary_10_1109_TCYB_2021_3134688 crossref_primary_10_1109_TCYB_2024_3441538 crossref_primary_10_1002_mma_7795 crossref_primary_10_3390_s19245469 crossref_primary_10_1109_JSEN_2022_3216021 crossref_primary_10_1016_j_jfranklin_2019_05_002 crossref_primary_10_3390_s22186942 crossref_primary_10_1002_asjc_3209 crossref_primary_10_1109_ACCESS_2018_2882860 crossref_primary_10_1109_ACCESS_2020_2999644 crossref_primary_10_1155_2018_4071743 crossref_primary_10_1109_LRA_2022_3148472 crossref_primary_10_1109_TCYB_2018_2875625 crossref_primary_10_1109_TEVC_2022_3161942 crossref_primary_10_1016_j_buildenv_2022_109266 crossref_primary_10_1109_TAES_2020_3034026 crossref_primary_10_3390_robotics8030061 crossref_primary_10_1155_2017_3506053 crossref_primary_10_1109_TAES_2024_3478196 crossref_primary_10_1109_TCYB_2021_3108143 crossref_primary_10_1109_TSMC_2020_3036120 crossref_primary_10_1016_j_iot_2024_101447 crossref_primary_10_1049_cth2_12183 crossref_primary_10_1016_j_jfranklin_2022_06_050 crossref_primary_10_1016_j_neucom_2020_03_033 crossref_primary_10_1109_TVT_2024_3524236 crossref_primary_10_1109_TVT_2020_3004140 crossref_primary_10_1155_2018_4657235 crossref_primary_10_1109_TSMC_2019_2946127 crossref_primary_10_1109_TCYB_2022_3166481 crossref_primary_10_1016_j_future_2022_06_015 crossref_primary_10_1109_JSYST_2021_3117959 crossref_primary_10_1109_TCSII_2023_3242456 crossref_primary_10_1007_s10846_019_01004_2 crossref_primary_10_1109_JIOT_2023_3262663 crossref_primary_10_1002_rob_22382 crossref_primary_10_1016_j_compeleceng_2019_106494 crossref_primary_10_1109_ACCESS_2022_3183680 |
| Cites_doi | 10.1109/TNN.2008.2000394 10.1109/TNNLS.2015.2482501 10.1109/ROBOT.2006.1642081 10.1109/TRA.2002.805653 10.1016/j.ins.2014.05.054 10.1007/10991459_21 10.1109/TIE.2016.2609838 10.1109/IROS.2004.1389813 10.1109/JSEN.2014.2355200 10.1109/JPROC.2006.887293 10.1109/TCYB.2016.2628161 10.1007/978-3-319-00065-7_57 10.1109/ACC.2014.6858896 10.1142/S0218488511007416 10.2307/2320580 10.1109/IROS.2011.6094958 10.1109/TCYB.2014.2309898 10.1109/TSMCB.2012.2210212 10.1142/s0218488515500075 10.1109/TCYB.2015.2508024 10.1109/ICRA.2011.5979704 10.1201/b16113-44 10.1017/S0263574716000229 10.1109/TCYB.2015.2502421 10.1109/TAES.2014.120747 10.3390/s90906869 10.1109/ICRA.2011.5980262 10.1017/S0373463315000351 10.1109/ICUAS.2015.7152393 10.1109/TSP.2015.2405493 10.1109/TRO.2014.2333097 10.1002/rob.21468 10.1145/2463372.2463417 10.1109/IROS.2003.1250604 10.1109/TAES.2012.6237609 10.1109/CDC.2009.5399678 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2017.2715228 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 1785 |
| ExternalDocumentID | 28678726 10_1109_TCYB_2017_2715228 7959619 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61472325; 61633002 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-c506393c0f7b5dc2cd08e9be929bb6dfae2db60162f95a26ab46cd50d894c4263 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 69 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435342400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Sun Sep 28 12:29:57 EDT 2025 Mon Jun 30 02:33:26 EDT 2025 Thu Jan 02 23:09:07 EST 2025 Sat Nov 29 06:48:35 EST 2025 Tue Nov 18 22:24:21 EST 2025 Wed Aug 27 02:50:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-c506393c0f7b5dc2cd08e9be929bb6dfae2db60162f95a26ab46cd50d894c4263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8006-3620 |
| PMID | 28678726 |
| PQID | 2174526518 |
| PQPubID | 85422 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2174526518 crossref_primary_10_1109_TCYB_2017_2715228 proquest_miscellaneous_1916710005 pubmed_primary_28678726 crossref_citationtrail_10_1109_TCYB_2017_2715228 ieee_primary_7959619 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-01 |
| PublicationDateYYYYMMDD | 2018-06-01 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref13 ref12 ref15 seneta (ref41) 2006 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 ref2 zhu (ref34) 2013; 43 ref1 ref17 ref38 anzai (ref37) 2012 ref19 ref18 lanillos (ref6) 2013 mathews (ref39) 2008 ref24 ref23 ref26 ref25 ref20 ref22 ref21 stone (ref16) 1976; 118 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref5 ref40 |
| References_xml | – ident: ref12 doi: 10.1109/TNN.2008.2000394 – ident: ref33 doi: 10.1109/TNNLS.2015.2482501 – ident: ref19 doi: 10.1109/ROBOT.2006.1642081 – year: 2013 ident: ref6 article-title: Minimum time search of mobile targets in uncertain environments – year: 2008 ident: ref39 article-title: Asynchronous decision making for decentralised autonomous systems – ident: ref31 doi: 10.1109/TRA.2002.805653 – ident: ref5 doi: 10.1016/j.ins.2014.05.054 – ident: ref18 doi: 10.1007/10991459_21 – ident: ref13 doi: 10.1109/TIE.2016.2609838 – volume: 118 year: 1976 ident: ref16 publication-title: Theory of Optimal Search – ident: ref7 doi: 10.1109/IROS.2004.1389813 – ident: ref38 doi: 10.1109/JSEN.2014.2355200 – year: 2012 ident: ref37 publication-title: Pattern Recognation and Machine Learning – ident: ref25 doi: 10.1109/JPROC.2006.887293 – year: 2006 ident: ref41 publication-title: Non-Negative Matrices and Markov Chains – ident: ref15 doi: 10.1109/TCYB.2016.2628161 – ident: ref4 doi: 10.1007/978-3-319-00065-7_57 – ident: ref27 doi: 10.1109/ACC.2014.6858896 – ident: ref3 doi: 10.1142/S0218488511007416 – ident: ref17 doi: 10.2307/2320580 – ident: ref22 doi: 10.1109/IROS.2011.6094958 – ident: ref36 doi: 10.1109/TCYB.2014.2309898 – volume: 43 start-page: 504 year: 2013 ident: ref34 article-title: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace publication-title: IEEE Trans Cybern doi: 10.1109/TSMCB.2012.2210212 – ident: ref14 doi: 10.1142/s0218488515500075 – ident: ref9 doi: 10.1109/TCYB.2015.2508024 – ident: ref20 doi: 10.1109/ICRA.2011.5979704 – ident: ref40 doi: 10.1201/b16113-44 – ident: ref1 doi: 10.1017/S0263574716000229 – ident: ref2 doi: 10.1109/TCYB.2015.2502421 – ident: ref32 doi: 10.1109/TAES.2014.120747 – ident: ref30 doi: 10.3390/s90906869 – ident: ref23 doi: 10.1109/ICRA.2011.5980262 – ident: ref35 doi: 10.1017/S0373463315000351 – ident: ref8 doi: 10.1109/ICUAS.2015.7152393 – ident: ref10 doi: 10.1109/TSP.2015.2405493 – ident: ref11 doi: 10.1109/TRO.2014.2333097 – ident: ref29 doi: 10.1002/rob.21468 – ident: ref24 doi: 10.1145/2463372.2463417 – ident: ref21 doi: 10.1109/IROS.2003.1250604 – ident: ref28 doi: 10.1109/TAES.2012.6237609 – ident: ref26 doi: 10.1109/CDC.2009.5399678 |
| SSID | ssj0000816898 |
| Score | 2.4269192 |
| Snippet | This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1773 |
| SubjectTerms | Algorithms Bayes methods Bayesian analysis Bayesian update Computer simulation Cybernetics Decision making Mobile communication multiagent search Multiagent systems Optimization Parameter estimation particle sampling Probabilistic models Probability density function Probability density functions resource constraints (RCs) Sampling Search algorithms Search problems |
| Title | A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints |
| URI | https://ieeexplore.ieee.org/document/7959619 https://www.ncbi.nlm.nih.gov/pubmed/28678726 https://www.proquest.com/docview/2174526518 https://www.proquest.com/docview/1916710005 |
| Volume | 48 |
| WOSCitedRecordID | wos000435342400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vqgcu9MVj6UNG4gCItI7jxPZxd0XFAVVIFLGcIr9SKlVJ1WSR-Pd4HG_EASpxsxQ7sTzjzNgz830Ar4ORNF6YKitkwzJeSpdJpkOLlbLQKuiQiyCun8TlpVyt1OcteD_VwnjvY_KZP8NmjOW7zq7xquwcebErxPh8JEQ11mpN9ymRQCJS37LQyIJXIVIQM6fq_Gr5fYF5XOKMiWCxGNL0MRl-1AJRFf6wSJFi5d_eZrQ6F7v_N989eJK8SzIf1WEftnx7APtp__bkTQKZfnsIfk6-aMwmb6-zRbBkjiz0L48VlWSeYMZJ8GfJsuvu_IgOTmKxrsZaLDIilJIxWZl8uxl-kE0ggCAHaGSeGPqn8PXiw9XyY5YoFzJbcDVktkSXpbC0EaZ0lllHpVfGByfKmMo12jNnEMGFNarUrNKGV9aV1EnFLWK_P4Pttmv9CyCiYLnjnNrcOu6p0k1puBCWNZw1uslnQDfLXtuER46Tu63juYSqGoVWo9DqJLQZvJuG3I1gHA91PkSJTB2TMGZwvJFtnbZrX-O5DHkC8jDq1fQ4bDSMnujWd-u-DgfbCqGQaDmD56NOTO_eqNLLv3_zCB6Hmckxw-wYtof7tT-BHftzuOnvT4M2r-Rp1ObfQ2LtYw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA6lCvqi1mq9WjWCDypum80mm-zj3WGpeB6CJ9ankF-rhbJbunuF_vfNZHOLD1bwLbDJbshMdiaZme9D6E0wksYLU2aFrGnGuHSZpDq0KJeFroIOuQjiuhDLpTw9rb5uoQ9jLYz3Piaf-UNoxli-a-0arsqOgBe7BIzPO5wxSoZqrfFGJVJIRPJbGhpZ8CtECmPmpDpazX_OIJNLHFIRbBYFoj4qw69aAK7CHzYpkqzc7m9Gu3P88P9m_Ag9SP4lng4KsYO2fPMY7aQd3OG3CWb63S7yU_xNQz558yubBVvm8Exfe6ipxNMENI6DR4vnbXvhB3xwHMt1NVRj4QGjFA_pyvjHWf8bb0IBGFhAI_dE3z1B348_ruYnWSJdyGzBqj6zHJyWwpJaGO4stY5IXxkf3ChjSldrT50BDBdaV1zTUhtWWseJkxWzgP7-FG03beOfISwKmjvGiM2tY55UuuaGCWFpzWit63yCyGbZlU2I5DC5cxVPJqRSIDQFQlNJaBP0fhxyMcBx_KvzLkhk7JiEMUEHG9mqtGE7BSczYArIw6jX4-Ow1SB-ohvfrjsVjrYlgCERPkF7g06M796o0v7fv_kK3TtZfVmoxafl5-fofpilHPLNDtB2f7n2L9Bde9WfdZcvo07fAChQ78I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sampling-Based+Bayesian+Approach+for+Cooperative+Multiagent+Online+Search+With+Resource+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xiao%2C+Hu&rft.au=Cui%2C+Rongxin&rft.au=Xu%2C+Demin&rft.date=2018-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=48&rft.issue=6&rft.spage=1773&rft.epage=1785&rft_id=info:doi/10.1109%2FTCYB.2017.2715228&rft_id=info%3Apmid%2F28678726&rft.externalDocID=7959619 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |