A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints

This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 48; číslo 6; s. 1773 - 1785
Hlavní autoři: Xiao, Hu, Cui, Rongxin, Xu, Demin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.
AbstractList This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.
This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A Bayesian framework is used to update the local probability density functions (PDFs) of the target when the agents obtain observation information. To obtain the global PDF used for decision making, a sampling-based logarithmic opinion pool algorithm is proposed to fuse the local PDFs, and a particle sampling approach is used to represent the continuous PDF. Then the Gaussian mixture model (GMM) is applied to reconstitute the global PDF from the particles, and a weighted expectation maximization algorithm is presented to estimate the parameters of the GMM. Furthermore, we propose an optimization objective which aims to guide agents to find the target with less resource consumptions, and to keep the resource consumption of each agent balanced simultaneously. To this end, a utility function-based optimization problem is put forward, and it is solved by a gradient-based approach. Several contrastive simulations demonstrate that compared with other existing approaches, the proposed one uses less overall resources and shows a better performance of balancing the resource consumption.
Author Xiao, Hu
Xu, Demin
Cui, Rongxin
Author_xml – sequence: 1
  givenname: Hu
  surname: Xiao
  fullname: Xiao, Hu
  email: hu.x@mail.nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Rongxin
  orcidid: 0000-0002-8006-3620
  surname: Cui
  fullname: Cui, Rongxin
  email: r.cui@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Demin
  surname: Xu
  fullname: Xu, Demin
  email: xudm@nwpu.edu.cn
  organization: School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28678726$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFrHCEYxaWkNGmaP6AUitBLLrNRZ9TxuLskbSEh0KSUnsRxvkkMszpRp5D_Pi67ySGHelHk9z7e995HdOCDB4Q-U7KglKiz2_Xf1YIRKhdMUs5Y-w4dMSraijHJD17fQh6ik5QeSDlt-VLtB3TIWiFbycQRgiW-MZtpdP6uWpkEPV6ZJ0jOeLycphiMvcdDiHgdwgTRZPcP8NU8ZmfuwGd87YsS8A2YWMA_Lt_jX5DCHC0UiU85Gudz-oTeD2ZMcLK_j9Hvi_Pb9Y_q8vr7z_XysrJ1o3JlORG1qi0ZZMd7y2xPWlAdKKa6TvSDAdZ3glDBBsUNE6ZrhO056VvV2IaJ-hid7uYW548zpKw3LlkYR-MhzElTRYWkJQle0G9v0Idi2xd3mlHZcCY4bQv1dU_N3QZ6PUW3MfFJvwRYALkDbAwpRRi0dbnEFPx29VFTordt6W1betuW3rdVlPSN8mX4_zRfdhoHAK-8VFwJqupnz-mfDA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TNNLS_2020_3010690
crossref_primary_10_1016_j_oceaneng_2020_106949
crossref_primary_10_1109_TSMC_2019_2903203
crossref_primary_10_1109_TCYB_2021_3114403
crossref_primary_10_1016_j_neucom_2019_03_045
crossref_primary_10_1109_ACCESS_2020_3048178
crossref_primary_10_1109_ACCESS_2020_3048974
crossref_primary_10_1109_TIE_2020_3040686
crossref_primary_10_1109_JSYST_2020_2999314
crossref_primary_10_1080_01605682_2019_1685362
crossref_primary_10_1155_2019_6268127
crossref_primary_10_1109_TFUZZ_2020_2994991
crossref_primary_10_1016_j_automatica_2021_109908
crossref_primary_10_1007_s12555_019_0898_3
crossref_primary_10_1016_j_oceaneng_2022_112065
crossref_primary_10_1016_j_oceaneng_2023_114981
crossref_primary_10_1016_j_ins_2021_03_056
crossref_primary_10_1108_AA_10_2018_0152
crossref_primary_10_1016_j_ast_2022_107528
crossref_primary_10_1016_j_ast_2024_109669
crossref_primary_10_1155_2018_4359036
crossref_primary_10_1016_j_oceaneng_2023_114140
crossref_primary_10_1109_TCYB_2021_3134688
crossref_primary_10_1109_TCYB_2024_3441538
crossref_primary_10_1002_mma_7795
crossref_primary_10_3390_s19245469
crossref_primary_10_1109_JSEN_2022_3216021
crossref_primary_10_1016_j_jfranklin_2019_05_002
crossref_primary_10_3390_s22186942
crossref_primary_10_1002_asjc_3209
crossref_primary_10_1109_ACCESS_2018_2882860
crossref_primary_10_1109_ACCESS_2020_2999644
crossref_primary_10_1155_2018_4071743
crossref_primary_10_1109_LRA_2022_3148472
crossref_primary_10_1109_TCYB_2018_2875625
crossref_primary_10_1109_TEVC_2022_3161942
crossref_primary_10_1016_j_buildenv_2022_109266
crossref_primary_10_1109_TAES_2020_3034026
crossref_primary_10_3390_robotics8030061
crossref_primary_10_1155_2017_3506053
crossref_primary_10_1109_TAES_2024_3478196
crossref_primary_10_1109_TCYB_2021_3108143
crossref_primary_10_1109_TSMC_2020_3036120
crossref_primary_10_1016_j_iot_2024_101447
crossref_primary_10_1049_cth2_12183
crossref_primary_10_1016_j_jfranklin_2022_06_050
crossref_primary_10_1016_j_neucom_2020_03_033
crossref_primary_10_1109_TVT_2024_3524236
crossref_primary_10_1109_TVT_2020_3004140
crossref_primary_10_1155_2018_4657235
crossref_primary_10_1109_TSMC_2019_2946127
crossref_primary_10_1109_TCYB_2022_3166481
crossref_primary_10_1016_j_future_2022_06_015
crossref_primary_10_1109_JSYST_2021_3117959
crossref_primary_10_1109_TCSII_2023_3242456
crossref_primary_10_1007_s10846_019_01004_2
crossref_primary_10_1109_JIOT_2023_3262663
crossref_primary_10_1002_rob_22382
crossref_primary_10_1016_j_compeleceng_2019_106494
crossref_primary_10_1109_ACCESS_2022_3183680
Cites_doi 10.1109/TNN.2008.2000394
10.1109/TNNLS.2015.2482501
10.1109/ROBOT.2006.1642081
10.1109/TRA.2002.805653
10.1016/j.ins.2014.05.054
10.1007/10991459_21
10.1109/TIE.2016.2609838
10.1109/IROS.2004.1389813
10.1109/JSEN.2014.2355200
10.1109/JPROC.2006.887293
10.1109/TCYB.2016.2628161
10.1007/978-3-319-00065-7_57
10.1109/ACC.2014.6858896
10.1142/S0218488511007416
10.2307/2320580
10.1109/IROS.2011.6094958
10.1109/TCYB.2014.2309898
10.1109/TSMCB.2012.2210212
10.1142/s0218488515500075
10.1109/TCYB.2015.2508024
10.1109/ICRA.2011.5979704
10.1201/b16113-44
10.1017/S0263574716000229
10.1109/TCYB.2015.2502421
10.1109/TAES.2014.120747
10.3390/s90906869
10.1109/ICRA.2011.5980262
10.1017/S0373463315000351
10.1109/ICUAS.2015.7152393
10.1109/TSP.2015.2405493
10.1109/TRO.2014.2333097
10.1002/rob.21468
10.1145/2463372.2463417
10.1109/IROS.2003.1250604
10.1109/TAES.2012.6237609
10.1109/CDC.2009.5399678
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2017.2715228
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 1785
ExternalDocumentID 28678726
10_1109_TCYB_2017_2715228
7959619
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61472325; 61633002
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-c506393c0f7b5dc2cd08e9be929bb6dfae2db60162f95a26ab46cd50d894c4263
IEDL.DBID RIE
ISICitedReferencesCount 69
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435342400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 12:29:57 EDT 2025
Mon Jun 30 02:33:26 EDT 2025
Thu Jan 02 23:09:07 EST 2025
Sat Nov 29 06:48:35 EST 2025
Tue Nov 18 22:24:21 EST 2025
Wed Aug 27 02:50:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c506393c0f7b5dc2cd08e9be929bb6dfae2db60162f95a26ab46cd50d894c4263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8006-3620
PMID 28678726
PQID 2174526518
PQPubID 85422
PageCount 13
ParticipantIDs proquest_journals_2174526518
crossref_primary_10_1109_TCYB_2017_2715228
proquest_miscellaneous_1916710005
pubmed_primary_28678726
crossref_citationtrail_10_1109_TCYB_2017_2715228
ieee_primary_7959619
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref15
seneta (ref41) 2006
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
ref2
zhu (ref34) 2013; 43
ref1
ref17
ref38
anzai (ref37) 2012
ref19
ref18
lanillos (ref6) 2013
mathews (ref39) 2008
ref24
ref23
ref26
ref25
ref20
ref22
ref21
stone (ref16) 1976; 118
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref5
ref40
References_xml – ident: ref12
  doi: 10.1109/TNN.2008.2000394
– ident: ref33
  doi: 10.1109/TNNLS.2015.2482501
– ident: ref19
  doi: 10.1109/ROBOT.2006.1642081
– year: 2013
  ident: ref6
  article-title: Minimum time search of mobile targets in uncertain environments
– year: 2008
  ident: ref39
  article-title: Asynchronous decision making for decentralised autonomous systems
– ident: ref31
  doi: 10.1109/TRA.2002.805653
– ident: ref5
  doi: 10.1016/j.ins.2014.05.054
– ident: ref18
  doi: 10.1007/10991459_21
– ident: ref13
  doi: 10.1109/TIE.2016.2609838
– volume: 118
  year: 1976
  ident: ref16
  publication-title: Theory of Optimal Search
– ident: ref7
  doi: 10.1109/IROS.2004.1389813
– ident: ref38
  doi: 10.1109/JSEN.2014.2355200
– year: 2012
  ident: ref37
  publication-title: Pattern Recognation and Machine Learning
– ident: ref25
  doi: 10.1109/JPROC.2006.887293
– year: 2006
  ident: ref41
  publication-title: Non-Negative Matrices and Markov Chains
– ident: ref15
  doi: 10.1109/TCYB.2016.2628161
– ident: ref4
  doi: 10.1007/978-3-319-00065-7_57
– ident: ref27
  doi: 10.1109/ACC.2014.6858896
– ident: ref3
  doi: 10.1142/S0218488511007416
– ident: ref17
  doi: 10.2307/2320580
– ident: ref22
  doi: 10.1109/IROS.2011.6094958
– ident: ref36
  doi: 10.1109/TCYB.2014.2309898
– volume: 43
  start-page: 504
  year: 2013
  ident: ref34
  article-title: Dynamic task assignment and path planning of multi-AUV system based on an improved self-organizing map and velocity synthesis method in three-dimensional underwater workspace
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TSMCB.2012.2210212
– ident: ref14
  doi: 10.1142/s0218488515500075
– ident: ref9
  doi: 10.1109/TCYB.2015.2508024
– ident: ref20
  doi: 10.1109/ICRA.2011.5979704
– ident: ref40
  doi: 10.1201/b16113-44
– ident: ref1
  doi: 10.1017/S0263574716000229
– ident: ref2
  doi: 10.1109/TCYB.2015.2502421
– ident: ref32
  doi: 10.1109/TAES.2014.120747
– ident: ref30
  doi: 10.3390/s90906869
– ident: ref23
  doi: 10.1109/ICRA.2011.5980262
– ident: ref35
  doi: 10.1017/S0373463315000351
– ident: ref8
  doi: 10.1109/ICUAS.2015.7152393
– ident: ref10
  doi: 10.1109/TSP.2015.2405493
– ident: ref11
  doi: 10.1109/TRO.2014.2333097
– ident: ref29
  doi: 10.1002/rob.21468
– ident: ref24
  doi: 10.1145/2463372.2463417
– ident: ref21
  doi: 10.1109/IROS.2003.1250604
– ident: ref28
  doi: 10.1109/TAES.2012.6237609
– ident: ref26
  doi: 10.1109/CDC.2009.5399678
SSID ssj0000816898
Score 2.4269192
Snippet This paper presents a cooperative multiagent search algorithm to solve the problem of searching for a target on a 2-D plane under multiple constraints. A...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1773
SubjectTerms Algorithms
Bayes methods
Bayesian analysis
Bayesian update
Computer simulation
Cybernetics
Decision making
Mobile communication
multiagent search
Multiagent systems
Optimization
Parameter estimation
particle sampling
Probabilistic models
Probability density function
Probability density functions
resource constraints (RCs)
Sampling
Search algorithms
Search problems
Title A Sampling-Based Bayesian Approach for Cooperative Multiagent Online Search With Resource Constraints
URI https://ieeexplore.ieee.org/document/7959619
https://www.ncbi.nlm.nih.gov/pubmed/28678726
https://www.proquest.com/docview/2174526518
https://www.proquest.com/docview/1916710005
Volume 48
WOSCitedRecordID wos000435342400008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vqgcu9MVj6UNG4gCItI7jxPZxd0XFAVVIFLGcIr9SKlVJ1WSR-Pd4HG_EASpxsxQ7sTzjzNgz830Ar4ORNF6YKitkwzJeSpdJpkOLlbLQKuiQiyCun8TlpVyt1OcteD_VwnjvY_KZP8NmjOW7zq7xquwcebErxPh8JEQ11mpN9ymRQCJS37LQyIJXIVIQM6fq_Gr5fYF5XOKMiWCxGNL0MRl-1AJRFf6wSJFi5d_eZrQ6F7v_N989eJK8SzIf1WEftnx7APtp__bkTQKZfnsIfk6-aMwmb6-zRbBkjiz0L48VlWSeYMZJ8GfJsuvu_IgOTmKxrsZaLDIilJIxWZl8uxl-kE0ggCAHaGSeGPqn8PXiw9XyY5YoFzJbcDVktkSXpbC0EaZ0lllHpVfGByfKmMo12jNnEMGFNarUrNKGV9aV1EnFLWK_P4Pttmv9CyCiYLnjnNrcOu6p0k1puBCWNZw1uslnQDfLXtuER46Tu63juYSqGoVWo9DqJLQZvJuG3I1gHA91PkSJTB2TMGZwvJFtnbZrX-O5DHkC8jDq1fQ4bDSMnujWd-u-DgfbCqGQaDmD56NOTO_eqNLLv3_zCB6Hmckxw-wYtof7tT-BHftzuOnvT4M2r-Rp1ObfQ2LtYw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEA6lCvqi1mq9WjWCDypum80mm-zj3WGpeB6CJ9ankF-rhbJbunuF_vfNZHOLD1bwLbDJbshMdiaZme9D6E0wksYLU2aFrGnGuHSZpDq0KJeFroIOuQjiuhDLpTw9rb5uoQ9jLYz3Piaf-UNoxli-a-0arsqOgBe7BIzPO5wxSoZqrfFGJVJIRPJbGhpZ8CtECmPmpDpazX_OIJNLHFIRbBYFoj4qw69aAK7CHzYpkqzc7m9Gu3P88P9m_Ag9SP4lng4KsYO2fPMY7aQd3OG3CWb63S7yU_xNQz558yubBVvm8Exfe6ipxNMENI6DR4vnbXvhB3xwHMt1NVRj4QGjFA_pyvjHWf8bb0IBGFhAI_dE3z1B348_ruYnWSJdyGzBqj6zHJyWwpJaGO4stY5IXxkf3ChjSldrT50BDBdaV1zTUhtWWseJkxWzgP7-FG03beOfISwKmjvGiM2tY55UuuaGCWFpzWit63yCyGbZlU2I5DC5cxVPJqRSIDQFQlNJaBP0fhxyMcBx_KvzLkhk7JiEMUEHG9mqtGE7BSczYArIw6jX4-Ow1SB-ohvfrjsVjrYlgCERPkF7g06M796o0v7fv_kK3TtZfVmoxafl5-fofpilHPLNDtB2f7n2L9Bde9WfdZcvo07fAChQ78I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Sampling-Based+Bayesian+Approach+for+Cooperative+Multiagent+Online+Search+With+Resource+Constraints&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xiao%2C+Hu&rft.au=Cui%2C+Rongxin&rft.au=Xu%2C+Demin&rft.date=2018-06-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=48&rft.issue=6&rft.spage=1773&rft.epage=1785&rft_id=info:doi/10.1109%2FTCYB.2017.2715228&rft_id=info%3Apmid%2F28678726&rft.externalDocID=7959619
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon