Efficient energy management of CO2 capture plant using control-based optimization approach under plant and market uncertainties

•Provide significant cost and energy savings.•Measures the energy performance (quantitatively) of integrated plant.•To assure the simulation is an authentic representation of the integrated plant.•Used to assist an investment decision of PCC control system package. This paper employs a control-based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of process control Jg. 74; S. 2 - 12
Hauptverfasser: Abdul Manaf, Norhuda, Qadir, Abdul, Abbas, Ali
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.02.2019
Schlagworte:
ISSN:0959-1524, 1873-2771
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Provide significant cost and energy savings.•Measures the energy performance (quantitatively) of integrated plant.•To assure the simulation is an authentic representation of the integrated plant.•Used to assist an investment decision of PCC control system package. This paper employs a control-based optimization algorithm encompassing of an intelligence model predictive control (MPC) scheme and mixed integer non-linear programming (MINLP) for coal-fired power plant retrofitted with flexible solvent-based post combustion CO2 capture (PCC) plant (integrated plant). The agility and robustness of the developed control algorithm (MPC) is demonstrated through the control response time and efficiency of energy requirement including the financial and operational benefits of the plant subjected to plant and market uncertainties. While, the MINLP is utilized to forecast plant operational modes by ensuring the operational fidelity of integrated plant. This involves utilization of historical (2011) and forecast (2020) market conditions (electricity tariff and carbon price) subject to maximum plant net operating revenue. The outcomes show that the future power plant will operate in mixed operation modes, for instance in unit turndown and load following modes, which contribute to a minimum capture energy penalty at 3.13 MJth/tonne CO2. Moreover, under the same year (2020), MPC exhibits superior control performance by satisfactorily obtain 94% actual CO2 capture from the ideal cumulative CO2 capture. Additionally, the integrated plant is capable to resume approximately 96% actual revenue from the ideal net operating revenue projected by the control-based optimization algorithm. The algorithm demonstrates that the installation of control system package (MPC) into the flexible PCC plant associated with coal-power generator could contribute to efficient energy management subjects to unprecedented uncertainties.
AbstractList •Provide significant cost and energy savings.•Measures the energy performance (quantitatively) of integrated plant.•To assure the simulation is an authentic representation of the integrated plant.•Used to assist an investment decision of PCC control system package. This paper employs a control-based optimization algorithm encompassing of an intelligence model predictive control (MPC) scheme and mixed integer non-linear programming (MINLP) for coal-fired power plant retrofitted with flexible solvent-based post combustion CO2 capture (PCC) plant (integrated plant). The agility and robustness of the developed control algorithm (MPC) is demonstrated through the control response time and efficiency of energy requirement including the financial and operational benefits of the plant subjected to plant and market uncertainties. While, the MINLP is utilized to forecast plant operational modes by ensuring the operational fidelity of integrated plant. This involves utilization of historical (2011) and forecast (2020) market conditions (electricity tariff and carbon price) subject to maximum plant net operating revenue. The outcomes show that the future power plant will operate in mixed operation modes, for instance in unit turndown and load following modes, which contribute to a minimum capture energy penalty at 3.13 MJth/tonne CO2. Moreover, under the same year (2020), MPC exhibits superior control performance by satisfactorily obtain 94% actual CO2 capture from the ideal cumulative CO2 capture. Additionally, the integrated plant is capable to resume approximately 96% actual revenue from the ideal net operating revenue projected by the control-based optimization algorithm. The algorithm demonstrates that the installation of control system package (MPC) into the flexible PCC plant associated with coal-power generator could contribute to efficient energy management subjects to unprecedented uncertainties.
Author Qadir, Abdul
Abbas, Ali
Abdul Manaf, Norhuda
Author_xml – sequence: 1
  givenname: Norhuda
  surname: Abdul Manaf
  fullname: Abdul Manaf, Norhuda
  email: norhuda.kl@utm.my
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 2
  givenname: Abdul
  surname: Qadir
  fullname: Qadir, Abdul
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
– sequence: 3
  givenname: Ali
  orcidid: 0000-0002-8768-9722
  surname: Abbas
  fullname: Abbas, Ali
  email: ali.abbas@sydney.edu.au
  organization: School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, Australia
BookMark eNqFkE1LAzEQhoMoWKt_QfIHdk32K7vgQSl-QaEXPYdsMqmpbbIkqVAv_nWztl689DIDA887M88FOrXOAkLXlOSU0OZmla8G76SzMS8IbXPCckLrEzShLSuzgjF6iiakq7uM1kV1ji5CWBFCSlY0E_T9oLWRBmzEYMEvd3gjrFjCZpw4jWeLAksxxK0HPKxFGm6DsUs8rvNunfUigMJuiGZjvkQ0zmIxpHOEfMdbq8AfKGFVSvYfkAKsBB-FsdFAuERnWqwDXB36FL09PrzOnrP54ulldj_PZFl1MVXdCdrTuitlofqqZUSDagsQ0Le6Y6yhoi2rtqB1X3WkbgnQhjCpCesUlKqcott9rvQuBA-aSxN_741emDWnhI8y-Yr_yeSjTE4YTzIT3vzDB2_SP7vj4N0ehPTcpwHPw2hbgjIeZOTKmWMRP8kImVw
CitedBy_id crossref_primary_10_1016_j_enconman_2019_112156
crossref_primary_10_3390_en17194986
crossref_primary_10_1016_j_jprocont_2024_103313
crossref_primary_10_1016_j_jprocont_2023_103035
crossref_primary_10_1016_j_ifacol_2024_08_417
Cites_doi 10.1016/j.fuel.2013.08.031
10.1016/j.ijggc.2017.05.001
10.1002/ceat.201100480
10.1016/j.apenergy.2016.02.052
10.1016/j.cherd.2017.12.020
10.1016/j.apenergy.2012.03.036
10.1016/j.ijggc.2018.01.015
10.1016/j.compchemeng.2014.12.017
10.1016/j.apenergy.2016.07.113
10.1016/j.ifacol.2016.07.240
10.1016/j.apenergy.2012.02.032
10.1016/j.energy.2011.08.034
10.1016/j.enconman.2015.02.074
10.1016/j.compchemeng.2017.10.025
10.1016/0950-4214(93)85009-K
10.1016/j.renene.2015.03.046
10.1016/j.energy.2009.06.037
10.1016/j.ijggc.2014.08.017
10.1016/j.enconman.2015.09.049
10.1016/j.ijggc.2015.05.007
10.1016/j.ijepes.2013.03.040
10.1016/j.enconman.2016.09.072
10.1016/j.apenergy.2010.06.013
10.1016/B978-0-444-59506-5.50104-8
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jprocont.2018.07.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-2771
EndPage 12
ExternalDocumentID 10_1016_j_jprocont_2018_07_015
S0959152418301707
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
XFK
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c349t-c3f9a1b1593c2db4870fed82eaeb8f97761a8348215b490580e1607cf079de3d3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000465050900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0959-1524
IngestDate Tue Nov 18 22:31:15 EST 2025
Sat Nov 29 05:09:54 EST 2025
Fri Feb 23 02:16:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy security
MPC algorithm
Real-time uncertainties
Control system package
Efficient energy management
Operational fidelity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-c3f9a1b1593c2db4870fed82eaeb8f97761a8348215b490580e1607cf079de3d3
ORCID 0000-0002-8768-9722
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_jprocont_2018_07_015
crossref_primary_10_1016_j_jprocont_2018_07_015
elsevier_sciencedirect_doi_10_1016_j_jprocont_2018_07_015
PublicationCentury 2000
PublicationDate 2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of process control
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References [Access 06 October 14].
(bib0125) 2012
Strong Growth (bib0130) 2011
Manaf, Qadir, Abbas (bib0090) 2016; 169
Qadir (bib0095) 2015; 97
Ren (bib0075) 2010; 87
Luu, Manaf, Abbas (bib0145) 2015; 39
Purwanto (bib0050) 2015; 81
Australian Energy Market Operator (AEMO).
Lu, Feng, Li (bib0055) 2013; 53
Åkesson (bib0105) 2012; 35
Xiao (bib0035) 2016; 180
Omell (bib0020) 2016; 49
Hossein Sahraei, Ricardez-Sandoval (bib0025) 2014; 30
Zhang, Turton, Bhattacharyya (bib0005) 2018; 70
Alatiqi, Sabri, Alper (bib0030) 1993; 7
Brasington (bib0135) 2007
Nittaya (bib0110) 2014; 116
Ju (bib0040) 2016; 128
Zhang (bib0045) 2015; 106
Cristóbal (bib0065) 2012; 98
Bankole (bib0015) 2018; 109
Ahmadi, Dincer, Rosen (bib0070) 2011; 36
He (bib0010) 2018; 131
Abdilahi, Mustafa (bib0085) 2017; 63
Zaman, Lee (bib0140) 2015; 75
Bernier, Maréchal, Samson (bib0080) 2010; 35
Norhuda (bib0100) 2016; 113
Han, Ahn, Lee (bib0060) 2012; 95
Lin (bib0115) 2012
Ahmadi (10.1016/j.jprocont.2018.07.015_bib0070) 2011; 36
Manaf (10.1016/j.jprocont.2018.07.015_bib0090) 2016; 169
Omell (10.1016/j.jprocont.2018.07.015_bib0020) 2016; 49
Zhang (10.1016/j.jprocont.2018.07.015_bib0045) 2015; 106
Bankole (10.1016/j.jprocont.2018.07.015_bib0015) 2018; 109
Ren (10.1016/j.jprocont.2018.07.015_bib0075) 2010; 87
Ju (10.1016/j.jprocont.2018.07.015_bib0040) 2016; 128
Brasington (10.1016/j.jprocont.2018.07.015_bib0135) 2007
He (10.1016/j.jprocont.2018.07.015_bib0010) 2018; 131
Xiao (10.1016/j.jprocont.2018.07.015_bib0035) 2016; 180
Abdilahi (10.1016/j.jprocont.2018.07.015_bib0085) 2017; 63
Norhuda (10.1016/j.jprocont.2018.07.015_bib0100) 2016; 113
Bernier (10.1016/j.jprocont.2018.07.015_bib0080) 2010; 35
Luu (10.1016/j.jprocont.2018.07.015_bib0145) 2015; 39
10.1016/j.jprocont.2018.07.015_bib0120
Purwanto (10.1016/j.jprocont.2018.07.015_bib0050) 2015; 81
Lu (10.1016/j.jprocont.2018.07.015_bib0055) 2013; 53
Qadir (10.1016/j.jprocont.2018.07.015_bib0095) 2015; 97
Han (10.1016/j.jprocont.2018.07.015_bib0060) 2012; 95
Åkesson (10.1016/j.jprocont.2018.07.015_bib0105) 2012; 35
Lin (10.1016/j.jprocont.2018.07.015_bib0115) 2012
Strong Growth (10.1016/j.jprocont.2018.07.015_bib0130) 2011
Zhang (10.1016/j.jprocont.2018.07.015_bib0005) 2018; 70
Nittaya (10.1016/j.jprocont.2018.07.015_bib0110) 2014; 116
(10.1016/j.jprocont.2018.07.015_bib0125) 2012
Zaman (10.1016/j.jprocont.2018.07.015_bib0140) 2015; 75
Alatiqi (10.1016/j.jprocont.2018.07.015_bib0030) 1993; 7
Hossein Sahraei (10.1016/j.jprocont.2018.07.015_bib0025) 2014; 30
Cristóbal (10.1016/j.jprocont.2018.07.015_bib0065) 2012; 98
References_xml – volume: 81
  start-page: 308
  year: 2015
  end-page: 318
  ident: bib0050
  article-title: Multi-objective optimization model for sustainable Indonesian electricity system: analysis of economic, environment, and adequacy of energy sources
  publication-title: Renew. Energy
– volume: 97
  start-page: 7
  year: 2015
  end-page: 19
  ident: bib0095
  article-title: Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process Chage
  publication-title: Energy Convers. Manag.
– volume: 95
  start-page: 186
  year: 2012
  end-page: 195
  ident: bib0060
  article-title: A multi-objective optimization model for sustainable electricity generation and CO 2 mitigation (EGCM) infrastructure design considering economic profit and financial risk
  publication-title: Appl. Energy
– year: 2007
  ident: bib0135
  article-title: Integration and Operation of Post-combustion Capture System on Coal Fired Power Generation: Load Following and Solvent Storage. Master Thesis
– reference: [Access 06 October 14].
– volume: 128
  start-page: 160
  year: 2016
  end-page: 177
  ident: bib0040
  article-title: Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response
  publication-title: Energy Convers. Manag.
– volume: 98
  start-page: 266
  year: 2012
  end-page: 272
  ident: bib0065
  article-title: Multi-objective optimization of coal-fired electricity production with CO2 capture
  publication-title: Appl. Energy
– volume: 36
  start-page: 5886
  year: 2011
  end-page: 5898
  ident: bib0070
  article-title: Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants
  publication-title: Energy
– volume: 70
  start-page: 105
  year: 2018
  end-page: 116
  ident: bib0005
  article-title: Nonlinear model predictive control and H∞ robust control for a post-combustion CO2 capture process
  publication-title: Int. J. Greenh. Gas Control
– volume: 7
  start-page: 119
  year: 1993
  end-page: 121
  ident: bib0030
  article-title: Multivariable control system design of CO2/amine absorber/desorber units by using a rigorous steady-state model
  publication-title: Gas Sep. Purif.
– start-page: 1366
  year: 2012
  end-page: 1371
  ident: bib0115
  article-title: Control strategies for flexible operation of power plant integrated with CO2 capture plant
  publication-title: Computer Aided Chemical Engineering
– volume: 106
  start-page: 543
  year: 2015
  end-page: 556
  ident: bib0045
  article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems
  publication-title: Energy Convers. Manag.
– volume: 75
  start-page: 14
  year: 2015
  end-page: 27
  ident: bib0140
  article-title: Optimization of the various modes of flexible operation for post-combustion CO2 capture plant
  publication-title: Comput. Chem. Eng.
– volume: 116
  start-page: 672
  year: 2014
  end-page: 691
  ident: bib0110
  article-title: Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants
  publication-title: Fuel
– volume: 87
  start-page: 3642
  year: 2010
  end-page: 3651
  ident: bib0075
  article-title: Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects
  publication-title: Appl. Energy
– volume: 169
  start-page: 912
  year: 2016
  end-page: 926
  ident: bib0090
  article-title: Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions
  publication-title: Appl. Energy
– volume: 53
  start-page: 106
  year: 2013
  end-page: 112
  ident: bib0055
  article-title: Low-carbon emission/economic power dispatch using the multi-objective bacterial colony chemotaxis optimization algorithm considering carbon capture power plant
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 30
  start-page: 58
  year: 2014
  end-page: 71
  ident: bib0025
  article-title: Controllability and optimal scheduling of a CO2 capture plant using model predictive control
  publication-title: Int. J. Greenh. Gas Control
– volume: 63
  start-page: 12
  year: 2017
  end-page: 19
  ident: bib0085
  article-title: Carbon capture power plants: Decoupled emission and generation outputs for economic dispatch
  publication-title: Int. J. Greenh. Gas Control
– volume: 113
  start-page: 635
  year: 2016
  end-page: 653
  ident: bib0100
  article-title: Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO
  publication-title: J. Clean. Prod.
– volume: 35
  start-page: 445
  year: 2012
  end-page: 454
  ident: bib0105
  article-title: Nonlinear model predictive control of a CO2 post‐combustion absorption unit
  publication-title: Chem. Eng. Technol.
– year: 2012
  ident: bib0125
  article-title: The Impact of Congestion on Bidding and Inter-regional Trade in the NEM. Special Report
– year: 2011
  ident: bib0130
  article-title: Low Pollution: Modelling a Carbon
– volume: 131
  start-page: 430
  year: 2018
  end-page: 439
  ident: bib0010
  article-title: Dynamic modeling and advanced control of post-combustion CO2 capture plants
  publication-title: Chem. Eng. Res. Des.
– volume: 49
  start-page: 633
  year: 2016
  end-page: 638
  ident: bib0020
  article-title: Advanced modeling and control of a solid sorbent-based CO2 capture process
  publication-title: IFAC Pap. OnLine
– volume: 35
  start-page: 1121
  year: 2010
  end-page: 1128
  ident: bib0080
  article-title: Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective
  publication-title: Energy
– volume: 180
  start-page: 213
  year: 2016
  end-page: 233
  ident: bib0035
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
– volume: 39
  start-page: 377
  year: 2015
  end-page: 389
  ident: bib0145
  article-title: Dynamic modelling and control strategies for flexible operation of amine-based post-combustion CO 2 capture systems
  publication-title: Int. J. Greenh. Gas Control
– volume: 109
  start-page: 30
  year: 2018
  end-page: 47
  ident: bib0015
  article-title: Optimal scheduling and its Lyapunov stability for advanced load-following energy plants with CO2 capture
  publication-title: Comput. Chem. Eng.
– reference: Australian Energy Market Operator (AEMO).
– volume: 116
  start-page: 672
  year: 2014
  ident: 10.1016/j.jprocont.2018.07.015_bib0110
  article-title: Dynamic modelling and control of MEA absorption processes for CO2 capture from power plants
  publication-title: Fuel
  doi: 10.1016/j.fuel.2013.08.031
– volume: 63
  start-page: 12
  year: 2017
  ident: 10.1016/j.jprocont.2018.07.015_bib0085
  article-title: Carbon capture power plants: Decoupled emission and generation outputs for economic dispatch
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2017.05.001
– volume: 35
  start-page: 445
  issue: 3
  year: 2012
  ident: 10.1016/j.jprocont.2018.07.015_bib0105
  article-title: Nonlinear model predictive control of a CO2 post‐combustion absorption unit
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.201100480
– volume: 169
  start-page: 912
  year: 2016
  ident: 10.1016/j.jprocont.2018.07.015_bib0090
  article-title: Temporal multiscalar decision support framework for flexible operation of carbon capture plants targeting low-carbon management of power plant emissions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.052
– volume: 131
  start-page: 430
  year: 2018
  ident: 10.1016/j.jprocont.2018.07.015_bib0010
  article-title: Dynamic modeling and advanced control of post-combustion CO2 capture plants
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2017.12.020
– volume: 98
  start-page: 266
  year: 2012
  ident: 10.1016/j.jprocont.2018.07.015_bib0065
  article-title: Multi-objective optimization of coal-fired electricity production with CO2 capture
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.036
– volume: 70
  start-page: 105
  year: 2018
  ident: 10.1016/j.jprocont.2018.07.015_bib0005
  article-title: Nonlinear model predictive control and H∞ robust control for a post-combustion CO2 capture process
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2018.01.015
– volume: 75
  start-page: 14
  year: 2015
  ident: 10.1016/j.jprocont.2018.07.015_bib0140
  article-title: Optimization of the various modes of flexible operation for post-combustion CO2 capture plant
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.12.017
– volume: 180
  start-page: 213
  year: 2016
  ident: 10.1016/j.jprocont.2018.07.015_bib0035
  article-title: Research and application of a hybrid model based on multi-objective optimization for electrical load forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.07.113
– volume: 49
  start-page: 633
  issue: 7
  year: 2016
  ident: 10.1016/j.jprocont.2018.07.015_bib0020
  article-title: Advanced modeling and control of a solid sorbent-based CO2 capture process
  publication-title: IFAC Pap. OnLine
  doi: 10.1016/j.ifacol.2016.07.240
– volume: 95
  start-page: 186
  year: 2012
  ident: 10.1016/j.jprocont.2018.07.015_bib0060
  article-title: A multi-objective optimization model for sustainable electricity generation and CO 2 mitigation (EGCM) infrastructure design considering economic profit and financial risk
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.02.032
– year: 2012
  ident: 10.1016/j.jprocont.2018.07.015_bib0125
– year: 2011
  ident: 10.1016/j.jprocont.2018.07.015_bib0130
– volume: 36
  start-page: 5886
  issue: 10
  year: 2011
  ident: 10.1016/j.jprocont.2018.07.015_bib0070
  article-title: Exergy, exergoeconomic and environmental analyses and evolutionary algorithm based multi-objective optimization of combined cycle power plants
  publication-title: Energy
  doi: 10.1016/j.energy.2011.08.034
– volume: 97
  start-page: 7
  issue: 0
  year: 2015
  ident: 10.1016/j.jprocont.2018.07.015_bib0095
  article-title: Flexible dynamic operation of solar-integrated power plant with solvent based post-combustion carbon capture (PCC) process Chage
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.02.074
– volume: 109
  start-page: 30
  year: 2018
  ident: 10.1016/j.jprocont.2018.07.015_bib0015
  article-title: Optimal scheduling and its Lyapunov stability for advanced load-following energy plants with CO2 capture
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.10.025
– year: 2007
  ident: 10.1016/j.jprocont.2018.07.015_bib0135
– volume: 7
  start-page: 119
  issue: 2
  year: 1993
  ident: 10.1016/j.jprocont.2018.07.015_bib0030
  article-title: Multivariable control system design of CO2/amine absorber/desorber units by using a rigorous steady-state model
  publication-title: Gas Sep. Purif.
  doi: 10.1016/0950-4214(93)85009-K
– volume: 113
  start-page: 635
  issue: 1 (February)
  year: 2016
  ident: 10.1016/j.jprocont.2018.07.015_bib0100
  article-title: Dynamic modelling, identification and preliminary control analysis of an amine-based post-combustion CO2 capture pilot plant
  publication-title: J. Clean. Prod.
– volume: 81
  start-page: 308
  year: 2015
  ident: 10.1016/j.jprocont.2018.07.015_bib0050
  article-title: Multi-objective optimization model for sustainable Indonesian electricity system: analysis of economic, environment, and adequacy of energy sources
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.03.046
– volume: 35
  start-page: 1121
  issue: 2
  year: 2010
  ident: 10.1016/j.jprocont.2018.07.015_bib0080
  article-title: Multi-objective design optimization of a natural gas-combined cycle with carbon dioxide capture in a life cycle perspective
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.037
– volume: 30
  start-page: 58
  issue: 0
  year: 2014
  ident: 10.1016/j.jprocont.2018.07.015_bib0025
  article-title: Controllability and optimal scheduling of a CO2 capture plant using model predictive control
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2014.08.017
– volume: 106
  start-page: 543
  year: 2015
  ident: 10.1016/j.jprocont.2018.07.015_bib0045
  article-title: Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2015.09.049
– volume: 39
  start-page: 377
  year: 2015
  ident: 10.1016/j.jprocont.2018.07.015_bib0145
  article-title: Dynamic modelling and control strategies for flexible operation of amine-based post-combustion CO 2 capture systems
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2015.05.007
– ident: 10.1016/j.jprocont.2018.07.015_bib0120
– volume: 53
  start-page: 106
  year: 2013
  ident: 10.1016/j.jprocont.2018.07.015_bib0055
  article-title: Low-carbon emission/economic power dispatch using the multi-objective bacterial colony chemotaxis optimization algorithm considering carbon capture power plant
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.03.040
– volume: 128
  start-page: 160
  year: 2016
  ident: 10.1016/j.jprocont.2018.07.015_bib0040
  article-title: Multi-objective stochastic scheduling optimization model for connecting a virtual power plant to wind-photovoltaic-electric vehicles considering uncertainties and demand response
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2016.09.072
– volume: 87
  start-page: 3642
  issue: 12
  year: 2010
  ident: 10.1016/j.jprocont.2018.07.015_bib0075
  article-title: Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.06.013
– start-page: 1366
  year: 2012
  ident: 10.1016/j.jprocont.2018.07.015_bib0115
  article-title: Control strategies for flexible operation of power plant integrated with CO2 capture plant
  doi: 10.1016/B978-0-444-59506-5.50104-8
SSID ssj0003726
Score 2.264024
Snippet •Provide significant cost and energy savings.•Measures the energy performance (quantitatively) of integrated plant.•To assure the simulation is an authentic...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 2
SubjectTerms Control system package
Efficient energy management
Energy security
MPC algorithm
Operational fidelity
Real-time uncertainties
Title Efficient energy management of CO2 capture plant using control-based optimization approach under plant and market uncertainties
URI https://dx.doi.org/10.1016/j.jprocont.2018.07.015
Volume 74
WOSCitedRecordID wos000465050900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1873-2771
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003726
  issn: 0959-1524
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwELYq4MAeYIFd8dhd-bC3KpDGCbGP1aqI3QOwEki9RU7iaKnSNCot4sbf4OcyfialiC4HLlZr1c5jvs6M7ZlvEPoZiZyAH8o8EeWwQIlD7oEZzuArCTiXmOGhKjYRX1zQ4ZBddTpPNhfmvoyrij48sPpDRQ19IGyZOvsOcbtJoQM-g9ChBbFD-1-CHyhSCHnEL3Re39hFuKjYi8ugm_FaHRzUJbzX7twk3qqYdU-atbw7AU0yNimajndc1cydmlFyw32sUqahO9OBBTMbkbjs7dY6IcFepjl1yuelisEpzCnSv3mzR_CXg8VV2kv-rBmT6iy0fnnb3rSQeVIuAKTZfQTXIWwr4jhsa9KWSdaB1kvKXu87jI5H8hHg7mWgHlVUrDpDdJFd-4XVc7GINsxtlNh5EjlP4seJL9kL1gOAMujL9f7vwfCPs_IkVqX83IO0ss9fv6PXHZ-WM3P9GW0ZueC-Rs8O6ohqF23bCh_YKPxd9KlFV7mHHh20sIYWbqCFJwUGaGEDLaxAghW08AK0cBta2EILK2iZUQAtrKGFF6D1Bd2cDa5_nXumgIeXkZDNoC0Y76XgMZMsyFNYG_uFyGkguEhpASuP0x6nkl2pF6Uh8yPqC8l3mBV-zHJBcvIVrVWTSuwjDJaFRJJMTh77k4jyU1h3UKboNBml9ABF9u0mmWG3l0VWyuRt-R6gEzeu1vwuK0cwK7zEeKna-0wAlyvGHr77akdos_n_fENrs-lcfEcb2f3s9m76w4DyGd6uvTI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+energy+management+of+CO2+capture+plant+using+control-based+optimization+approach+under+plant+and+market+uncertainties&rft.jtitle=Journal+of+process+control&rft.au=Abdul+Manaf%2C+Norhuda&rft.au=Qadir%2C+Abdul&rft.au=Abbas%2C+Ali&rft.date=2019-02-01&rft.issn=0959-1524&rft.volume=74&rft.spage=2&rft.epage=12&rft_id=info:doi/10.1016%2Fj.jprocont.2018.07.015&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jprocont_2018_07_015
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon