A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network
Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic infor...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of biomedical and health informatics Jg. 26; H. 7; S. 3251 - 3260 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN . |
|---|---|
| AbstractList | Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN.Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN. Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN . Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the networks ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoders features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the features richness and reduces the features redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN. |
| Author | Cui, Xueying Han, Zefang Shangguan, Hong Ren, Huiying Zhang, Pengcheng Zhang, Xiong |
| Author_xml | – sequence: 1 givenname: Zefang orcidid: 0000-0002-4048-1297 surname: Han fullname: Han, Zefang email: s20190517@stu.tyust.edu.cn organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China – sequence: 2 givenname: Hong orcidid: 0000-0002-9802-4494 surname: Shangguan fullname: Shangguan, Hong email: shangguan_hong@tyust.edu.cn organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China – sequence: 3 givenname: Xiong orcidid: 0000-0002-9214-396X surname: Zhang fullname: Zhang, Xiong email: zx@tyust.edu.cn organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China – sequence: 4 givenname: Pengcheng orcidid: 0000-0003-3560-1167 surname: Zhang fullname: Zhang, Pengcheng email: zhangpc198456@163.com organization: North University of China in Shanxi Province of China, Taiyuan, China – sequence: 5 givenname: Xueying surname: Cui fullname: Cui, Xueying email: xueyingcui@tyust.edu.cn organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China – sequence: 6 givenname: Huiying surname: Ren fullname: Ren, Huiying email: s202115210220@stu.tyust.edu.cn organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35239495$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kctOwzAQRS0E4v0BCAlFYsMmxc_YXvYBtKiCBbCOXHuCAmkMdiLE3-PSwoIFs_DMWOeOrbkHaLv1LSB0QvCAEKwvb0fT2YBiSgeMCCGV2kL7lBQqpxSr7Z-aaL6HjmN8wSlUutLFLtpjgjLNtdhHw2E26U2TX7XWOwj5Q90-N5BP4LvNRiaCy-b-I5_4CNn4MZtA6-uYqOwOug8fXo_QTmWaCMebfIierq8ex9N8fn8zGw_nuWVcd-lUlC-E4hUrHJWO64WU2liLheSaS15VzgjNjSuotZJh7RQWxjjCWGordogu1nPfgn_vIXblso4Wmsa04PtY0oIVhCuhRULP_6Avvg9t-l2iFNVpK1Ql6mxD9YsluPIt1EsTPsuf5SSArAEbfIwBql-E4HLlQbnyoFx5UG48SBr5R2PrznS1b7tg6uZf5elaWQPA70ta0kJjzr4AXRCPgQ |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1088_1361_6560_aced33 crossref_primary_10_1109_TIM_2022_3227549 crossref_primary_10_1007_s13534_024_00419_7 crossref_primary_10_1002_mp_17387 crossref_primary_10_1016_j_cmpb_2022_106851 crossref_primary_10_1371_journal_pone_0291911 crossref_primary_10_1109_TCI_2025_3553039 crossref_primary_10_1002_ima_22899 crossref_primary_10_1016_j_neucom_2024_128741 crossref_primary_10_1002_acm2_14270 crossref_primary_10_1007_s00530_024_01575_7 crossref_primary_10_1016_j_compbiomed_2023_107162 crossref_primary_10_1109_JBHI_2022_3201232 crossref_primary_10_1007_s11042_023_15916_7 crossref_primary_10_1007_s11760_023_02560_9 crossref_primary_10_1016_j_compbiomed_2024_108112 crossref_primary_10_1016_j_compbiomed_2024_108378 crossref_primary_10_1007_s10489_025_06604_0 crossref_primary_10_1038_s41598_025_10139_2 crossref_primary_10_1109_JBHI_2024_3376628 crossref_primary_10_1016_j_ijmedinf_2025_105903 crossref_primary_10_1109_ACCESS_2025_3526619 crossref_primary_10_1109_JBHI_2024_3403199 crossref_primary_10_1007_s10489_025_06553_8 crossref_primary_10_3233_XST_230094 crossref_primary_10_1109_JBHI_2022_3225697 crossref_primary_10_1109_TAI_2024_3440219 crossref_primary_10_1109_TIM_2025_3547474 crossref_primary_10_1007_s00034_023_02488_y crossref_primary_10_1016_j_measurement_2025_117510 crossref_primary_10_1080_13682199_2023_2176809 crossref_primary_10_1109_TRPMS_2025_3541169 crossref_primary_10_1148_radiol_230681 crossref_primary_10_1117_1_JEI_34_2_023048 crossref_primary_10_1109_TIM_2025_3551492 crossref_primary_10_1016_j_nima_2023_168519 |
| Cites_doi | 10.1109/CVPR.2017.632 10.1109/TMI.2020.3014433 10.1148/radiology.175.3.2343122 10.1109/IJCNN48605.2020.9206816 10.1109/TMI.2017.2715284 10.1088/0031-9155/55/18/009 10.1109/TIP.2020.3019644 10.1016/0031-3203(92)90121-x 10.1109/CVPR.2019.00181 10.1109/TIP.2020.2973802 10.4103/0973-1482.172713 10.1007/978-3-319-24574-4_28 10.1007/s11760-020-01790-5 10.1364/boe.8.000679 10.1016/j.heliyon.2017.e00393 10.1109/ACCESS.2019.2961983 10.1109/ICCV.2019.00574 10.23919/Eusipco47968.2020.9287607 10.1007/s11760-009-0144-1 10.1109/ACCESS.2019.2934178 10.1109/LSP.2019.2922851 10.1109/MSP.2008.930649 10.17977/um018v2i12019p41-46 10.1109/CVPR.2018.00263 10.1109/TIP.2005.859378 10.3390/app10134446 10.1109/TIP.2018.2839891 10.1109/TBME.2013.2287244 10.1109/CVPR.2019.00400 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2022.3155788 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 3260 |
| ExternalDocumentID | 35239495 10_1109_JBHI_2022_3155788 9726904 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Fundamental Research Program of Shanxi Province grantid: 20210302124265; 201901D111261 – fundername: Natural Science for Youth Foundation of China grantid: 62001321 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CHZPO NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-c3824b584f36d27d49b779acc05749474ffda594ad62cc7309d805aad133c73f3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 43 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819832600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 05:50:14 EDT 2025 Sun Nov 09 08:36:28 EST 2025 Thu Jan 02 22:56:32 EST 2025 Tue Nov 18 22:33:10 EST 2025 Sat Nov 29 04:18:29 EST 2025 Wed Aug 27 02:23:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-c3824b584f36d27d49b779acc05749474ffda594ad62cc7309d805aad133c73f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-9802-4494 0000-0003-3560-1167 0000-0002-9214-396X 0000-0002-4048-1297 |
| PMID | 35239495 |
| PQID | 2682921928 |
| PQPubID | 85417 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2636148595 crossref_primary_10_1109_JBHI_2022_3155788 crossref_citationtrail_10_1109_JBHI_2022_3155788 pubmed_primary_35239495 ieee_primary_9726904 proquest_journals_2682921928 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref32 ref2 ref17 Luo (ref1) 2015; 30 ref16 ref19 Yuan (ref25) 2020 ref18 ref24 ref23 ref26 ref20 ref22 ref21 ref28 ref29 ref8 ref7 (ref27) 2017 ref9 ref4 ref3 Geng (ref10) 2018 ref6 ref5 |
| References_xml | – ident: ref17 doi: 10.1109/CVPR.2017.632 – ident: ref20 doi: 10.1109/TMI.2020.3014433 – ident: ref4 doi: 10.1148/radiology.175.3.2343122 – ident: ref6 doi: 10.1109/IJCNN48605.2020.9206816 – ident: ref13 doi: 10.1109/TMI.2017.2715284 – ident: ref30 doi: 10.1088/0031-9155/55/18/009 – ident: ref24 doi: 10.1109/TIP.2020.3019644 – ident: ref26 doi: 10.1016/0031-3203(92)90121-x – ident: ref7 doi: 10.1109/CVPR.2019.00181 – ident: ref16 doi: 10.1109/TIP.2020.2973802 – ident: ref3 doi: 10.4103/0973-1482.172713 – ident: ref14 doi: 10.1007/978-3-319-24574-4_28 – year: 2018 ident: ref10 article-title: Unsupervisedsemi-supervised deep learning for low-dose CT enhancement – ident: ref18 doi: 10.1007/s11760-020-01790-5 – ident: ref5 doi: 10.1364/boe.8.000679 – ident: ref22 doi: 10.1016/j.heliyon.2017.e00393 – ident: ref31 doi: 10.1109/ACCESS.2019.2961983 – ident: ref15 doi: 10.1109/ICCV.2019.00574 – ident: ref19 doi: 10.23919/Eusipco47968.2020.9287607 – ident: ref33 doi: 10.1007/s11760-009-0144-1 – volume: 30 start-page: 224 issue: 1 year: 2015 ident: ref1 article-title: Research status and prospect for low-dose CT imaging publication-title: J. Data Acquisition Process. – ident: ref11 doi: 10.1109/ACCESS.2019.2934178 – year: 2020 ident: ref25 article-title: HS-ResNet: Hierarchical-split block on convolutional neural network – ident: ref21 doi: 10.1109/LSP.2019.2922851 – ident: ref32 doi: 10.1109/MSP.2008.930649 – year: 2017 ident: ref27 article-title: Low dose CT grand challenge – ident: ref29 doi: 10.17977/um018v2i12019p41-46 – ident: ref8 doi: 10.1109/CVPR.2018.00263 – ident: ref34 doi: 10.1109/TIP.2005.859378 – ident: ref23 doi: 10.3390/app10134446 – ident: ref9 doi: 10.1109/TIP.2018.2839891 – ident: ref2 doi: 10.1109/TBME.2013.2287244 – ident: ref12 doi: 10.1109/CVPR.2019.00400 – ident: ref28 article-title: Piglet dataset |
| SSID | ssj0000816896 |
| Score | 2.5233624 |
| Snippet | Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3251 |
| SubjectTerms | Bioinformatics Coders Complementation Computed tomography Encoder-decoder structure Feature extraction Generative adversarial network Generative adversarial networks hierarchical-split ResNet image denoising Image edge detection Image quality LDCT Medical imaging Modules Noise reduction Quality control Redundancy Self-similarity Semantics Structural hierarchy Testing X-ray imaging |
| Title | A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network |
| URI | https://ieeexplore.ieee.org/document/9726904 https://www.ncbi.nlm.nih.gov/pubmed/35239495 https://www.proquest.com/docview/2682921928 https://www.proquest.com/docview/2636148595 |
| Volume | 26 |
| WOSCitedRecordID | wos000819832600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5sQ8QX75fqlAo-idUuTZrmcTpFZQ5Bhb2VLElhMFrZRf--J2lXfFDBl5LQpA055-TcknwAZwzXO2NXv0xydFA6ZIQyJ1GueMwJZSEuyw61pM8Hg2Q4FM8NuKjPwhhj3OYzc2mLLpevC7WwobIrwQk6c7QJTc55eVarjqc4AAkHx0WwEKAg0iqJ2QnF1eP1_QM6g4Sgj8qQSS1MH5oekaAWWOKbRnIQK79bm07r3G38b7ybsF5Zl363ZIctaJh8G1afqvz5DnS7fm8hJ8Ftbo-yT4MXVFwTE_SMq_rXqNK03y8-g14xM_7Nq98zeTG24QR_UO4X34W3u9vXm_ugAlEIVETFHJ8JoSM0M7Io1oRrKkacC6kUGmpUUE6zTEsmqNQxUQrlXegkZFJqdF6xmkV70MqL3ByAH9IInRVhIkY1NZomCruxjmHZKNaKZx6Ey4lMVXXDuAW6mKTO0whFasmQWjKkFRk8OK-7vJfXa_zVeMfOcd2wml4P2ktqpZUAzlISJ0QgExDsdVq_RtGx-RCZm2Jh20T2GlQmmAf7JZXrby-Z4_Dnfx7Bmh1ZuW-3Da35dGGOYUV9zMez6Qny5zA5cfz5BQGJ2mM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqEovUJ5dHm0qcUIEss44jo8LC1rKskJikbhFXtuRkFYJ2gf8fcZONuqBInGJbMVOLM-M52X7AzjitN5Zt_rlSpCD0mYjkjlFciUSwZBHtCx71JK-GAzSx0d5twQnzVkYa63ffGZPXdHn8k2p5y5UdiYFI2cOv8AKR2Tt6rRWE1HxEBIekItRISRRxDqN2Y7k2d_z3jW5g4yRl8qJTR1QHxkfsUQHLfGPTvIgK_-3N73euVr_3Ih_wFptXwadiiE2YMkWm_Dtts6gb0GnE3TnahxeFu4w-yS8J9U1tmHX-mpwTkrNBP3yNeyWUxtcDIOuLconF1AIBtWO8W14uLocXvTCGkYh1DHKGT1ThiMyNPI4MUwYlCMhpNKaTDWUKDDPjeISlUmY1iTx0qQRV8qQ-0rVPN6B5aIs7E8IIozJXZE25mjQGkw1deNty_NRYrTIWxAtJjLT9R3jDupinHlfI5KZI0PmyJDVZGjBcdPlubpg46PGW26Om4b19LbgYEGtrBbBacaSlEliAka9_jSvSXhcRkQVtpy7NrG7CJVL3oLdisrNtxfMsff-P3_Dam9428_614ObffjuRlnt4j2A5dlkbg_hq36ZPU0nvzyXvgFj1tzC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Encoder-Single-Decoder+Based+Low-dose+CT+Denoising+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Han%2C+Zefang&rft.au=Shangguan%2C+Hong&rft.au=Zhang%2C+Xiong&rft.au=Zhang%2C+Pengcheng&rft.date=2022-07-01&rft.eissn=2168-2208&rft.volume=PP&rft_id=info:doi/10.1109%2FJBHI.2022.3155788&rft_id=info%3Apmid%2F35239495&rft.externalDocID=35239495 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |