A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network

Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic infor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 26; H. 7; S. 3251 - 3260
Hauptverfasser: Han, Zefang, Shangguan, Hong, Zhang, Xiong, Zhang, Pengcheng, Cui, Xueying, Ren, Huiying
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN .
AbstractList Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN.Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN.
Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the network's ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoder's features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the feature's richness and reduces the feature's redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN .
Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of generator include more shallow visual information such as edges and texture, while the deep features of generator contain more deep semantic information such as organization structure. To improve the networks ability to categorically deal with different kinds of information, this paper proposes a new type of GAN with dual-encoder- single-decoder structure. In the structure of the generator, firstly, a pyramid non-local attention module in the main encoder channel is designed to improve the feature extraction effectiveness by enhancing the features with self-similarity; Secondly, another encoder with shallow feature processing module and deep feature processing module is proposed to improve the encoding capabilities of the generator; Finally, the final denoised CT image is generated by fusing main encoders features, shallow visual features, and deep semantic features. The quality of the generated images is improved due to the use of feature complementation in the generator. In order to improve the adversarial training ability of discriminator, a hierarchical-split ResNet structure is proposed, which improves the features richness and reduces the features redundancy in discriminator. The experimental results show that compared with the traditional single-encoder- single-decoder based GAN, the proposed method performs better in both image quality and medical diagnostic acceptability. Code is available in https://github.com/hanzefang/DESDGAN.
Author Cui, Xueying
Han, Zefang
Shangguan, Hong
Ren, Huiying
Zhang, Pengcheng
Zhang, Xiong
Author_xml – sequence: 1
  givenname: Zefang
  orcidid: 0000-0002-4048-1297
  surname: Han
  fullname: Han, Zefang
  email: s20190517@stu.tyust.edu.cn
  organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China
– sequence: 2
  givenname: Hong
  orcidid: 0000-0002-9802-4494
  surname: Shangguan
  fullname: Shangguan, Hong
  email: shangguan_hong@tyust.edu.cn
  organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China
– sequence: 3
  givenname: Xiong
  orcidid: 0000-0002-9214-396X
  surname: Zhang
  fullname: Zhang, Xiong
  email: zx@tyust.edu.cn
  organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China
– sequence: 4
  givenname: Pengcheng
  orcidid: 0000-0003-3560-1167
  surname: Zhang
  fullname: Zhang, Pengcheng
  email: zhangpc198456@163.com
  organization: North University of China in Shanxi Province of China, Taiyuan, China
– sequence: 5
  givenname: Xueying
  surname: Cui
  fullname: Cui, Xueying
  email: xueyingcui@tyust.edu.cn
  organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China
– sequence: 6
  givenname: Huiying
  surname: Ren
  fullname: Ren, Huiying
  email: s202115210220@stu.tyust.edu.cn
  organization: Taiyuan University of Science and Technology in Shanxi Province of China, Taiyuan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35239495$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOwzAQRS0E4v0BCAlFYsMmxc_YXvYBtKiCBbCOXHuCAmkMdiLE3-PSwoIFs_DMWOeOrbkHaLv1LSB0QvCAEKwvb0fT2YBiSgeMCCGV2kL7lBQqpxSr7Z-aaL6HjmN8wSlUutLFLtpjgjLNtdhHw2E26U2TX7XWOwj5Q90-N5BP4LvNRiaCy-b-I5_4CNn4MZtA6-uYqOwOug8fXo_QTmWaCMebfIierq8ex9N8fn8zGw_nuWVcd-lUlC-E4hUrHJWO64WU2liLheSaS15VzgjNjSuotZJh7RQWxjjCWGordogu1nPfgn_vIXblso4Wmsa04PtY0oIVhCuhRULP_6Avvg9t-l2iFNVpK1Ql6mxD9YsluPIt1EsTPsuf5SSArAEbfIwBql-E4HLlQbnyoFx5UG48SBr5R2PrznS1b7tg6uZf5elaWQPA70ta0kJjzr4AXRCPgQ
CODEN IJBHA9
CitedBy_id crossref_primary_10_1088_1361_6560_aced33
crossref_primary_10_1109_TIM_2022_3227549
crossref_primary_10_1007_s13534_024_00419_7
crossref_primary_10_1002_mp_17387
crossref_primary_10_1016_j_cmpb_2022_106851
crossref_primary_10_1371_journal_pone_0291911
crossref_primary_10_1109_TCI_2025_3553039
crossref_primary_10_1002_ima_22899
crossref_primary_10_1016_j_neucom_2024_128741
crossref_primary_10_1002_acm2_14270
crossref_primary_10_1007_s00530_024_01575_7
crossref_primary_10_1016_j_compbiomed_2023_107162
crossref_primary_10_1109_JBHI_2022_3201232
crossref_primary_10_1007_s11042_023_15916_7
crossref_primary_10_1007_s11760_023_02560_9
crossref_primary_10_1016_j_compbiomed_2024_108112
crossref_primary_10_1016_j_compbiomed_2024_108378
crossref_primary_10_1007_s10489_025_06604_0
crossref_primary_10_1038_s41598_025_10139_2
crossref_primary_10_1109_JBHI_2024_3376628
crossref_primary_10_1016_j_ijmedinf_2025_105903
crossref_primary_10_1109_ACCESS_2025_3526619
crossref_primary_10_1109_JBHI_2024_3403199
crossref_primary_10_1007_s10489_025_06553_8
crossref_primary_10_3233_XST_230094
crossref_primary_10_1109_JBHI_2022_3225697
crossref_primary_10_1109_TAI_2024_3440219
crossref_primary_10_1109_TIM_2025_3547474
crossref_primary_10_1007_s00034_023_02488_y
crossref_primary_10_1016_j_measurement_2025_117510
crossref_primary_10_1080_13682199_2023_2176809
crossref_primary_10_1109_TRPMS_2025_3541169
crossref_primary_10_1148_radiol_230681
crossref_primary_10_1117_1_JEI_34_2_023048
crossref_primary_10_1109_TIM_2025_3551492
crossref_primary_10_1016_j_nima_2023_168519
Cites_doi 10.1109/CVPR.2017.632
10.1109/TMI.2020.3014433
10.1148/radiology.175.3.2343122
10.1109/IJCNN48605.2020.9206816
10.1109/TMI.2017.2715284
10.1088/0031-9155/55/18/009
10.1109/TIP.2020.3019644
10.1016/0031-3203(92)90121-x
10.1109/CVPR.2019.00181
10.1109/TIP.2020.2973802
10.4103/0973-1482.172713
10.1007/978-3-319-24574-4_28
10.1007/s11760-020-01790-5
10.1364/boe.8.000679
10.1016/j.heliyon.2017.e00393
10.1109/ACCESS.2019.2961983
10.1109/ICCV.2019.00574
10.23919/Eusipco47968.2020.9287607
10.1007/s11760-009-0144-1
10.1109/ACCESS.2019.2934178
10.1109/LSP.2019.2922851
10.1109/MSP.2008.930649
10.17977/um018v2i12019p41-46
10.1109/CVPR.2018.00263
10.1109/TIP.2005.859378
10.3390/app10134446
10.1109/TIP.2018.2839891
10.1109/TBME.2013.2287244
10.1109/CVPR.2019.00400
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2022.3155788
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 3260
ExternalDocumentID 35239495
10_1109_JBHI_2022_3155788
9726904
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Fundamental Research Program of Shanxi Province
  grantid: 20210302124265; 201901D111261
– fundername: Natural Science for Youth Foundation of China
  grantid: 62001321
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CHZPO
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-c3824b584f36d27d49b779acc05749474ffda594ad62cc7309d805aad133c73f3
IEDL.DBID RIE
ISICitedReferencesCount 43
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819832600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 05:50:14 EDT 2025
Sun Nov 09 08:36:28 EST 2025
Thu Jan 02 22:56:32 EST 2025
Tue Nov 18 22:33:10 EST 2025
Sat Nov 29 04:18:29 EST 2025
Wed Aug 27 02:23:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-c3824b584f36d27d49b779acc05749474ffda594ad62cc7309d805aad133c73f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9802-4494
0000-0003-3560-1167
0000-0002-9214-396X
0000-0002-4048-1297
PMID 35239495
PQID 2682921928
PQPubID 85417
PageCount 10
ParticipantIDs proquest_miscellaneous_2636148595
crossref_primary_10_1109_JBHI_2022_3155788
crossref_citationtrail_10_1109_JBHI_2022_3155788
pubmed_primary_35239495
ieee_primary_9726904
proquest_journals_2682921928
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref32
ref2
ref17
Luo (ref1) 2015; 30
ref16
ref19
Yuan (ref25) 2020
ref18
ref24
ref23
ref26
ref20
ref22
ref21
ref28
ref29
ref8
ref7
(ref27) 2017
ref9
ref4
ref3
Geng (ref10) 2018
ref6
ref5
References_xml – ident: ref17
  doi: 10.1109/CVPR.2017.632
– ident: ref20
  doi: 10.1109/TMI.2020.3014433
– ident: ref4
  doi: 10.1148/radiology.175.3.2343122
– ident: ref6
  doi: 10.1109/IJCNN48605.2020.9206816
– ident: ref13
  doi: 10.1109/TMI.2017.2715284
– ident: ref30
  doi: 10.1088/0031-9155/55/18/009
– ident: ref24
  doi: 10.1109/TIP.2020.3019644
– ident: ref26
  doi: 10.1016/0031-3203(92)90121-x
– ident: ref7
  doi: 10.1109/CVPR.2019.00181
– ident: ref16
  doi: 10.1109/TIP.2020.2973802
– ident: ref3
  doi: 10.4103/0973-1482.172713
– ident: ref14
  doi: 10.1007/978-3-319-24574-4_28
– year: 2018
  ident: ref10
  article-title: Unsupervisedsemi-supervised deep learning for low-dose CT enhancement
– ident: ref18
  doi: 10.1007/s11760-020-01790-5
– ident: ref5
  doi: 10.1364/boe.8.000679
– ident: ref22
  doi: 10.1016/j.heliyon.2017.e00393
– ident: ref31
  doi: 10.1109/ACCESS.2019.2961983
– ident: ref15
  doi: 10.1109/ICCV.2019.00574
– ident: ref19
  doi: 10.23919/Eusipco47968.2020.9287607
– ident: ref33
  doi: 10.1007/s11760-009-0144-1
– volume: 30
  start-page: 224
  issue: 1
  year: 2015
  ident: ref1
  article-title: Research status and prospect for low-dose CT imaging
  publication-title: J. Data Acquisition Process.
– ident: ref11
  doi: 10.1109/ACCESS.2019.2934178
– year: 2020
  ident: ref25
  article-title: HS-ResNet: Hierarchical-split block on convolutional neural network
– ident: ref21
  doi: 10.1109/LSP.2019.2922851
– ident: ref32
  doi: 10.1109/MSP.2008.930649
– year: 2017
  ident: ref27
  article-title: Low dose CT grand challenge
– ident: ref29
  doi: 10.17977/um018v2i12019p41-46
– ident: ref8
  doi: 10.1109/CVPR.2018.00263
– ident: ref34
  doi: 10.1109/TIP.2005.859378
– ident: ref23
  doi: 10.3390/app10134446
– ident: ref9
  doi: 10.1109/TIP.2018.2839891
– ident: ref2
  doi: 10.1109/TBME.2013.2287244
– ident: ref12
  doi: 10.1109/CVPR.2019.00400
– ident: ref28
  article-title: Piglet dataset
SSID ssj0000816896
Score 2.5233624
Snippet Generative adversarial networks (GAN) have shown great potential for image quality improvement in low-dose CT (LDCT). In general, the shallow features of...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3251
SubjectTerms Bioinformatics
Coders
Complementation
Computed tomography
Encoder-decoder structure
Feature extraction
Generative adversarial network
Generative adversarial networks
hierarchical-split ResNet
image denoising
Image edge detection
Image quality
LDCT
Medical imaging
Modules
Noise reduction
Quality control
Redundancy
Self-similarity
Semantics
Structural hierarchy
Testing
X-ray imaging
Title A Dual-Encoder-Single-Decoder Based Low-Dose CT Denoising Network
URI https://ieeexplore.ieee.org/document/9726904
https://www.ncbi.nlm.nih.gov/pubmed/35239495
https://www.proquest.com/docview/2682921928
https://www.proquest.com/docview/2636148595
Volume 26
WOSCitedRecordID wos000819832600040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD5sQ8QX75fqlAo-idUuTZrmcTpFZQ5Bhb2VLElhMFrZRf--J2lXfFDBl5LQpA055-TcknwAZwzXO2NXv0xydFA6ZIQyJ1GueMwJZSEuyw61pM8Hg2Q4FM8NuKjPwhhj3OYzc2mLLpevC7WwobIrwQk6c7QJTc55eVarjqc4AAkHx0WwEKAg0iqJ2QnF1eP1_QM6g4Sgj8qQSS1MH5oekaAWWOKbRnIQK79bm07r3G38b7ybsF5Zl363ZIctaJh8G1afqvz5DnS7fm8hJ8Ftbo-yT4MXVFwTE_SMq_rXqNK03y8-g14xM_7Nq98zeTG24QR_UO4X34W3u9vXm_ugAlEIVETFHJ8JoSM0M7Io1oRrKkacC6kUGmpUUE6zTEsmqNQxUQrlXegkZFJqdF6xmkV70MqL3ByAH9IInRVhIkY1NZomCruxjmHZKNaKZx6Ey4lMVXXDuAW6mKTO0whFasmQWjKkFRk8OK-7vJfXa_zVeMfOcd2wml4P2ktqpZUAzlISJ0QgExDsdVq_RtGx-RCZm2Jh20T2GlQmmAf7JZXrby-Z4_Dnfx7Bmh1ZuW-3Da35dGGOYUV9zMez6Qny5zA5cfz5BQGJ2mM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RqEovUJ5dHm0qcUIEss44jo8LC1rKskJikbhFXtuRkFYJ2gf8fcZONuqBInGJbMVOLM-M52X7AzjitN5Zt_rlSpCD0mYjkjlFciUSwZBHtCx71JK-GAzSx0d5twQnzVkYa63ffGZPXdHn8k2p5y5UdiYFI2cOv8AKR2Tt6rRWE1HxEBIekItRISRRxDqN2Y7k2d_z3jW5g4yRl8qJTR1QHxkfsUQHLfGPTvIgK_-3N73euVr_3Ih_wFptXwadiiE2YMkWm_Dtts6gb0GnE3TnahxeFu4w-yS8J9U1tmHX-mpwTkrNBP3yNeyWUxtcDIOuLconF1AIBtWO8W14uLocXvTCGkYh1DHKGT1ThiMyNPI4MUwYlCMhpNKaTDWUKDDPjeISlUmY1iTx0qQRV8qQ-0rVPN6B5aIs7E8IIozJXZE25mjQGkw1deNty_NRYrTIWxAtJjLT9R3jDupinHlfI5KZI0PmyJDVZGjBcdPlubpg46PGW26Om4b19LbgYEGtrBbBacaSlEliAka9_jSvSXhcRkQVtpy7NrG7CJVL3oLdisrNtxfMsff-P3_Dam9428_614ObffjuRlnt4j2A5dlkbg_hq36ZPU0nvzyXvgFj1tzC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dual-Encoder-Single-Decoder+Based+Low-dose+CT+Denoising+Network&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Han%2C+Zefang&rft.au=Shangguan%2C+Hong&rft.au=Zhang%2C+Xiong&rft.au=Zhang%2C+Pengcheng&rft.date=2022-07-01&rft.eissn=2168-2208&rft.volume=PP&rft_id=info:doi/10.1109%2FJBHI.2022.3155788&rft_id=info%3Apmid%2F35239495&rft.externalDocID=35239495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon