A Steering Algorithm for Redirected Walking Using Reinforcement Learning
Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a...
Uloženo v:
| Vydáno v: | IEEE transactions on visualization and computer graphics Ročník 26; číslo 5; s. 1955 - 1963 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm. |
|---|---|
| AbstractList | Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm. Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm.Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm. |
| Author | Ramanujan, Raghuram Strauss, Ryan R. Peck, Tabitha C. Becker, Andrew |
| Author_xml | – sequence: 1 givenname: Ryan R. surname: Strauss fullname: Strauss, Ryan R. email: rystrauss@davidson.edu organization: Davidson College – sequence: 2 givenname: Raghuram surname: Ramanujan fullname: Ramanujan, Raghuram email: raramanujan@davidson.edu organization: Davidson College – sequence: 3 givenname: Andrew surname: Becker fullname: Becker, Andrew organization: Davidson College – sequence: 4 givenname: Tabitha C. surname: Peck fullname: Peck, Tabitha C. email: tapeck@davidson.edu organization: Davidson College |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32078549$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90c1u3CAUBWBUpWr--gBVpMhSNt14erlgMMvRKE0qjVQpTdKl5cHXKYmNE2AWeftizTSLLLoBBN8By-eYHfjJE2NfOCw4B_Pt9n51tUBAWKDRAhR8YEfcSF5CBeogr0HrEhWqQ3Yc4yMAl7I2n9ihQNB1Jc0Ru14WvxJRcP6hWA4PU3Dpz1j0UyhuqHOBbKKu-N0OTzO4i_N4Q85nYGkkn4o1tcHn7VP2sW-HSJ_38wm7-355u7ou1z-vfqyW69IKaVJp0RptwUIPleyo5pILi0IjiQ5ltZGKK26xN5hPkANVGyRVAxgUNWxAnLCvu3ufw_SypZia0UVLw9B6mraxQaEQjOEaM714Rx-nbfD567KqFVSokWd1vlfbzUhd8xzc2IbX5t8_yoDvgA1TjIH6N8KhmXto5h6auYdm30PO6HcZ61Kb3ORTaN3w3-TZLumI6O2l2pi60iD-ApFskYk |
| CODEN | ITVGEA |
| CitedBy_id | crossref_primary_10_1002_cav_2196 crossref_primary_10_1007_s11390_024_4585_3 crossref_primary_10_1109_TVCG_2024_3368043 crossref_primary_10_1109_ACCESS_2023_3255006 crossref_primary_10_1109_TVCG_2022_3203095 crossref_primary_10_1109_TVCG_2024_3409734 crossref_primary_10_1007_s10055_023_00763_6 crossref_primary_10_1109_TVCG_2022_3224073 crossref_primary_10_3390_electronics10060715 crossref_primary_10_1109_TVCG_2021_3106432 crossref_primary_10_1007_s10055_024_00962_9 crossref_primary_10_1109_TVCG_2024_3376080 crossref_primary_10_1109_TVCG_2022_3158609 crossref_primary_10_1109_TVCG_2023_3320208 crossref_primary_10_1145_3451264 crossref_primary_10_1109_TVCG_2021_3067781 crossref_primary_10_1145_3528223_3530113 crossref_primary_10_1109_TVCG_2023_3251648 crossref_primary_10_1007_s10055_022_00682_y crossref_primary_10_1109_TVCG_2024_3372052 crossref_primary_10_1109_TVCG_2023_3313439 crossref_primary_10_1007_s11390_022_2266_7 crossref_primary_10_1109_TVCG_2021_3139990 crossref_primary_10_1109_TVCG_2022_3150500 crossref_primary_10_1109_TVCG_2022_3150466 crossref_primary_10_1109_TVCG_2022_3179269 crossref_primary_10_1109_TVCG_2025_3595181 crossref_primary_10_3390_s22052040 crossref_primary_10_1007_s10055_022_00734_3 crossref_primary_10_3390_computers11110156 crossref_primary_10_1109_TVCG_2021_3106504 crossref_primary_10_1109_TVCG_2023_3247107 crossref_primary_10_1145_3565020 crossref_primary_10_1109_TVCG_2023_3244359 crossref_primary_10_1007_s10055_023_00841_9 crossref_primary_10_1109_TVCG_2024_3372056 |
| Cites_doi | 10.1038/nature14236 10.1109/TVCG.2008.191 10.1038/nature16961 10.1126/science.aay2400 10.1109/3DUI.2014.6798852 10.1109/VR.2011.5759455 10.1145/2043603.2043604 10.1109/VR.2019.8798121 10.1145/311535.311589 10.1109/TVCG.2012.47 10.1126/science.aau6249 10.1109/JRPROC.1961.287775 10.1007/BF00992696 10.1145/2347736.2347755 10.1109/ICCV.2015.312 10.1109/TVCG.2013.28 10.1109/VR.2019.8797983 10.1109/3DUI.2014.6798851 10.1145/1272582.1272590 10.1038/nature14539 10.1007/BF00992698 10.1109/TVCG.2013.88 10.1109/TKDE.2009.191 10.1109/VR.2014.6802053 10.1109/MCG.2018.111125628 10.1109/TIP.2016.2613686 10.1109/TVCG.2009.62 10.1126/science.aar6404 10.1162/neco.1997.9.8.1735 10.1287/isre.2013.0480 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TVCG.2020.2973060 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE Technology Research Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 1963 |
| ExternalDocumentID | 32078549 10_1109_TVCG_2020_2973060 8998570 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Davidson Research Initiative |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-c2c97c0c0f054de81413c2372e3d245b46161c2f92141210e5b2e680092380b03 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 68 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000523746000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Wed Oct 01 14:01:56 EDT 2025 Sun Oct 05 00:29:21 EDT 2025 Mon Jul 21 05:57:49 EDT 2025 Tue Nov 18 22:34:46 EST 2025 Sat Nov 29 06:05:43 EST 2025 Wed Aug 27 02:35:24 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-c2c97c0c0f054de81413c2372e3d245b46161c2f92141210e5b2e680092380b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PMID | 32078549 |
| PQID | 2386052721 |
| PQPubID | 75741 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2386052721 proquest_miscellaneous_2362099172 crossref_primary_10_1109_TVCG_2020_2973060 pubmed_primary_32078549 ieee_primary_8998570 crossref_citationtrail_10_1109_TVCG_2020_2973060 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-05-01 |
| PublicationDateYYYYMMDD | 2020-05-01 |
| PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref12 glorot (ref13) 2011 ref58 ref53 goodfellow (ref14) 2016 ref55 ref11 ref54 bishop (ref6) 2006 krizhevsky (ref24) 2012 ref17 ref19 ref18 sharma (ref43) 2017 schulman (ref41) 0 sutton (ref52) 2018 dhariwal (ref10) 2017 ref50 puterman (ref38) 2014 lecun (ref26) 2015; 521 ref46 ref47 steinicke (ref48) 0 ref44 mnih (ref31) 2015; 518 ref49 ref7 ref9 silver (ref45) 2016; 529 ref5 hessel (ref16) 0 chang (ref8) 2019 schulman (ref42) 2017 ref34 lample (ref25) 0 ref37 ref36 andrychowicz (ref3) 2018 ref32 henderson (ref15) 0 razzaque (ref40) 0; 9 amodei (ref2) 2016 razzaque (ref39) 2005 ref20 azmandian (ref4) 0 (ref35) 2018 ref21 jaderberg (ref22) 2016 kingma (ref23) 2014 ng (ref33) 2003 ref28 ref27 abu-mostafa (ref1) 2012 ref29 sutskever (ref51) 2014 mnih (ref30) 2016; abs 1602 1783 |
| References_xml | – year: 2017 ident: ref43 article-title: Learning to repeat: Fine grained action repetition for deep reinforcement learning publication-title: 5th International Conference on Learning Representations - ICLR 2017 – volume: 518 start-page: 529 year: 2015 ident: ref31 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref37 doi: 10.1109/TVCG.2008.191 – volume: 529 start-page: 484 year: 2016 ident: ref45 article-title: Mastering the game of go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – year: 2018 ident: ref35 publication-title: Openai five – ident: ref7 doi: 10.1126/science.aay2400 – ident: ref12 doi: 10.1109/3DUI.2014.6798852 – year: 2014 ident: ref23 publication-title: Adam A method for stochastic optimization – ident: ref49 doi: 10.1109/VR.2011.5759455 – year: 2012 ident: ref1 publication-title: Learning From Data – volume: 9 start-page: 105 year: 0 ident: ref40 article-title: Redirected walking publication-title: Proceedings of EUROGRAPHICS – start-page: 93 year: 0 ident: ref4 article-title: Physical space requirements for redirected walking: how size and shape affect performance publication-title: Proceedings of the 25th International Conference on Artificial Reality and Telexistence and 20th Eurographics Symposium on Virtual Environments – ident: ref19 doi: 10.1145/2043603.2043604 – year: 2005 ident: ref39 publication-title: Redirected Walking – ident: ref27 doi: 10.1109/VR.2019.8798121 – year: 2018 ident: ref3 publication-title: Learning Dexterous in-Hand Manipulation – ident: ref54 doi: 10.1145/311535.311589 – ident: ref50 doi: 10.1109/TVCG.2012.47 – year: 0 ident: ref41 article-title: High-dimensional continuous control using generalized advantage estimation publication-title: Proceedings of the International Conference on Learning Representations (ICLR) – ident: ref21 doi: 10.1126/science.aau6249 – start-page: 315 year: 2011 ident: ref13 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – start-page: 3104 year: 2014 ident: ref51 article-title: Sequence to sequence learning with neural networks publication-title: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2 NIPS'14 – year: 2018 ident: ref52 publication-title: Reinforcement Learning An Introduction – ident: ref29 doi: 10.1109/JRPROC.1961.287775 – year: 2016 ident: ref22 publication-title: Reinforcement learning with unsupervised auxiliary tasks – year: 2017 ident: ref10 publication-title: OpenAI Baselines – year: 2014 ident: ref38 publication-title: Markov Decision Processes Discrete Stochastic Dynamic Programming – ident: ref57 doi: 10.1007/BF00992696 – year: 0 ident: ref25 article-title: Playing fps games with deep reinforcement learning publication-title: Thirty-First AAAI Conference on Artificial Intelligence – ident: ref11 doi: 10.1145/2347736.2347755 – ident: ref9 doi: 10.1109/ICCV.2015.312 – ident: ref18 doi: 10.1109/TVCG.2013.28 – ident: ref53 doi: 10.1109/VR.2019.8797983 – ident: ref32 doi: 10.1109/3DUI.2014.6798851 – ident: ref56 doi: 10.1145/1272582.1272590 – year: 0 ident: ref16 article-title: Rainbow: Combining improvements in deep reinforcement learning publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – volume: 521 start-page: 436 year: 2015 ident: ref26 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – year: 2003 ident: ref33 publication-title: Ng Shaping and Police Search in Reinforcement Learning – start-page: 15 year: 0 ident: ref48 article-title: Moving towards generally applicable redirected walking publication-title: Proceedings of the Virtual Reality International Conference (VRIC) – ident: ref55 doi: 10.1007/BF00992698 – year: 0 ident: ref15 article-title: Deep reinforcement learning that matters publication-title: Thirty-Second AAAI Conference on Artificial Intelligence – ident: ref58 doi: 10.1109/TVCG.2013.88 – ident: ref36 doi: 10.1109/TKDE.2009.191 – ident: ref44 doi: 10.1038/nature16961 – volume: abs 1602 1783 year: 2016 ident: ref30 article-title: Asynchronous methods for deep reinforcement learning publication-title: CoRR – ident: ref5 doi: 10.1109/VR.2014.6802053 – ident: ref34 doi: 10.1109/MCG.2018.111125628 – ident: ref20 doi: 10.1109/TIP.2016.2613686 – year: 2016 ident: ref2 publication-title: Concrete problems in ai safety – start-page: 1097 year: 2012 ident: ref24 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems NIPS'12 – year: 2017 ident: ref42 publication-title: Proximal policy optimization algorithms – ident: ref47 doi: 10.1109/TVCG.2009.62 – year: 2019 ident: ref8 publication-title: Redirection controller using reinforcement learning – year: 2016 ident: ref14 publication-title: Deep Learning – ident: ref46 doi: 10.1126/science.aar6404 – ident: ref17 doi: 10.1162/neco.1997.9.8.1735 – year: 2006 ident: ref6 publication-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – ident: ref28 doi: 10.1287/isre.2013.0480 |
| SSID | ssj0014489 |
| Score | 2.5321543 |
| Snippet | Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1955 |
| SubjectTerms | Algorithms Artificial neural networks Computer Graphics Computer simulation Control tasks Deep Learning Heuristic algorithms Human performance Humans Learning (artificial intelligence) Legged locomotion Locomotion Machine learning Meters Prediction algorithms Redirected Walking Reinforcement Learning Space exploration Steering Steering Algorithms Tracking Video Games Virtual environments Virtual Reality Walking Walking - physiology |
| Title | A Steering Algorithm for Redirected Walking Using Reinforcement Learning |
| URI | https://ieeexplore.ieee.org/document/8998570 https://www.ncbi.nlm.nih.gov/pubmed/32078549 https://www.proquest.com/docview/2386052721 https://www.proquest.com/docview/2362099172 |
| Volume | 26 |
| WOSCitedRecordID | wos000523746000014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9swDCWyooft0O-1XrNAA3Yq5lSRFUs6BsWynIKiS9fcDEum2wJpUqROf_8o2fV2aAfsZkOyLZA0-J5IkQBfCTW4wuUmHhaWxzIXOrZmYGOOOSf4oVVeFqHZhJpO9XxuLjvwrT0Lg4gh-Qz7_jLE8ouV2_itsnPPDYaKCPo7pVR9VquNGBDNMHV-oYoFofQmgjng5nz26-IHMUHB-75REw_VKP_4oNBU5W18GfzMePf_VrgHOw2eZKPaAPahg8sD-PBXlcFDmIzYz6q-YaPF7Wp9X909MAKr7Aprj4YFu8kXftOchRQCGggFVV3YO2RNDdbbI7gef59dTOKmgULsEmmq2AlnlOOOlwTMCtQD8lhOJEpgUgg5tDIlvOdEaQSNEPfDoRWYal-HKdHc8uQjbC1XSzwB5iWcDrRzqpRSWdSYEhGxKikTKaXNI-AvIs1cU13cN7lYZIFlcJN5LWReC1mjhQjO2kce69Ia_5p86KXdTmwEHUH3RW9Z8_M9ZbR4ImmCuG0EX9ph-m18LCRf4mrj56T-0DDBtwiOa323704EGSnx5k-vf_MU3vuV1VmPXdiq1hv8DNvuubp_WvfINue6F2zzNwxp3Lk |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4hQGo58CwQnkbqqWrAcZw4Pq4QsFXpqmq3LbcodiaAtOyiJcvvZ-yE0ENB6i2R7cSasTXf5xnPAHwk1GBLW-gwKQ0PZSGy0OjIhBwLTvAjU0VV-mITajDIrq709zn43N2FQUQffIbH7tH78suJnbmjshPHDRJFBH0hkVJEzW2tzmdAREM3EYYqFITTWx9mxPXJ8PfpBXFBwY9dqSbu81G-WCFfVuV1hOktzfnK_81xFZZbRMl6zRJYgzkcr8PSX3kGN6DfYz_r5oX1RteT6W19c8cIrrIf2Ng0LNmfYuSOzZkPIqAGn1LV-tND1mZhvf4Av87Phqf9sC2hENpY6jq0wmplueUVQbMSs4hslhWxEhiXQiZGpoT4rKi0oBZif5gYgWnmMjHFGTc83oT58WSM28CchNMos1ZVUiqDGaZERYyKq1hKaYoA-LNIc9vmF3dlLka55xlc504LudNC3mohgE_dkPsmucZbnTectLuOraAD2HvWW95uv4ecJk80TRC7DeCoa6aN47whxRgnM9cnddeGCcAFsNXou_t2LGiZEnPe-fc_D-Fdf_jtMr_8Mvi6C-_dLJsYyD2Yr6cz3IdF-1jfPkwP_Ap9An2S3xg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Steering+Algorithm+for+Redirected+Walking+Using+Reinforcement+Learning&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Strauss%2C+Ryan+R&rft.au=Ramanujan%2C+Raghuram&rft.au=Becker%2C+Andrew&rft.au=Peck%2C+Tabitha+C&rft.date=2020-05-01&rft.eissn=1941-0506&rft.volume=26&rft.issue=5&rft.spage=1955&rft_id=info:doi/10.1109%2FTVCG.2020.2973060&rft_id=info%3Apmid%2F32078549&rft.externalDocID=32078549 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |