A Steering Algorithm for Redirected Walking Using Reinforcement Learning
Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a...
Uložené v:
| Vydané v: | IEEE transactions on visualization and computer graphics Ročník 26; číslo 5; s. 1955 - 1963 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.05.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1077-2626 1941-0506 1941-0506 |
| DOI: | 10.1109/TVCG.2020.2973060 |