Multi-Class Constrained Normalized Cut With Hard, Soft, Unary and Pairwise Priors and its Applications to Object Segmentation
Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems, such as segmenting objects in a complex background. Researchers have attempted to incorporate priors or constraints to handle such cases. Ava...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on image processing Jg. 22; H. 11; S. 4328 - 4340 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York, NY
IEEE
01.11.2013
Institute of Electrical and Electronics Engineers |
| Schlagworte: | |
| ISSN: | 1057-7149, 1941-0042, 1941-0042 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems, such as segmenting objects in a complex background. Researchers have attempted to incorporate priors or constraints to handle such cases. Available priors in image segmentation problems may be hard or soft, unary or pairwise, but only hard must-link constraints and two-class settings are well studied. The main difficulties may lie in the following aspects: 1) the nontransitive nature of cannot-link constraints makes it hard to use such constraints in multi-class settings and 2) in multi-class or pairwise settings, the output labels have inconsistent representations with given priors, making soft priors difficult to use. In this paper, we propose novel algorithms, which can handle both hard and soft, both unary and pairwise priors in multi-class settings and provide closed form and efficient solutions. We also apply the proposed algorithms to the problem of object segmentation, producing good results by further introducing a spatial regularity term. Experiments show that the proposed algorithms outperform the state-of-the-art algorithms significantly in clustering accuracy. Other merits of the proposed algorithms are also demonstrated. |
|---|---|
| AbstractList | Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems, such as segmenting objects in a complex background. Researchers have attempted to incorporate priors or constraints to handle such cases. Available priors in image segmentation problems may be hard or soft, unary or pairwise, but only hard must-link constraints and two-class settings are well studied. The main difficulties may lie in the following aspects: 1) the nontransitive nature of cannot-link constraints makes it hard to use such constraints in multi-class settings and 2) in multi-class or pairwise settings, the output labels have inconsistent representations with given priors, making soft priors difficult to use. In this paper, we propose novel algorithms, which can handle both hard and soft, both unary and pairwise priors in multi-class settings and provide closed form and efficient solutions. We also apply the proposed algorithms to the problem of object segmentation, producing good results by further introducing a spatial regularity term. Experiments show that the proposed algorithms outperform the state-of-the-art algorithms significantly in clustering accuracy. Other merits of the proposed algorithms are also demonstrated.Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems, such as segmenting objects in a complex background. Researchers have attempted to incorporate priors or constraints to handle such cases. Available priors in image segmentation problems may be hard or soft, unary or pairwise, but only hard must-link constraints and two-class settings are well studied. The main difficulties may lie in the following aspects: 1) the nontransitive nature of cannot-link constraints makes it hard to use such constraints in multi-class settings and 2) in multi-class or pairwise settings, the output labels have inconsistent representations with given priors, making soft priors difficult to use. In this paper, we propose novel algorithms, which can handle both hard and soft, both unary and pairwise priors in multi-class settings and provide closed form and efficient solutions. We also apply the proposed algorithms to the problem of object segmentation, producing good results by further introducing a spatial regularity term. Experiments show that the proposed algorithms outperform the state-of-the-art algorithms significantly in clustering accuracy. Other merits of the proposed algorithms are also demonstrated. Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems, such as segmenting objects in a complex background. Researchers have attempted to incorporate priors or constraints to handle such cases. Available priors in image segmentation problems may be hard or soft, unary or pairwise, but only hard must-link constraints and two-class settings are well studied. The main difficulties may lie in the following aspects: 1) the nontransitive nature of cannot-link constraints makes it hard to use such constraints in multi-class settings and 2) in multi-class or pairwise settings, the output labels have inconsistent representations with given priors, making soft priors difficult to use. In this paper, we propose novel algorithms, which can handle both hard and soft, both unary and pairwise priors in multi-class settings and provide closed form and efficient solutions. We also apply the proposed algorithms to the problem of object segmentation, producing good results by further introducing a spatial regularity term. Experiments show that the proposed algorithms outperform the state-of-the-art algorithms significantly in clustering accuracy. Other merits of the proposed algorithms are also demonstrated. |
| Author | Zhou, Jie Feng, Jianjiang Hu, Han Yu, Chuan |
| Author_xml | – sequence: 1 givenname: Han surname: Hu fullname: Hu, Han email: huh04@mails.thu.edu.cn organization: State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China – sequence: 2 givenname: Jianjiang surname: Feng fullname: Feng, Jianjiang email: jfeng@tsinghua.edu.cn organization: State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China – sequence: 3 givenname: Chuan surname: Yu fullname: Yu, Chuan email: chuanyu08@mails.thu.edu.cn organization: State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China – sequence: 4 givenname: Jie surname: Zhou fullname: Zhou, Jie email: jzhou@tsinghua.edu.cn organization: State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28088205$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/23846473$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1rVDEUxYNU7IfuBUGyEVz0jfl6ycuyPNQWqh1oi8uQSTKakpdMkzxEwf_dTGeq4MJVLje_cy73nmNwEFN0ALzEaIExku9uLpYLgjBdECLwwPsn4AhLhjuEGDloNepFJzCTh-C4lDuEMOsxfwYOCR0YZ4IegV-f5lB9NwZdChxTLDVrH52Fn1OedPA_WznOFX7x9Rs819mewuu0rqfwNur8A-po4VL7_N0XB5fZp1weer4WeLbZBG909c0V1gSvVnfOVHjtvk4u1of-c_B0rUNxL_bvCbj98P5mPO8urz5ejGeXnaFM1s5gKQgbtLHcSWap4VQiLIiW1iI2CLlylknO5PZHG9Ko3iJjmwYNtAlOwNud7yan-9mVqiZfjAtBR5fmojCjTDDKkWjo6z06ryZn1Sb7qW2qHk_WgDd7QBejwzrraHz5y7WRA0F94_iOMzmVkt1aGb_benvioDBS2wxVy1BtM1T7DJsQ_SN89P6P5NVO4p1zf3De9xQTQn8DoZClrw |
| CODEN | IIPRE4 |
| CitedBy_id | crossref_primary_10_1109_TIP_2016_2537211 crossref_primary_10_1109_JSTARS_2016_2569408 crossref_primary_10_1109_TPAMI_2014_2377740 crossref_primary_10_3390_rs11010060 crossref_primary_10_1007_s11548_016_1350_2 crossref_primary_10_1007_s13042_015_0458_y crossref_primary_10_3390_rs10071056 |
| Cites_doi | 10.1109/TPAMI.2005.92 10.1109/CVPR.2011.5995630 10.1109/TPAMI.2007.1061 10.1109/CVPR.2005.249 10.1145/321356.321357 10.1145/1015706.1015720 10.1016/j.cviu.2008.06.007 10.1109/MSP.2010.939739 10.1109/TPAMI.2011.231 10.1017/CBO9780511804441 10.1007/s10994-008-5084-4 10.1109/TPAMI.2004.1262179 10.1007/s11222-007-9033-z 10.1111/j.1467-9280.2009.02471.x 10.1007/s11263-009-0275-4 10.1109/34.868688 10.1109/TIP.2009.2038778 10.1109/ICCV.2009.5459173 10.1109/TPAMI.2010.161 10.1109/TPAMI.2007.70840 10.1109/CVPR.2007.382974 10.1109/TPAMI.2009.167 10.1109/ICCV.2007.4408958 10.1145/1835804.1835877 10.1007/s11263-010-0321-2 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | 97E RIA RIE AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TIP.2013.2271865 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1941-0042 |
| EndPage | 4340 |
| ExternalDocumentID | 23846473 28088205 10_1109_TIP_2013_2271865 6553122 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION AAYOK IQODW RIG CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c349t-c197248acd6e94d3c6390172a9dd04879bed496493c63ac26e95d0cd2480834d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324597800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1057-7149 1941-0042 |
| IngestDate | Mon Sep 29 05:37:10 EDT 2025 Mon Jul 21 06:04:49 EDT 2025 Wed Apr 02 07:25:24 EDT 2025 Tue Nov 18 21:39:51 EST 2025 Sat Nov 29 08:03:37 EST 2025 Wed Aug 27 02:03:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Performance evaluation Automatic classification State of the art Image processing Background pairwise priors Pattern recognition Shape detection Algorithm Signal classification Image segmentation Accuracy object segmentation unary priors Constrained spectral clustering Edge detection |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-c197248acd6e94d3c6390172a9dd04879bed496493c63ac26e95d0cd2480834d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 23846473 |
| PQID | 1434743607 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pascalfrancis_primary_28088205 pubmed_primary_23846473 crossref_citationtrail_10_1109_TIP_2013_2271865 crossref_primary_10_1109_TIP_2013_2271865 proquest_miscellaneous_1434743607 ieee_primary_6553122 |
| PublicationCentury | 2000 |
| PublicationDate | 2013-11-01 |
| PublicationDateYYYYMMDD | 2013-11-01 |
| PublicationDate_xml | – month: 11 year: 2013 text: 2013-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: United States |
| PublicationTitle | IEEE transactions on image processing |
| PublicationTitleAbbrev | TIP |
| PublicationTitleAlternate | IEEE Trans Image Process |
| PublicationYear | 2013 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers |
| References | ref35 ref13 ref34 ref12 ref15 ref31 ref30 lu (ref16) 2008 xu (ref18) 2009 ref33 ref11 ref32 ref10 ref2 ref1 ref17 kamvar (ref14) 2003 frank (ref27) 2010 brox (ref4) 2010; 5 li (ref19) 2009 ref24 ref26 zelnik-manor (ref29) 2004 ref25 ref20 ref21 ref28 hu (ref22) 2012 ref8 sundaram (ref7) 2010; 1 ref9 ref3 ref6 cormen (ref23) 2001 ref5 |
| References_xml | – year: 2001 ident: ref23 publication-title: Introduction to Algorithms – ident: ref28 doi: 10.1109/TPAMI.2005.92 – start-page: 421 year: 2009 ident: ref19 article-title: Constrained clustering via spectral regularization publication-title: Proc CVPR – ident: ref21 doi: 10.1109/CVPR.2011.5995630 – ident: ref24 doi: 10.1109/TPAMI.2007.1061 – ident: ref3 doi: 10.1109/CVPR.2005.249 – ident: ref26 doi: 10.1145/321356.321357 – ident: ref5 doi: 10.1145/1015706.1015720 – start-page: 561 year: 2003 ident: ref14 article-title: Spectral learning publication-title: Proc IJCAI – ident: ref25 doi: 10.1016/j.cviu.2008.06.007 – start-page: 1550 year: 2012 ident: ref22 article-title: Multi-way constrained spectral clustering by nonnegative restriction publication-title: Proc ICPR – ident: ref9 doi: 10.1109/MSP.2010.939739 – volume: 5 start-page: 282 year: 2010 ident: ref4 article-title: Object segmentation by long term analysis of point trajectories publication-title: Proc ECCV – ident: ref34 doi: 10.1109/TPAMI.2011.231 – year: 2010 ident: ref27 publication-title: UCI Machine Learning Repository – ident: ref35 doi: 10.1017/CBO9780511804441 – ident: ref15 doi: 10.1007/s10994-008-5084-4 – start-page: 1 year: 2008 ident: ref16 article-title: Constrained spectral clustering through affinity propagation publication-title: Proc IEEE Conf CVPR – start-page: 2866 year: 2009 ident: ref18 article-title: Fast normalized cut with linear constraints publication-title: Proc IEEE Conf CVPR – ident: ref2 doi: 10.1109/TPAMI.2004.1262179 – ident: ref13 doi: 10.1007/s11222-007-9033-z – ident: ref8 doi: 10.1111/j.1467-9280.2009.02471.x – ident: ref31 doi: 10.1007/s11263-009-0275-4 – year: 2004 ident: ref29 publication-title: Advances in neural information processing systems – ident: ref11 doi: 10.1109/34.868688 – ident: ref10 doi: 10.1109/TIP.2009.2038778 – ident: ref30 doi: 10.1109/ICCV.2009.5459173 – ident: ref1 doi: 10.1109/TPAMI.2010.161 – volume: 1 start-page: 438 year: 2010 ident: ref7 article-title: Dense point trajectories by GPU-accelerated large displacement optical flow publication-title: Proc ECCV – ident: ref33 doi: 10.1109/TPAMI.2007.70840 – ident: ref32 doi: 10.1109/CVPR.2007.382974 – ident: ref12 doi: 10.1109/TPAMI.2009.167 – ident: ref17 doi: 10.1109/ICCV.2007.4408958 – ident: ref20 doi: 10.1145/1835804.1835877 – ident: ref6 doi: 10.1007/s11263-010-0321-2 |
| SSID | ssj0014516 |
| Score | 2.1649091 |
| Snippet | Normalized cut is a powerful method for image segmentation as well as data clustering. However, it does not perform well in challenging segmentation problems,... |
| SourceID | proquest pubmed pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 4328 |
| SubjectTerms | Accuracy Algorithms Applied sciences Clustering algorithms Constrained spectral clustering Correlation Exact sciences and technology Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Information, signal and communications theory Matrix decomposition Motion segmentation Object detection Object segmentation Optimization pairwise priors Pattern recognition Pattern Recognition, Automated - methods Photography - methods Reproducibility of Results Sensitivity and Specificity Signal and communications theory Signal processing Signal representation. Spectral analysis Signal, noise Subtraction Technique Synthetic data Telecommunications and information theory unary priors |
| Title | Multi-Class Constrained Normalized Cut With Hard, Soft, Unary and Pairwise Priors and its Applications to Object Segmentation |
| URI | https://ieeexplore.ieee.org/document/6553122 https://www.ncbi.nlm.nih.gov/pubmed/23846473 https://www.proquest.com/docview/1434743607 |
| Volume | 22 |
| WOSCitedRecordID | wos000324597800014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-0042 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014516 issn: 1057-7149 databaseCode: RIE dateStart: 19920101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5q8UEfrLZqr-oRwRfhthd395LLYyktCnIetMV7W7JJti7U3bK7pyD0vzuTza0tVMG3sMmwITOZfMlk8gG8c3zGDXexz1iO0Eu6SIu4iKTKFeJTmZv-yfzPcrGYr1ZquQWTIRfGOecvn7lDKvpYvq3Nmo7KpmKGFhOjw30gpehztYaIARHO-sjmTEYSYf8mJMnV9PzTku5wJYdxjJ5YEFkNLlSpSGVyZzXy9Cp0OVK3OD5FT2zxd-TpV6DTnf_r-1N4EpAmO-pN4xlsuWoXdgLqZGFOt7vw-NaThHtw4zNyI8-VyYjN03NIoMCCwO1V-QuLx-uOfS27b4zC_hN2hp58wi4or5fpyrKlLpufZevYsinrpvXfyq5lR7di5ayr2ZeczoDYmbv8HhKgqudwcXpyfvwxChQNkUlS1UWGWMvSuTZWOJXaxAg6Q5GxVtaib0CNO5sqkSqq0SbGVjPLjUUZxH4o8AK2q7py-8AQOUhjrcwlShrxQfPCFLnSQqLqCl2MYLpRVWbC--U0BFeZ38dwlaGeM9JzFvQ8gveDxHX_dsc_2u6RzoZ2QV0jGN-xhqE-ntPehKPc2415ZDgxKdqiK1evW9xTJSnCM8HlCF72dvNHOpjfwf1_fQWPqG99yuNr2O6atXsDD82PrmybMVr_aj721v8b7Rj9-A |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9KFdQHq60f50eN4Itw24u7e8nlsRRLi-d50Cv2bckmWV2ou7K7pyD4vzuTza0tqOBb2GTYkJlMfslk8gN45fiUG-5in7EcoZd0kRZxEUmVK8SnMjf9k_lzuVjMLi7UcgvGQy6Mc85fPnMHVPSxfFubNR2VTcQULSZGh3uDmLNCttYQMyDKWR_bnMpIIvDfBCW5mqxOl3SLKzmIY_TFguhqcKlKRSqTa-uRJ1ih65G6xREqemqLv2NPvwYd7_xf7-_B3YA12WFvHPdhy1W7sBNwJwuzut2FO1ceJdyDnz4nN_JsmYz4PD2LBAosCN5elj-weLTu2Mey-8wo8D9mZ-jLx-ycMnuZrixb6rL5XraOLZuyblr_rexadnglWs66mn3I6RSInblPX0IKVPUAzo_fro5OokDSEJkkVV1kiLcsnWljhVOpTYygUxQZa2UtegfUubOpEqmiGm1ibDW13FiUQfSHAg9hu6or9xgYYgdprJW5REkj3mhemCJXWkhUXaGLEUw2qspMeMGchuAy8zsZrjLUc0Z6zoKeR_B6kPjav97xj7Z7pLOhXVDXCPavWcNQH89od8JR7uXGPDKcmhRv0ZWr1y3uqpIUAZrgcgSPerv5LR3M78mf__oCbp2s3s-z-eni3VO4Tf3sEyCfwXbXrN1zuGm-dWXb7Ps58AtNlABo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-class+constrained+normalized+cut+with+hard%2C+soft%2C+unary+and+pairwise+priors+and+its+applications+to+object+segmentation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Hu%2C+Han&rft.au=Feng%2C+Jianjiang&rft.au=Yu%2C+Chuan&rft.au=Zhou%2C+Jie&rft.date=2013-11-01&rft.eissn=1941-0042&rft.volume=22&rft.issue=11&rft.spage=4328&rft_id=info:doi/10.1109%2FTIP.2013.2271865&rft_id=info%3Apmid%2F23846473&rft.externalDocID=23846473 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |