Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity

Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs...

Full description

Saved in:
Bibliographic Details
Published in:Composites science and technology Vol. 220; p. 109289
Main Authors: Liu, Xianyuan, Zhou, Heng, Wang, Zilong, Han, Xu, Zhao, Zehua, Guo, Ying, Liu, Wenbin, Wang, Jun, Zhao, Tong
Format: Journal Article
Language:English
Published: Barking Elsevier Ltd 22.03.2022
Elsevier BV
Subjects:
ISSN:0266-3538, 1879-1050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity. [Display omitted] •Developed facile methods to manufacture 3D interconnected BNNSs networks.•Achieve good thermal conductivity while maintaining the excellent comprehensive properties.•Two-dimensional fillers are oriented in the resin matrix by hot pressing.•Thermal conductivity of the isotropic composite is increased to 1616% compared to origin resin.•The in-plane thermal conductivity of the anisotropic composite can reach as high as 7.835 W/mK.
AbstractList Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity.
Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity. [Display omitted] •Developed facile methods to manufacture 3D interconnected BNNSs networks.•Achieve good thermal conductivity while maintaining the excellent comprehensive properties.•Two-dimensional fillers are oriented in the resin matrix by hot pressing.•Thermal conductivity of the isotropic composite is increased to 1616% compared to origin resin.•The in-plane thermal conductivity of the anisotropic composite can reach as high as 7.835 W/mK.
ArticleNumber 109289
Author Zhao, Tong
Guo, Ying
Wang, Zilong
Zhao, Zehua
Zhou, Heng
Liu, Xianyuan
Wang, Jun
Liu, Wenbin
Han, Xu
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Liu
  fullname: Liu, Xianyuan
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 2
  givenname: Heng
  surname: Zhou
  fullname: Zhou, Heng
  email: zhouheng@iccas.ac.cn
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 3
  givenname: Zilong
  surname: Wang
  fullname: Wang, Zilong
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 4
  givenname: Xu
  surname: Han
  fullname: Han, Xu
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 5
  givenname: Zehua
  surname: Zhao
  fullname: Zhao, Zehua
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 6
  givenname: Ying
  surname: Guo
  fullname: Guo, Ying
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
– sequence: 7
  givenname: Wenbin
  orcidid: 0000-0003-0390-8455
  surname: Liu
  fullname: Liu, Wenbin
  organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
– sequence: 8
  givenname: Jun
  orcidid: 0000-0002-3092-623X
  surname: Wang
  fullname: Wang, Jun
  email: wj6267@hrbeu.edu.cn
  organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
– sequence: 9
  givenname: Tong
  surname: Zhao
  fullname: Zhao, Tong
  organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
BookMark eNqNUctOwzAQtFCRaIF_MOKcYjvvE0LhKVXiAmfLcTaNq9QutlPUj-CfcQgHxKmHlVfrmdnVzALNtNGA0BUlS0podrNZSrPdOak8yG7JCGNhXrKiPEFzWuRlRElKZmhOWJZFcRoXZ2jh3IYQkqclm6Ovymjn7SC9MhqbFsf3WGkPVhqtQXposNCherXWoa-NDTCtvFUNYC20cR2Ad3jSGCy4QMe7zneiNz-4HvB4onHhRIc_le9wp9Yd9h3YrejDp27G9XvlDxfotBW9g8vf9xy9Pz68Vc_R6vXppbpbRTJOSh9JmktZNxSSNsvjVNatyOqWsqIB0tQsz4igNGVMJCCLQmSyLZIkZ5CSkrY0kfE5up50d9Z8DOA835jB6rCSsyyhaRnsoQF1O6GkNc5ZaHmwWYxGeStUzynhYwZ8w_9kwMcM-JRBUCj_Keys2gp7OIpbTVwIRuwVWB5QoCU0yoZgeGPUESrfh6OwQQ
CitedBy_id crossref_primary_10_1016_j_eurpolymj_2022_111472
crossref_primary_10_1016_j_matchemphys_2023_128005
crossref_primary_10_1016_j_polymer_2022_125118
crossref_primary_10_1007_s40820_024_01396_3
crossref_primary_10_1177_09540083241309065
crossref_primary_10_1016_j_compositesa_2025_109035
crossref_primary_10_1016_j_addma_2024_104053
crossref_primary_10_1007_s10853_025_10985_5
crossref_primary_10_1016_j_polymdegradstab_2022_110113
crossref_primary_10_1016_j_cej_2023_142273
crossref_primary_10_1002_app_57552
crossref_primary_10_1016_j_coco_2022_101267
crossref_primary_10_1016_j_coco_2023_101764
crossref_primary_10_1016_j_compositesa_2022_107104
crossref_primary_10_1016_j_compscitech_2023_110289
crossref_primary_10_1063_5_0243023
crossref_primary_10_1016_j_compscitech_2023_110246
crossref_primary_10_1016_j_polymer_2022_125643
crossref_primary_10_1016_j_colsurfa_2023_131222
crossref_primary_10_1002_adfm_202414042
crossref_primary_10_1016_j_coco_2024_102134
crossref_primary_10_1039_D5TC01493J
crossref_primary_10_1016_j_pmatsci_2023_101154
crossref_primary_10_1016_j_reactfunctpolym_2025_106293
crossref_primary_10_3390_nano14151259
crossref_primary_10_1016_j_polymer_2024_127245
crossref_primary_10_1002_app_55094
crossref_primary_10_1002_smll_202409657
crossref_primary_10_1002_pat_6579
crossref_primary_10_1002_smll_202412447
crossref_primary_10_1007_s12598_022_02195_8
crossref_primary_10_1002_pc_29765
Cites_doi 10.1016/j.compositesa.2019.105498
10.1177/0954008316631593
10.1016/j.compositesb.2016.11.050
10.1016/j.compositesa.2017.01.019
10.1177/0954008319847259
10.1016/j.compositesb.2018.07.019
10.1080/03602559.2010.512326
10.1016/j.compositesb.2019.107105
10.1002/app.35089
10.1016/j.ijheatmasstransfer.2015.08.081
10.1016/j.polymer.2018.04.011
10.1016/j.cej.2019.123829
10.1016/j.compositesa.2019.105727
10.1002/app.28817
10.1016/j.polymer.2005.03.068
10.1016/j.compscitech.2020.108558
10.1007/s10853-018-2021-1
10.1016/j.compositesb.2019.01.099
10.1039/C8TC04309D
10.1016/j.compositesb.2019.107569
10.1002/pat.2018
10.1016/j.cej.2019.122690
10.1016/j.compscitech.2016.12.015
10.1016/j.compscitech.2018.05.038
10.1016/j.compositesb.2020.107746
10.1021/acs.iecr.9b01642
10.1016/j.jcis.2011.10.049
10.1016/j.compositesa.2016.11.002
10.1016/j.compositesb.2019.107495
10.1002/app.46606
10.1039/C8TC00452H
10.1039/C7RA04454B
10.1016/j.coco.2018.04.009
10.1177/0954008320977611
10.1016/j.compositesa.2017.06.005
10.1016/j.cej.2020.124287
10.1177/0954008320916224
10.1016/j.compscitech.2016.10.017
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Mar 22, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Mar 22, 2022
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2022.109289
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2022_109289
S0266353822000318
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
.-4
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
T9H
VH1
WUQ
~HD
7SR
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
JG9
SSH
ID FETCH-LOGICAL-c349t-c17ccbd1e4f6735cbfa6bf128de0db2760a11522a4ec88a6cf84472e5091f14c3
ISICitedReferencesCount 39
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783215800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-3538
IngestDate Fri Jul 25 03:12:23 EDT 2025
Tue Nov 18 22:23:51 EST 2025
Sat Nov 29 07:20:03 EST 2025
Fri Feb 23 02:41:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords A. Polymer-matrix composites (PMCs)
B. Electrical properties
B. Thermal properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-c17ccbd1e4f6735cbfa6bf128de0db2760a11522a4ec88a6cf84472e5091f14c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0390-8455
0000-0002-3092-623X
PQID 2641590071
PQPubID 2045270
ParticipantIDs proquest_journals_2641590071
crossref_citationtrail_10_1016_j_compscitech_2022_109289
crossref_primary_10_1016_j_compscitech_2022_109289
elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109289
PublicationCentury 2000
PublicationDate 2022-03-22
PublicationDateYYYYMMDD 2022-03-22
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-22
  day: 22
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Composites science and technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Xu, Zhou, Cui, Song, Shi, Ding (bib7) 2019; 178
Wu, Yang, Yu, Zhao, Zhang, Huang (bib20) 2018; 143
Shan, Chen, Xi, Yu, Qu, Zhang (bib35) 2016; 29
Song, Cao, Luo, Guo, Gu, Ding (bib1) 2018; 6
Yang, Tang, Guo, Liang, Zhang, Kou, Gu (bib19) 2017; 101
Wang, Han, Guo, Wang, Sun, Zhou, Zhao (bib24) 2019; 58
Vu, Bach, Nguyen, Tran, Goodarzi (bib10) 2019; 175
Liu, Wang, Sun, Zhao, Zhan, Guo, Zhou, Liu, Wang, Zhao (bib15) 2021; 202
Zhang, Qu, Feng, Feng (bib39) 2018; 9
Pan, Kou, Zhang, Li, Wu (bib28) 2018; 153
Xu, Cui, Bao, Lin, Yuan, Wang, Wang, Sun (bib2) 2020; 388
Gu, Zhang, Dang, Yin, Chen (bib33) 2012; 124
Gu, Zhang, Zhang, Wang (bib34) 2010; 49
Teng, Su, Chen, Wang (bib13) 2019; 124
Traina, Galy, Gerard, Dikic, Verbrugge (bib27) 2012; 368
Gu, Liang, Zhao, Gan, Qiu, Guo, Yang, Zhang, Wang (bib37) 2017; 139
Gu, Guo, Yang, Liang, Geng, Tang, Li, Zhang (bib8) 2017; 95
Wang, Liu, Han, Guo, Zhou, Wang, Liu, Zhao (bib17) 2020; 32
Ren, Zhou, Sun, Ma, Zhou, Xu (bib29) 2017; 7
Pan, Kou, Jia, Zhang, Wu, Ji (bib30) 2017; 111
Conrado, Pavese (bib12) 2017
Jin, Li, Liu, Gan (bib22) 2020; 130
Keller, Dominguez (bib36) 2005; 46
Wang, Han, Liu, Guo, Zhou, Wang, Liu, Li, Han, Zhao (bib18) 2020
Gu, Meng, Tang, Li, Zhuang, Kong (bib32) 2017; 92
Zhou, Badashah, Luo, Liu, Zhao (bib26) 2011; 22
Wang, Guo, Li, Xu, Han, Luo, Ye, Zhou, Zhao (bib25) 2018; 135
Sun, Yao, Zhang, Li, Mai, Yu (bib31) 2016; 137
Gu, Yang, Lv, Li, Liang, Zhang (bib14) 2016; 92
Wang, Guo, Han, Li, Ding, Jiang, Zhou, Zhao (bib21) 2019; 32
Liu, Li, Fei, Han, Xia, Shan, Jiang (bib23) 2020; 385
Dominguez, Keller (bib16) 2008; 110
Xu, Yang, Dai, Liu, Zhang, Wang, Niu, Duan, Wang, Chen (bib38) 2018; 53
Li, Wang, Hou, Zhan, Wang, Fu, Lin, Fu, Jiang, Yu (bib5) 2020; 184
Guo, Xu, Yang, Ruan, Ma, Zhang, Gu, Wu, Liu, Guo (bib6) 2018; 6
Guo, Lyu, Yang, Lu, Ruan, Wu, Kong, Gu (bib9) 2019; 164
Yang, Guo, Luo, Zheng, Ma, Tan, Li, Zhang, Gu (bib3) 2018; 164
Wang, Liu, Liu, Ren, Li, Zhou, Xu, Lei, Li (bib4) 2020; 180
Chen, Hou, Liao, Dai, Wang, Yan, Li, Lin, Jiang, Yu (bib11) 2020; 381
Wang (10.1016/j.compscitech.2022.109289_bib24) 2019; 58
Gu (10.1016/j.compscitech.2022.109289_bib37) 2017; 139
Xu (10.1016/j.compscitech.2022.109289_bib2) 2020; 388
Wu (10.1016/j.compscitech.2022.109289_bib20) 2018; 143
Chen (10.1016/j.compscitech.2022.109289_bib11) 2020; 381
Wang (10.1016/j.compscitech.2022.109289_bib25) 2018; 135
Zhou (10.1016/j.compscitech.2022.109289_bib26) 2011; 22
Vu (10.1016/j.compscitech.2022.109289_bib10) 2019; 175
Wang (10.1016/j.compscitech.2022.109289_bib4) 2020; 180
Wang (10.1016/j.compscitech.2022.109289_bib17) 2020; 32
Jin (10.1016/j.compscitech.2022.109289_bib22) 2020; 130
Yang (10.1016/j.compscitech.2022.109289_bib3) 2018; 164
Conrado (10.1016/j.compscitech.2022.109289_bib12) 2017
Gu (10.1016/j.compscitech.2022.109289_bib33) 2012; 124
Shan (10.1016/j.compscitech.2022.109289_bib35) 2016; 29
Gu (10.1016/j.compscitech.2022.109289_bib14) 2016; 92
Zhang (10.1016/j.compscitech.2022.109289_bib39) 2018; 9
Gu (10.1016/j.compscitech.2022.109289_bib34) 2010; 49
Song (10.1016/j.compscitech.2022.109289_bib1) 2018; 6
Gu (10.1016/j.compscitech.2022.109289_bib8) 2017; 95
Guo (10.1016/j.compscitech.2022.109289_bib9) 2019; 164
Pan (10.1016/j.compscitech.2022.109289_bib30) 2017; 111
Guo (10.1016/j.compscitech.2022.109289_bib6) 2018; 6
Liu (10.1016/j.compscitech.2022.109289_bib15) 2021; 202
Wang (10.1016/j.compscitech.2022.109289_bib21) 2019; 32
Gu (10.1016/j.compscitech.2022.109289_bib32) 2017; 92
Keller (10.1016/j.compscitech.2022.109289_bib36) 2005; 46
Xu (10.1016/j.compscitech.2022.109289_bib7) 2019; 178
Wang (10.1016/j.compscitech.2022.109289_bib18) 2020
Teng (10.1016/j.compscitech.2022.109289_bib13) 2019; 124
Liu (10.1016/j.compscitech.2022.109289_bib23) 2020; 385
Dominguez (10.1016/j.compscitech.2022.109289_bib16) 2008; 110
Pan (10.1016/j.compscitech.2022.109289_bib28) 2018; 153
Li (10.1016/j.compscitech.2022.109289_bib5) 2020; 184
Xu (10.1016/j.compscitech.2022.109289_bib38) 2018; 53
Sun (10.1016/j.compscitech.2022.109289_bib31) 2016; 137
Traina (10.1016/j.compscitech.2022.109289_bib27) 2012; 368
Ren (10.1016/j.compscitech.2022.109289_bib29) 2017; 7
Yang (10.1016/j.compscitech.2022.109289_bib19) 2017; 101
References_xml – volume: 6
  start-page: 13108
  year: 2018
  end-page: 13113
  ident: bib1
  article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity
  publication-title: J. Mater. Chem. C
– volume: 6
  start-page: 3004
  year: 2018
  end-page: 3015
  ident: bib6
  article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology
  publication-title: J. Mater. Chem. C
– volume: 92
  start-page: 15
  year: 2016
  end-page: 22
  ident: bib14
  article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
– volume: 139
  start-page: 83
  year: 2017
  end-page: 89
  ident: bib37
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
– volume: 111
  start-page: 83
  year: 2017
  end-page: 90
  ident: bib30
  article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent
  publication-title: Composites Part B
– volume: 95
  start-page: 267
  year: 2017
  end-page: 273
  ident: bib8
  article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers
  publication-title: Composites Part A
– volume: 32
  start-page: 3
  year: 2019
  end-page: 11
  ident: bib21
  article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group
  publication-title: High Perform. Polym.
– volume: 46
  start-page: 4614
  year: 2005
  end-page: 4618
  ident: bib36
  article-title: High temperature resorcinol-based phthalonitrile polymer
  publication-title: Polymer
– year: 2020
  ident: bib18
  article-title: SiBCN ceramic precursor modified phthalonitrile resin with high thermal resistance
  publication-title: High Perform. Polym.
– volume: 9
  start-page: 33
  year: 2018
  end-page: 41
  ident: bib39
  article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications
  publication-title: Compos. Commun.
– volume: 381
  start-page: 122690
  year: 2020
  end-page: 122696
  ident: bib11
  article-title: Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite
  publication-title: Chem. Eng. J.
– volume: 92
  start-page: 27
  year: 2017
  end-page: 32
  ident: bib32
  article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities
  publication-title: Composites Part A
– volume: 124
  start-page: 105498
  year: 2019
  end-page: 105503
  ident: bib13
  article-title: Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets
  publication-title: Composites Part A
– volume: 164
  start-page: 59
  year: 2018
  end-page: 64
  ident: bib3
  article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization
  publication-title: Compos. Sci. Technol.
– volume: 22
  start-page: 1459
  year: 2011
  end-page: 1465
  ident: bib26
  article-title: Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group
  publication-title: Polym. Adv. Technol.
– volume: 58
  start-page: 9921
  year: 2019
  end-page: 9930
  ident: bib24
  article-title: Phthalonitrile-Terminated silicon-containing oligomers: synthesis, polymerization, and properties
  publication-title: Ind. Eng. Chem. Res.
– volume: 130
  start-page: 105727
  year: 2020
  end-page: 105737
  ident: bib22
  article-title: Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites
  publication-title: Composites Part A
– volume: 153
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib28
  article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles
  publication-title: Composites Part B
– volume: 178
  start-page: 107495
  year: 2019
  end-page: 107502
  ident: bib7
  article-title: Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites
  publication-title: Composites Part B
– volume: 32
  start-page: 963
  year: 2020
  end-page: 972
  ident: bib17
  article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure
  publication-title: High Perform. Polym.
– start-page: 8974174
  year: 2017
  end-page: 8974184
  ident: bib12
  article-title: A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites
  publication-title: J. Nanomater.
– volume: 175
  start-page: 107105
  year: 2019
  end-page: 107112
  ident: bib10
  article-title: 3D interconnected structure of poly(methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites
  publication-title: Composites Part B
– volume: 124
  start-page: 132
  year: 2012
  end-page: 137
  ident: bib33
  article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites
  publication-title: J. Appl. Polym. Sci.
– volume: 7
  start-page: 29779
  year: 2017
  end-page: 29785
  ident: bib29
  article-title: Blocked isocyanate silane modified Al2O3/polyamide 6 thermally conductive and electrical insulation composites with outstanding mechanical properties
  publication-title: RSC Adv.
– volume: 143
  start-page: 145
  year: 2018
  end-page: 154
  ident: bib20
  article-title: Highly crosslinked and uniform thermoset epoxy microspheres: preparation and toughening study
  publication-title: Polymer
– volume: 101
  start-page: 237
  year: 2017
  end-page: 242
  ident: bib19
  article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers
  publication-title: Composites Part A
– volume: 164
  start-page: 732
  year: 2019
  end-page: 739
  ident: bib9
  article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites
  publication-title: Composites Part B
– volume: 135
  start-page: 46606
  year: 2018
  end-page: 46613
  ident: bib25
  article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group
  publication-title: J. Appl. Polym. Sci.
– volume: 202
  start-page: 108558
  year: 2021
  end-page: 108566
  ident: bib15
  article-title: Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities
  publication-title: Compos. Sci. Technol.
– volume: 368
  start-page: 158
  year: 2012
  end-page: 164
  ident: bib27
  article-title: Synthesis of cross-linked epoxy microparticles: effect of the synthesis parameters
  publication-title: J. Colloid Interface Sci.
– volume: 49
  start-page: 1385
  year: 2010
  end-page: 1389
  ident: bib34
  article-title: Studies on the preparation of polystyrene thermal conductivity composites
  publication-title: Polym. Plast. Technol. Eng.
– volume: 184
  start-page: 107746
  year: 2020
  end-page: 107753
  ident: bib5
  article-title: Highly thermal conductive and electrical insulating polymer composites with boron nitride
  publication-title: Composites Part B
– volume: 110
  start-page: 2504
  year: 2008
  end-page: 2515
  ident: bib16
  article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties
  publication-title: J. Appl. Polym. Sci.
– volume: 180
  start-page: 107569
  year: 2020
  end-page: 107576
  ident: bib4
  article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management
  publication-title: Composites Part B
– volume: 137
  start-page: 16
  year: 2016
  end-page: 23
  ident: bib31
  article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites
  publication-title: Compos. Sci. Technol.
– volume: 53
  start-page: 6574
  year: 2018
  end-page: 6585
  ident: bib38
  article-title: Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending
  publication-title: J. Mater. Sci.
– volume: 29
  start-page: 113
  year: 2016
  end-page: 123
  ident: bib35
  article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin
  publication-title: High Perform. Polym.
– volume: 385
  start-page: 123829
  year: 2020
  end-page: 123840
  ident: bib23
  article-title: Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method
  publication-title: Chem. Eng. J.
– volume: 388
  start-page: 124287
  year: 2020
  end-page: 124295
  ident: bib2
  article-title: A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites
  publication-title: Chem. Eng. J.
– volume: 124
  start-page: 105498
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib13
  article-title: Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets
  publication-title: Composites Part A
  doi: 10.1016/j.compositesa.2019.105498
– volume: 29
  start-page: 113
  issue: 1
  year: 2016
  ident: 10.1016/j.compscitech.2022.109289_bib35
  article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008316631593
– volume: 111
  start-page: 83
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib30
  article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2016.11.050
– volume: 95
  start-page: 267
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib8
  article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers
  publication-title: Composites Part A
  doi: 10.1016/j.compositesa.2017.01.019
– volume: 32
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib21
  article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008319847259
– volume: 153
  start-page: 1
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib28
  article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2018.07.019
– volume: 49
  start-page: 1385
  issue: 13
  year: 2010
  ident: 10.1016/j.compscitech.2022.109289_bib34
  article-title: Studies on the preparation of polystyrene thermal conductivity composites
  publication-title: Polym. Plast. Technol. Eng.
  doi: 10.1080/03602559.2010.512326
– volume: 175
  start-page: 107105
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib10
  article-title: 3D interconnected structure of poly(methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.107105
– volume: 124
  start-page: 132
  issue: 1
  year: 2012
  ident: 10.1016/j.compscitech.2022.109289_bib33
  article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.35089
– volume: 92
  start-page: 15
  year: 2016
  ident: 10.1016/j.compscitech.2022.109289_bib14
  article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2015.08.081
– volume: 143
  start-page: 145
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib20
  article-title: Highly crosslinked and uniform thermoset epoxy microspheres: preparation and toughening study
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.04.011
– volume: 385
  start-page: 123829
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib23
  article-title: Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123829
– volume: 130
  start-page: 105727
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib22
  article-title: Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites
  publication-title: Composites Part A
  doi: 10.1016/j.compositesa.2019.105727
– volume: 110
  start-page: 2504
  issue: 4
  year: 2008
  ident: 10.1016/j.compscitech.2022.109289_bib16
  article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.28817
– volume: 46
  start-page: 4614
  issue: 13
  year: 2005
  ident: 10.1016/j.compscitech.2022.109289_bib36
  article-title: High temperature resorcinol-based phthalonitrile polymer
  publication-title: Polymer
  doi: 10.1016/j.polymer.2005.03.068
– volume: 202
  start-page: 108558
  year: 2021
  ident: 10.1016/j.compscitech.2022.109289_bib15
  article-title: Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108558
– volume: 53
  start-page: 6574
  issue: 9
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib38
  article-title: Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2021-1
– volume: 164
  start-page: 732
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib9
  article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.01.099
– volume: 6
  start-page: 13108
  issue: 48
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib1
  article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC04309D
– volume: 180
  start-page: 107569
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib4
  article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.107569
– volume: 22
  start-page: 1459
  issue: 10
  year: 2011
  ident: 10.1016/j.compscitech.2022.109289_bib26
  article-title: Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.2018
– volume: 381
  start-page: 122690
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib11
  article-title: Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.122690
– start-page: 8974174
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib12
  article-title: A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites
  publication-title: J. Nanomater.
– volume: 139
  start-page: 83
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib37
  article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.12.015
– volume: 164
  start-page: 59
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib3
  article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2018.05.038
– volume: 184
  start-page: 107746
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib5
  article-title: Highly thermal conductive and electrical insulating polymer composites with boron nitride
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2020.107746
– volume: 58
  start-page: 9921
  issue: 23
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib24
  article-title: Phthalonitrile-Terminated silicon-containing oligomers: synthesis, polymerization, and properties
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b01642
– volume: 368
  start-page: 158
  issue: 1
  year: 2012
  ident: 10.1016/j.compscitech.2022.109289_bib27
  article-title: Synthesis of cross-linked epoxy microparticles: effect of the synthesis parameters
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2011.10.049
– volume: 92
  start-page: 27
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib32
  article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities
  publication-title: Composites Part A
  doi: 10.1016/j.compositesa.2016.11.002
– volume: 178
  start-page: 107495
  year: 2019
  ident: 10.1016/j.compscitech.2022.109289_bib7
  article-title: Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.107495
– volume: 135
  start-page: 46606
  issue: 34
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib25
  article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.46606
– volume: 6
  start-page: 3004
  issue: 12
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib6
  article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC00452H
– volume: 7
  start-page: 29779
  issue: 47
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib29
  article-title: Blocked isocyanate silane modified Al2O3/polyamide 6 thermally conductive and electrical insulation composites with outstanding mechanical properties
  publication-title: RSC Adv.
  doi: 10.1039/C7RA04454B
– volume: 9
  start-page: 33
  year: 2018
  ident: 10.1016/j.compscitech.2022.109289_bib39
  article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications
  publication-title: Compos. Commun.
  doi: 10.1016/j.coco.2018.04.009
– year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib18
  article-title: SiBCN ceramic precursor modified phthalonitrile resin with high thermal resistance
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008320977611
– volume: 101
  start-page: 237
  year: 2017
  ident: 10.1016/j.compscitech.2022.109289_bib19
  article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers
  publication-title: Composites Part A
  doi: 10.1016/j.compositesa.2017.06.005
– volume: 388
  start-page: 124287
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib2
  article-title: A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124287
– volume: 32
  start-page: 963
  issue: 8
  year: 2020
  ident: 10.1016/j.compscitech.2022.109289_bib17
  article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure
  publication-title: High Perform. Polym.
  doi: 10.1177/0954008320916224
– volume: 137
  start-page: 16
  year: 2016
  ident: 10.1016/j.compscitech.2022.109289_bib31
  article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2016.10.017
SSID ssj0007592
Score 2.5441213
Snippet Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109289
SubjectTerms 3-D technology
A. Polymer-matrix composites (PMCs)
B. Electrical properties
B. Thermal properties
Boron
Boron nitride
Composite materials
Fillers
Heat conductivity
Heat transfer
Hot pressing
Microspheres
Nanosheets
Polymer matrix composites
Polymers
Resins
Thermal conductivity
Thermal management
Three dimensional composites
Title Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity
URI https://dx.doi.org/10.1016/j.compscitech.2022.109289
https://www.proquest.com/docview/2641590071
Volume 220
WOSCitedRecordID wos000783215800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZO_bxMLauY926ocHegotlOZYCeyltxzZKGawboS9GlqXGJTghTkr3I_Y79jd3r2THbkshY-zFBBNJds7R1ZVy77mEvA91aKVQLFBK8SBmsQoyxm3ADGNWWc0HTkvvx7E4OZGj0fBrr_e7yYW5nIiylFdXw9l_hRruAdiYOvsXcK86hRvwGUCHK8AO17WAxxKcjSgsuoL80GlCzDWGtGh0MJ0-66Q4L9H7RAWDPszreZGbfqnKaTU2ZlH1fR_LufGB5uPFWE2m7nsT4wLRMdrL1MlxKHqMLixYeZQbKVFE1lWl6Pq-B22jJpnIhW_eOtw_LpaI_AiY-3PZsvdsPF36lbJebd3_AN5WnRXwcOetOXW2dLTsnmnAdjjkQdTugFfJNm1kU-U0YpOAD7wYzJ7x9lqKIawkXru2MeiRS6-7vTj4c4oLxHYG74mvt4ejo6RW5AsZ3dDe_oZj4pARZjSB-btHNiMxGIL53Nz_fDT6slr04Wbkj_P8Mz4g79pQwjsGvMsVuuEUOE_n9Cl5Um9R6L6n1jPSM-UWedhksFdb5HFHxPI5-dUlHJ1ayg_pdcJRgJnWhKOOcLQmHG0JR1vCQXN6nXC0JRxFwlEkHK0JR7uE2ybfPx6dHnwK6iIfgebxcBFoJrTOcmZimwg-0JlVSWbBa8pNmGeRSEIFm5YoUrHRUqpEWxnHIjLo6FoWa_6CbJTT0rwkNDeJDpVMcgmbfJHYjCus_mDjhKlMMrVDZPN7p7pWwMdCLJO0CXW8SDtQpQhV6qHaIdGq6czLwKzT6EMDalrPK--npsDIdZrvNkRIa_tSpbB_YVjoV7BX_9b7a_KonXm7ZAMwNm_IfX25KKr525refwBoU-Cd
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+3D+interconnected+and+aligned+boron+nitride+nanosheets+structures+in+phthalonitrile+composites+with+high+thermal+conductivity&rft.jtitle=Composites+science+and+technology&rft.au=Liu%2C+Xianyuan&rft.au=Zhou%2C+Heng&rft.au=Wang%2C+Zilong&rft.au=Han%2C+Xu&rft.date=2022-03-22&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=220&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109289&rft.externalDocID=S0266353822000318
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon