Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity
Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs...
Saved in:
| Published in: | Composites science and technology Vol. 220; p. 109289 |
|---|---|
| Main Authors: | , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Barking
Elsevier Ltd
22.03.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0266-3538, 1879-1050 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity.
[Display omitted]
•Developed facile methods to manufacture 3D interconnected BNNSs networks.•Achieve good thermal conductivity while maintaining the excellent comprehensive properties.•Two-dimensional fillers are oriented in the resin matrix by hot pressing.•Thermal conductivity of the isotropic composite is increased to 1616% compared to origin resin.•The in-plane thermal conductivity of the anisotropic composite can reach as high as 7.835 W/mK. |
|---|---|
| AbstractList | Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity. Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and aligned structures are two effective strategies to improve the thermal conductivity of polymer composites. Herein, boron nitride nanosheets (BNNSs) and phthalonitrile microspheres were assembled to form complex microspheres, and the prepared complex microspheres were hot-pressed to composites with 3D interconnected filler networks. Benefitted from the 3D networks, the composites with 40 vol% BNNSs achieved an ultrahigh thermal conductivity of 4.282 W/mK, which was 16.16 times of pristine phthalonitrile resin (0.265 W/mK). Furthermore, the BNNSs-aligned composites were fabricated via solution mixing and hot pressing, the uniform dispersion and high orientation BNNSs were realized in the resin matrix. Due to the aligned fillers, the in-plane thermal conductivity of the aligned composites was significantly increased to 7.835 W/mK at 40 vol% BNNSs content, which was 29.57 times of pristine phthalonitrile resin. These two simple methods provide new strategies for the design and preparation of composites with high thermal conductivity. [Display omitted] •Developed facile methods to manufacture 3D interconnected BNNSs networks.•Achieve good thermal conductivity while maintaining the excellent comprehensive properties.•Two-dimensional fillers are oriented in the resin matrix by hot pressing.•Thermal conductivity of the isotropic composite is increased to 1616% compared to origin resin.•The in-plane thermal conductivity of the anisotropic composite can reach as high as 7.835 W/mK. |
| ArticleNumber | 109289 |
| Author | Zhao, Tong Guo, Ying Wang, Zilong Zhao, Zehua Zhou, Heng Liu, Xianyuan Wang, Jun Liu, Wenbin Han, Xu |
| Author_xml | – sequence: 1 givenname: Xianyuan surname: Liu fullname: Liu, Xianyuan organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 2 givenname: Heng surname: Zhou fullname: Zhou, Heng email: zhouheng@iccas.ac.cn organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 3 givenname: Zilong surname: Wang fullname: Wang, Zilong organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 4 givenname: Xu surname: Han fullname: Han, Xu organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 5 givenname: Zehua surname: Zhao fullname: Zhao, Zehua organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 6 givenname: Ying surname: Guo fullname: Guo, Ying organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China – sequence: 7 givenname: Wenbin orcidid: 0000-0003-0390-8455 surname: Liu fullname: Liu, Wenbin organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China – sequence: 8 givenname: Jun orcidid: 0000-0002-3092-623X surname: Wang fullname: Wang, Jun email: wj6267@hrbeu.edu.cn organization: Institute of Composite Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China – sequence: 9 givenname: Tong surname: Zhao fullname: Zhao, Tong organization: Key Laboratory of Science and Technology on High-tech Polymer Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China |
| BookMark | eNqNUctOwzAQtFCRaIF_MOKcYjvvE0LhKVXiAmfLcTaNq9QutlPUj-CfcQgHxKmHlVfrmdnVzALNtNGA0BUlS0podrNZSrPdOak8yG7JCGNhXrKiPEFzWuRlRElKZmhOWJZFcRoXZ2jh3IYQkqclm6Ovymjn7SC9MhqbFsf3WGkPVhqtQXposNCherXWoa-NDTCtvFUNYC20cR2Ad3jSGCy4QMe7zneiNz-4HvB4onHhRIc_le9wp9Yd9h3YrejDp27G9XvlDxfotBW9g8vf9xy9Pz68Vc_R6vXppbpbRTJOSh9JmktZNxSSNsvjVNatyOqWsqIB0tQsz4igNGVMJCCLQmSyLZIkZ5CSkrY0kfE5up50d9Z8DOA835jB6rCSsyyhaRnsoQF1O6GkNc5ZaHmwWYxGeStUzynhYwZ8w_9kwMcM-JRBUCj_Keys2gp7OIpbTVwIRuwVWB5QoCU0yoZgeGPUESrfh6OwQQ |
| CitedBy_id | crossref_primary_10_1016_j_eurpolymj_2022_111472 crossref_primary_10_1016_j_matchemphys_2023_128005 crossref_primary_10_1016_j_polymer_2022_125118 crossref_primary_10_1007_s40820_024_01396_3 crossref_primary_10_1177_09540083241309065 crossref_primary_10_1016_j_compositesa_2025_109035 crossref_primary_10_1016_j_addma_2024_104053 crossref_primary_10_1007_s10853_025_10985_5 crossref_primary_10_1016_j_polymdegradstab_2022_110113 crossref_primary_10_1016_j_cej_2023_142273 crossref_primary_10_1002_app_57552 crossref_primary_10_1016_j_coco_2022_101267 crossref_primary_10_1016_j_coco_2023_101764 crossref_primary_10_1016_j_compositesa_2022_107104 crossref_primary_10_1016_j_compscitech_2023_110289 crossref_primary_10_1063_5_0243023 crossref_primary_10_1016_j_compscitech_2023_110246 crossref_primary_10_1016_j_polymer_2022_125643 crossref_primary_10_1016_j_colsurfa_2023_131222 crossref_primary_10_1002_adfm_202414042 crossref_primary_10_1016_j_coco_2024_102134 crossref_primary_10_1039_D5TC01493J crossref_primary_10_1016_j_pmatsci_2023_101154 crossref_primary_10_1016_j_reactfunctpolym_2025_106293 crossref_primary_10_3390_nano14151259 crossref_primary_10_1016_j_polymer_2024_127245 crossref_primary_10_1002_app_55094 crossref_primary_10_1002_smll_202409657 crossref_primary_10_1002_pat_6579 crossref_primary_10_1002_smll_202412447 crossref_primary_10_1007_s12598_022_02195_8 crossref_primary_10_1002_pc_29765 |
| Cites_doi | 10.1016/j.compositesa.2019.105498 10.1177/0954008316631593 10.1016/j.compositesb.2016.11.050 10.1016/j.compositesa.2017.01.019 10.1177/0954008319847259 10.1016/j.compositesb.2018.07.019 10.1080/03602559.2010.512326 10.1016/j.compositesb.2019.107105 10.1002/app.35089 10.1016/j.ijheatmasstransfer.2015.08.081 10.1016/j.polymer.2018.04.011 10.1016/j.cej.2019.123829 10.1016/j.compositesa.2019.105727 10.1002/app.28817 10.1016/j.polymer.2005.03.068 10.1016/j.compscitech.2020.108558 10.1007/s10853-018-2021-1 10.1016/j.compositesb.2019.01.099 10.1039/C8TC04309D 10.1016/j.compositesb.2019.107569 10.1002/pat.2018 10.1016/j.cej.2019.122690 10.1016/j.compscitech.2016.12.015 10.1016/j.compscitech.2018.05.038 10.1016/j.compositesb.2020.107746 10.1021/acs.iecr.9b01642 10.1016/j.jcis.2011.10.049 10.1016/j.compositesa.2016.11.002 10.1016/j.compositesb.2019.107495 10.1002/app.46606 10.1039/C8TC00452H 10.1039/C7RA04454B 10.1016/j.coco.2018.04.009 10.1177/0954008320977611 10.1016/j.compositesa.2017.06.005 10.1016/j.cej.2020.124287 10.1177/0954008320916224 10.1016/j.compscitech.2016.10.017 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Mar 22, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Mar 22, 2022 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2022.109289 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2022_109289 S0266353822000318 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ ~HD 7SR 8FD AFXIZ AGCQF AGRNS BNPGV JG9 SSH |
| ID | FETCH-LOGICAL-c349t-c17ccbd1e4f6735cbfa6bf128de0db2760a11522a4ec88a6cf84472e5091f14c3 |
| ISICitedReferencesCount | 39 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783215800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Fri Jul 25 03:12:23 EDT 2025 Tue Nov 18 22:23:51 EST 2025 Sat Nov 29 07:20:03 EST 2025 Fri Feb 23 02:41:23 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | A. Polymer-matrix composites (PMCs) B. Electrical properties B. Thermal properties |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-c17ccbd1e4f6735cbfa6bf128de0db2760a11522a4ec88a6cf84472e5091f14c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0390-8455 0000-0002-3092-623X |
| PQID | 2641590071 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2641590071 crossref_citationtrail_10_1016_j_compscitech_2022_109289 crossref_primary_10_1016_j_compscitech_2022_109289 elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109289 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-22 |
| PublicationDateYYYYMMDD | 2022-03-22 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Xu, Zhou, Cui, Song, Shi, Ding (bib7) 2019; 178 Wu, Yang, Yu, Zhao, Zhang, Huang (bib20) 2018; 143 Shan, Chen, Xi, Yu, Qu, Zhang (bib35) 2016; 29 Song, Cao, Luo, Guo, Gu, Ding (bib1) 2018; 6 Yang, Tang, Guo, Liang, Zhang, Kou, Gu (bib19) 2017; 101 Wang, Han, Guo, Wang, Sun, Zhou, Zhao (bib24) 2019; 58 Vu, Bach, Nguyen, Tran, Goodarzi (bib10) 2019; 175 Liu, Wang, Sun, Zhao, Zhan, Guo, Zhou, Liu, Wang, Zhao (bib15) 2021; 202 Zhang, Qu, Feng, Feng (bib39) 2018; 9 Pan, Kou, Zhang, Li, Wu (bib28) 2018; 153 Xu, Cui, Bao, Lin, Yuan, Wang, Wang, Sun (bib2) 2020; 388 Gu, Zhang, Dang, Yin, Chen (bib33) 2012; 124 Gu, Zhang, Zhang, Wang (bib34) 2010; 49 Teng, Su, Chen, Wang (bib13) 2019; 124 Traina, Galy, Gerard, Dikic, Verbrugge (bib27) 2012; 368 Gu, Liang, Zhao, Gan, Qiu, Guo, Yang, Zhang, Wang (bib37) 2017; 139 Gu, Guo, Yang, Liang, Geng, Tang, Li, Zhang (bib8) 2017; 95 Wang, Liu, Han, Guo, Zhou, Wang, Liu, Zhao (bib17) 2020; 32 Ren, Zhou, Sun, Ma, Zhou, Xu (bib29) 2017; 7 Pan, Kou, Jia, Zhang, Wu, Ji (bib30) 2017; 111 Conrado, Pavese (bib12) 2017 Jin, Li, Liu, Gan (bib22) 2020; 130 Keller, Dominguez (bib36) 2005; 46 Wang, Han, Liu, Guo, Zhou, Wang, Liu, Li, Han, Zhao (bib18) 2020 Gu, Meng, Tang, Li, Zhuang, Kong (bib32) 2017; 92 Zhou, Badashah, Luo, Liu, Zhao (bib26) 2011; 22 Wang, Guo, Li, Xu, Han, Luo, Ye, Zhou, Zhao (bib25) 2018; 135 Sun, Yao, Zhang, Li, Mai, Yu (bib31) 2016; 137 Gu, Yang, Lv, Li, Liang, Zhang (bib14) 2016; 92 Wang, Guo, Han, Li, Ding, Jiang, Zhou, Zhao (bib21) 2019; 32 Liu, Li, Fei, Han, Xia, Shan, Jiang (bib23) 2020; 385 Dominguez, Keller (bib16) 2008; 110 Xu, Yang, Dai, Liu, Zhang, Wang, Niu, Duan, Wang, Chen (bib38) 2018; 53 Li, Wang, Hou, Zhan, Wang, Fu, Lin, Fu, Jiang, Yu (bib5) 2020; 184 Guo, Xu, Yang, Ruan, Ma, Zhang, Gu, Wu, Liu, Guo (bib6) 2018; 6 Guo, Lyu, Yang, Lu, Ruan, Wu, Kong, Gu (bib9) 2019; 164 Yang, Guo, Luo, Zheng, Ma, Tan, Li, Zhang, Gu (bib3) 2018; 164 Wang, Liu, Liu, Ren, Li, Zhou, Xu, Lei, Li (bib4) 2020; 180 Chen, Hou, Liao, Dai, Wang, Yan, Li, Lin, Jiang, Yu (bib11) 2020; 381 Wang (10.1016/j.compscitech.2022.109289_bib24) 2019; 58 Gu (10.1016/j.compscitech.2022.109289_bib37) 2017; 139 Xu (10.1016/j.compscitech.2022.109289_bib2) 2020; 388 Wu (10.1016/j.compscitech.2022.109289_bib20) 2018; 143 Chen (10.1016/j.compscitech.2022.109289_bib11) 2020; 381 Wang (10.1016/j.compscitech.2022.109289_bib25) 2018; 135 Zhou (10.1016/j.compscitech.2022.109289_bib26) 2011; 22 Vu (10.1016/j.compscitech.2022.109289_bib10) 2019; 175 Wang (10.1016/j.compscitech.2022.109289_bib4) 2020; 180 Wang (10.1016/j.compscitech.2022.109289_bib17) 2020; 32 Jin (10.1016/j.compscitech.2022.109289_bib22) 2020; 130 Yang (10.1016/j.compscitech.2022.109289_bib3) 2018; 164 Conrado (10.1016/j.compscitech.2022.109289_bib12) 2017 Gu (10.1016/j.compscitech.2022.109289_bib33) 2012; 124 Shan (10.1016/j.compscitech.2022.109289_bib35) 2016; 29 Gu (10.1016/j.compscitech.2022.109289_bib14) 2016; 92 Zhang (10.1016/j.compscitech.2022.109289_bib39) 2018; 9 Gu (10.1016/j.compscitech.2022.109289_bib34) 2010; 49 Song (10.1016/j.compscitech.2022.109289_bib1) 2018; 6 Gu (10.1016/j.compscitech.2022.109289_bib8) 2017; 95 Guo (10.1016/j.compscitech.2022.109289_bib9) 2019; 164 Pan (10.1016/j.compscitech.2022.109289_bib30) 2017; 111 Guo (10.1016/j.compscitech.2022.109289_bib6) 2018; 6 Liu (10.1016/j.compscitech.2022.109289_bib15) 2021; 202 Wang (10.1016/j.compscitech.2022.109289_bib21) 2019; 32 Gu (10.1016/j.compscitech.2022.109289_bib32) 2017; 92 Keller (10.1016/j.compscitech.2022.109289_bib36) 2005; 46 Xu (10.1016/j.compscitech.2022.109289_bib7) 2019; 178 Wang (10.1016/j.compscitech.2022.109289_bib18) 2020 Teng (10.1016/j.compscitech.2022.109289_bib13) 2019; 124 Liu (10.1016/j.compscitech.2022.109289_bib23) 2020; 385 Dominguez (10.1016/j.compscitech.2022.109289_bib16) 2008; 110 Pan (10.1016/j.compscitech.2022.109289_bib28) 2018; 153 Li (10.1016/j.compscitech.2022.109289_bib5) 2020; 184 Xu (10.1016/j.compscitech.2022.109289_bib38) 2018; 53 Sun (10.1016/j.compscitech.2022.109289_bib31) 2016; 137 Traina (10.1016/j.compscitech.2022.109289_bib27) 2012; 368 Ren (10.1016/j.compscitech.2022.109289_bib29) 2017; 7 Yang (10.1016/j.compscitech.2022.109289_bib19) 2017; 101 |
| References_xml | – volume: 6 start-page: 13108 year: 2018 end-page: 13113 ident: bib1 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C – volume: 6 start-page: 3004 year: 2018 end-page: 3015 ident: bib6 article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology publication-title: J. Mater. Chem. C – volume: 92 start-page: 15 year: 2016 end-page: 22 ident: bib14 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. – volume: 139 start-page: 83 year: 2017 end-page: 89 ident: bib37 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. – volume: 111 start-page: 83 year: 2017 end-page: 90 ident: bib30 article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent publication-title: Composites Part B – volume: 95 start-page: 267 year: 2017 end-page: 273 ident: bib8 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Composites Part A – volume: 32 start-page: 3 year: 2019 end-page: 11 ident: bib21 article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group publication-title: High Perform. Polym. – volume: 46 start-page: 4614 year: 2005 end-page: 4618 ident: bib36 article-title: High temperature resorcinol-based phthalonitrile polymer publication-title: Polymer – year: 2020 ident: bib18 article-title: SiBCN ceramic precursor modified phthalonitrile resin with high thermal resistance publication-title: High Perform. Polym. – volume: 9 start-page: 33 year: 2018 end-page: 41 ident: bib39 article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications publication-title: Compos. Commun. – volume: 381 start-page: 122690 year: 2020 end-page: 122696 ident: bib11 article-title: Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite publication-title: Chem. Eng. J. – volume: 92 start-page: 27 year: 2017 end-page: 32 ident: bib32 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Composites Part A – volume: 124 start-page: 105498 year: 2019 end-page: 105503 ident: bib13 article-title: Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets publication-title: Composites Part A – volume: 164 start-page: 59 year: 2018 end-page: 64 ident: bib3 article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization publication-title: Compos. Sci. Technol. – volume: 22 start-page: 1459 year: 2011 end-page: 1465 ident: bib26 article-title: Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group publication-title: Polym. Adv. Technol. – volume: 58 start-page: 9921 year: 2019 end-page: 9930 ident: bib24 article-title: Phthalonitrile-Terminated silicon-containing oligomers: synthesis, polymerization, and properties publication-title: Ind. Eng. Chem. Res. – volume: 130 start-page: 105727 year: 2020 end-page: 105737 ident: bib22 article-title: Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites publication-title: Composites Part A – volume: 153 start-page: 1 year: 2018 end-page: 8 ident: bib28 article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles publication-title: Composites Part B – volume: 178 start-page: 107495 year: 2019 end-page: 107502 ident: bib7 article-title: Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites publication-title: Composites Part B – volume: 32 start-page: 963 year: 2020 end-page: 972 ident: bib17 article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure publication-title: High Perform. Polym. – start-page: 8974174 year: 2017 end-page: 8974184 ident: bib12 article-title: A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites publication-title: J. Nanomater. – volume: 175 start-page: 107105 year: 2019 end-page: 107112 ident: bib10 article-title: 3D interconnected structure of poly(methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites publication-title: Composites Part B – volume: 124 start-page: 132 year: 2012 end-page: 137 ident: bib33 article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites publication-title: J. Appl. Polym. Sci. – volume: 7 start-page: 29779 year: 2017 end-page: 29785 ident: bib29 article-title: Blocked isocyanate silane modified Al2O3/polyamide 6 thermally conductive and electrical insulation composites with outstanding mechanical properties publication-title: RSC Adv. – volume: 143 start-page: 145 year: 2018 end-page: 154 ident: bib20 article-title: Highly crosslinked and uniform thermoset epoxy microspheres: preparation and toughening study publication-title: Polymer – volume: 101 start-page: 237 year: 2017 end-page: 242 ident: bib19 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers publication-title: Composites Part A – volume: 164 start-page: 732 year: 2019 end-page: 739 ident: bib9 article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites publication-title: Composites Part B – volume: 135 start-page: 46606 year: 2018 end-page: 46613 ident: bib25 article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group publication-title: J. Appl. Polym. Sci. – volume: 202 start-page: 108558 year: 2021 end-page: 108566 ident: bib15 article-title: Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities publication-title: Compos. Sci. Technol. – volume: 368 start-page: 158 year: 2012 end-page: 164 ident: bib27 article-title: Synthesis of cross-linked epoxy microparticles: effect of the synthesis parameters publication-title: J. Colloid Interface Sci. – volume: 49 start-page: 1385 year: 2010 end-page: 1389 ident: bib34 article-title: Studies on the preparation of polystyrene thermal conductivity composites publication-title: Polym. Plast. Technol. Eng. – volume: 184 start-page: 107746 year: 2020 end-page: 107753 ident: bib5 article-title: Highly thermal conductive and electrical insulating polymer composites with boron nitride publication-title: Composites Part B – volume: 110 start-page: 2504 year: 2008 end-page: 2515 ident: bib16 article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties publication-title: J. Appl. Polym. Sci. – volume: 180 start-page: 107569 year: 2020 end-page: 107576 ident: bib4 article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management publication-title: Composites Part B – volume: 137 start-page: 16 year: 2016 end-page: 23 ident: bib31 article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites publication-title: Compos. Sci. Technol. – volume: 53 start-page: 6574 year: 2018 end-page: 6585 ident: bib38 article-title: Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending publication-title: J. Mater. Sci. – volume: 29 start-page: 113 year: 2016 end-page: 123 ident: bib35 article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin publication-title: High Perform. Polym. – volume: 385 start-page: 123829 year: 2020 end-page: 123840 ident: bib23 article-title: Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method publication-title: Chem. Eng. J. – volume: 388 start-page: 124287 year: 2020 end-page: 124295 ident: bib2 article-title: A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites publication-title: Chem. Eng. J. – volume: 124 start-page: 105498 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib13 article-title: Flexible, thermally conductive layered composite films from massively exfoliated boron nitride nanosheets publication-title: Composites Part A doi: 10.1016/j.compositesa.2019.105498 – volume: 29 start-page: 113 issue: 1 year: 2016 ident: 10.1016/j.compscitech.2022.109289_bib35 article-title: The effect of nitrile-functionalized nano-aluminum oxide on the thermomechanical properties and toughness of phthalonitrile resin publication-title: High Perform. Polym. doi: 10.1177/0954008316631593 – volume: 111 start-page: 83 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib30 article-title: Improved thermal conductivity and dielectric properties of hBN/PTFE composites via surface treatment by silane coupling agent publication-title: Composites Part B doi: 10.1016/j.compositesb.2016.11.050 – volume: 95 start-page: 267 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib8 article-title: Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers publication-title: Composites Part A doi: 10.1016/j.compositesa.2017.01.019 – volume: 32 start-page: 3 issue: 1 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib21 article-title: Enhanced properties of phthalonitrile resins reinforced by novel phthalonitrile-terminated polyaryl ether nitrile containing fluorene group publication-title: High Perform. Polym. doi: 10.1177/0954008319847259 – volume: 153 start-page: 1 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib28 article-title: Enhanced through-plane thermal conductivity of PTFE composites with hybrid fillers of hexagonal boron nitride platelets and aluminum nitride particles publication-title: Composites Part B doi: 10.1016/j.compositesb.2018.07.019 – volume: 49 start-page: 1385 issue: 13 year: 2010 ident: 10.1016/j.compscitech.2022.109289_bib34 article-title: Studies on the preparation of polystyrene thermal conductivity composites publication-title: Polym. Plast. Technol. Eng. doi: 10.1080/03602559.2010.512326 – volume: 175 start-page: 107105 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib10 article-title: 3D interconnected structure of poly(methyl methacrylate) microbeads coated with copper nanoparticles for highly thermal conductive epoxy composites publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.107105 – volume: 124 start-page: 132 issue: 1 year: 2012 ident: 10.1016/j.compscitech.2022.109289_bib33 article-title: Preparation and properties of polystyrene/SiCw/SiCp thermal conductivity composites publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.35089 – volume: 92 start-page: 15 year: 2016 ident: 10.1016/j.compscitech.2022.109289_bib14 article-title: Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2015.08.081 – volume: 143 start-page: 145 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib20 article-title: Highly crosslinked and uniform thermoset epoxy microspheres: preparation and toughening study publication-title: Polymer doi: 10.1016/j.polymer.2018.04.011 – volume: 385 start-page: 123829 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib23 article-title: Highly thermally conductive polystyrene/polypropylene/boron nitride composites with 3D segregated structure prepared by solution-mixing and hot-pressing method publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123829 – volume: 130 start-page: 105727 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib22 article-title: Self-constructing thermal conductive filler network via reaction-induced phase separation in BNNSs/epoxy/polyetherimide composites publication-title: Composites Part A doi: 10.1016/j.compositesa.2019.105727 – volume: 110 start-page: 2504 issue: 4 year: 2008 ident: 10.1016/j.compscitech.2022.109289_bib16 article-title: Phthalonitrile-epoxy blends: cure behavior and copolymer properties publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.28817 – volume: 46 start-page: 4614 issue: 13 year: 2005 ident: 10.1016/j.compscitech.2022.109289_bib36 article-title: High temperature resorcinol-based phthalonitrile polymer publication-title: Polymer doi: 10.1016/j.polymer.2005.03.068 – volume: 202 start-page: 108558 year: 2021 ident: 10.1016/j.compscitech.2022.109289_bib15 article-title: Thermally conductive and electrically insulating alumina-coated graphite/phthalonitrile composites with thermal stabilities publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108558 – volume: 53 start-page: 6574 issue: 9 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib38 article-title: Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2021-1 – volume: 164 start-page: 732 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib9 article-title: Enhanced thermal conductivities and decreased thermal resistances of functionalized boron nitride/polyimide composites publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.01.099 – volume: 6 start-page: 13108 issue: 48 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib1 article-title: Aligned cellulose/nanodiamond plastics with high thermal conductivity publication-title: J. Mater. Chem. C doi: 10.1039/C8TC04309D – volume: 180 start-page: 107569 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib4 article-title: Highly thermal conductive, anisotropically heat-transferred, mechanically flexible composite film by assembly of boron nitride nanosheets for thermal management publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.107569 – volume: 22 start-page: 1459 issue: 10 year: 2011 ident: 10.1016/j.compscitech.2022.109289_bib26 article-title: Preparation and property comparison of ortho, meta, and para autocatalytic phthalonitrile compounds with amino group publication-title: Polym. Adv. Technol. doi: 10.1002/pat.2018 – volume: 381 start-page: 122690 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib11 article-title: Constructing a “pea-pod-like” alumina-graphene binary architecture for enhancing thermal conductivity of epoxy composite publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122690 – start-page: 8974174 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib12 article-title: A continuous 3D-graphene network to overcome threshold issues and contact resistance in thermally conductive graphene nanocomposites publication-title: J. Nanomater. – volume: 139 start-page: 83 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib37 article-title: Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.12.015 – volume: 164 start-page: 59 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib3 article-title: Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2018.05.038 – volume: 184 start-page: 107746 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib5 article-title: Highly thermal conductive and electrical insulating polymer composites with boron nitride publication-title: Composites Part B doi: 10.1016/j.compositesb.2020.107746 – volume: 58 start-page: 9921 issue: 23 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib24 article-title: Phthalonitrile-Terminated silicon-containing oligomers: synthesis, polymerization, and properties publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.9b01642 – volume: 368 start-page: 158 issue: 1 year: 2012 ident: 10.1016/j.compscitech.2022.109289_bib27 article-title: Synthesis of cross-linked epoxy microparticles: effect of the synthesis parameters publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2011.10.049 – volume: 92 start-page: 27 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib32 article-title: Hexagonal boron nitride/polymethyl-vinyl siloxane rubber dielectric thermally conductive composites with ideal thermal stabilities publication-title: Composites Part A doi: 10.1016/j.compositesa.2016.11.002 – volume: 178 start-page: 107495 year: 2019 ident: 10.1016/j.compscitech.2022.109289_bib7 article-title: Three-dimensional carbon fiber-graphene network for improved thermal conductive properties of polyamide-imide composites publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.107495 – volume: 135 start-page: 46606 issue: 34 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib25 article-title: Synthesis and properties of phthalonitrile terminated polyaryl ether nitrile containing fluorene group publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.46606 – volume: 6 start-page: 3004 issue: 12 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib6 article-title: Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology publication-title: J. Mater. Chem. C doi: 10.1039/C8TC00452H – volume: 7 start-page: 29779 issue: 47 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib29 article-title: Blocked isocyanate silane modified Al2O3/polyamide 6 thermally conductive and electrical insulation composites with outstanding mechanical properties publication-title: RSC Adv. doi: 10.1039/C7RA04454B – volume: 9 start-page: 33 year: 2018 ident: 10.1016/j.compscitech.2022.109289_bib39 article-title: Assembly of graphene-aligned polymer composites for thermal conductive applications publication-title: Compos. Commun. doi: 10.1016/j.coco.2018.04.009 – year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib18 article-title: SiBCN ceramic precursor modified phthalonitrile resin with high thermal resistance publication-title: High Perform. Polym. doi: 10.1177/0954008320977611 – volume: 101 start-page: 237 year: 2017 ident: 10.1016/j.compscitech.2022.109289_bib19 article-title: Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers publication-title: Composites Part A doi: 10.1016/j.compositesa.2017.06.005 – volume: 388 start-page: 124287 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib2 article-title: A 3D interconnected Cu network supported by carbon felt skeleton for highly thermally conductive epoxy composites publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124287 – volume: 32 start-page: 963 issue: 8 year: 2020 ident: 10.1016/j.compscitech.2022.109289_bib17 article-title: Preparation and characterization of phthalonitrile resin within hyperbranched structure publication-title: High Perform. Polym. doi: 10.1177/0954008320916224 – volume: 137 start-page: 16 year: 2016 ident: 10.1016/j.compscitech.2022.109289_bib31 article-title: Decoration of defect-free graphene nanoplatelets with alumina for thermally conductive and electrically insulating epoxy composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2016.10.017 |
| SSID | ssj0007592 |
| Score | 2.5441213 |
| Snippet | Effective heat dissipation of polymer-based composites has become a crucial issue in thermal management. Constructing 3D thermal transport frameworks and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109289 |
| SubjectTerms | 3-D technology A. Polymer-matrix composites (PMCs) B. Electrical properties B. Thermal properties Boron Boron nitride Composite materials Fillers Heat conductivity Heat transfer Hot pressing Microspheres Nanosheets Polymer matrix composites Polymers Resins Thermal conductivity Thermal management Three dimensional composites |
| Title | Construction of 3D interconnected and aligned boron nitride nanosheets structures in phthalonitrile composites with high thermal conductivity |
| URI | https://dx.doi.org/10.1016/j.compscitech.2022.109289 https://www.proquest.com/docview/2641590071 |
| Volume | 220 |
| WOSCitedRecordID | wos000783215800004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZO_bxMLauY926ocHegotlOZYCeyltxzZKGawboS9GlqXGJTghTkr3I_Y79jd3r2THbkshY-zFBBNJds7R1ZVy77mEvA91aKVQLFBK8SBmsQoyxm3ADGNWWc0HTkvvx7E4OZGj0fBrr_e7yYW5nIiylFdXw9l_hRruAdiYOvsXcK86hRvwGUCHK8AO17WAxxKcjSgsuoL80GlCzDWGtGh0MJ0-66Q4L9H7RAWDPszreZGbfqnKaTU2ZlH1fR_LufGB5uPFWE2m7nsT4wLRMdrL1MlxKHqMLixYeZQbKVFE1lWl6Pq-B22jJpnIhW_eOtw_LpaI_AiY-3PZsvdsPF36lbJebd3_AN5WnRXwcOetOXW2dLTsnmnAdjjkQdTugFfJNm1kU-U0YpOAD7wYzJ7x9lqKIawkXru2MeiRS6-7vTj4c4oLxHYG74mvt4ejo6RW5AsZ3dDe_oZj4pARZjSB-btHNiMxGIL53Nz_fDT6slr04Wbkj_P8Mz4g79pQwjsGvMsVuuEUOE_n9Cl5Um9R6L6n1jPSM-UWedhksFdb5HFHxPI5-dUlHJ1ayg_pdcJRgJnWhKOOcLQmHG0JR1vCQXN6nXC0JRxFwlEkHK0JR7uE2ybfPx6dHnwK6iIfgebxcBFoJrTOcmZimwg-0JlVSWbBa8pNmGeRSEIFm5YoUrHRUqpEWxnHIjLo6FoWa_6CbJTT0rwkNDeJDpVMcgmbfJHYjCus_mDjhKlMMrVDZPN7p7pWwMdCLJO0CXW8SDtQpQhV6qHaIdGq6czLwKzT6EMDalrPK--npsDIdZrvNkRIa_tSpbB_YVjoV7BX_9b7a_KonXm7ZAMwNm_IfX25KKr525refwBoU-Cd |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Construction+of+3D+interconnected+and+aligned+boron+nitride+nanosheets+structures+in+phthalonitrile+composites+with+high+thermal+conductivity&rft.jtitle=Composites+science+and+technology&rft.au=Liu%2C+Xianyuan&rft.au=Zhou%2C+Heng&rft.au=Wang%2C+Zilong&rft.au=Han%2C+Xu&rft.date=2022-03-22&rft.pub=Elsevier+Ltd&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=220&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109289&rft.externalDocID=S0266353822000318 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |