Reaching Non-Negative Edge Consensus of Networked Dynamical Systems

In this paper, the problem of non-negative edge consensus of undirected networked linear time-invariant systems is addressed by associating each edge of the network with a state variable, for which a distributed algorithm is constructed. Sufficient conditions referring only to the number of edges ar...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 48; no. 9; pp. 2712 - 2722
Main Authors: Xiao Ling Wang, Housheng Su, Chen, Michael Z. Q., Xiao Fan Wang, Guanrong Chen
Format: Journal Article
Language:English
Published: United States IEEE 01.09.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, the problem of non-negative edge consensus of undirected networked linear time-invariant systems is addressed by associating each edge of the network with a state variable, for which a distributed algorithm is constructed. Sufficient conditions referring only to the number of edges are derived for non-negative edge consensus of the networked systems. Subsequently, the linear programming method and a low-gain feedback technique are introduced to simplify the design of the feedback gain matrix for achieving the non-negative edge consensus. It is found that the low-gain feedback technique has a good effect on the non-negative edge consensus of the networked systems subject to input saturation. Numerical simulations are presented to verify the effectiveness of the theoretical results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2017.2748990