Block Search Stochastic Simulation Algorithm (BlSSSA): A Fast Stochastic Simulation Algorithm for Modeling Large Biochemical Networks
Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these algorithms is high in simulating real biochemical systems due to their large size, complex structure and stiffness. In order to reduce the computation...
Saved in:
| Published in: | IEEE/ACM transactions on computational biology and bioinformatics Vol. 19; no. 4; pp. 2111 - 2123 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.07.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these algorithms is high in simulating real biochemical systems due to their large size, complex structure and stiffness. In order to reduce the computational cost, several algorithms have been developed. It is observed that these algorithms are basically fast in simulating weakly coupled networks. In case of strongly coupled networks, they become slow as their computational cost become high in maintaining complex data structures. Here, we develop Block Search Stochastic Simulation Algorithm ( BlSSSA ). BlSSSA is not only fast in simulating weakly coupled networks but also fast in simulating strongly coupled and stiff networks. We compare its performance with other existing algorithms using two hypothetical networks, viz., linear chain and colloidal aggregation network, and three real biochemical networks, viz., B cell receptor signaling network, FceRI signaling network and a stiff 1,3-Butadiene Oxidation network. It has been shown that BlSSSA is faster than other algorithms considered in this study. |
|---|---|
| AbstractList | Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these algorithms is high in simulating real biochemical systems due to their large size, complex structure and stiffness. In order to reduce the computational cost, several algorithms have been developed. It is observed that these algorithms are basically fast in simulating weakly coupled networks. In case of strongly coupled networks, they become slow as their computational cost become high in maintaining complex data structures. Here, we develop Block Search Stochastic Simulation Algorithm (BlSSSA). BlSSSA is not only fast in simulating weakly coupled networks but also fast in simulating strongly coupled and stiff networks. We compare its performance with other existing algorithms using two hypothetical networks, viz., linear chain and colloidal aggregation network, and three real biochemical networks, viz., B cell receptor signaling network, FceRI signaling network and a stiff 1,3-Butadiene Oxidation network. It has been shown that BlSSSA is faster than other algorithms considered in this study. Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these algorithms is high in simulating real biochemical systems due to their large size, complex structure and stiffness. In order to reduce the computational cost, several algorithms have been developed. It is observed that these algorithms are basically fast in simulating weakly coupled networks. In case of strongly coupled networks, they become slow as their computational cost become high in maintaining complex data structures. Here, we develop Block Search Stochastic Simulation Algorithm (BlSSSA). BlSSSA is not only fast in simulating weakly coupled networks but also fast in simulating strongly coupled and stiff networks. We compare its performance with other existing algorithms using two hypothetical networks, viz., linear chain and colloidal aggregation network, and three real biochemical networks, viz., B cell receptor signaling network, FceRI signaling network and a stiff 1,3-Butadiene Oxidation network. It has been shown that BlSSSA is faster than other algorithms considered in this study.Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these algorithms is high in simulating real biochemical systems due to their large size, complex structure and stiffness. In order to reduce the computational cost, several algorithms have been developed. It is observed that these algorithms are basically fast in simulating weakly coupled networks. In case of strongly coupled networks, they become slow as their computational cost become high in maintaining complex data structures. Here, we develop Block Search Stochastic Simulation Algorithm (BlSSSA). BlSSSA is not only fast in simulating weakly coupled networks but also fast in simulating strongly coupled and stiff networks. We compare its performance with other existing algorithms using two hypothetical networks, viz., linear chain and colloidal aggregation network, and three real biochemical networks, viz., B cell receptor signaling network, FceRI signaling network and a stiff 1,3-Butadiene Oxidation network. It has been shown that BlSSSA is faster than other algorithms considered in this study. |
| Author | De, Rajat K. Ghosh, Debraj |
| Author_xml | – sequence: 1 givenname: Debraj orcidid: 0000-0002-5529-8436 surname: Ghosh fullname: Ghosh, Debraj email: debrajrock@gmail.com organization: Machine Intelligence Unit, Indian Statistical Institution, Kolkata, West Bengal, India – sequence: 2 givenname: Rajat K. orcidid: 0000-0001-6080-1131 surname: De fullname: De, Rajat K. email: rajat@isical.ac.in organization: Machine Intelligence Unit, Indian Statistical Institution, Kolkata, West Bengal, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33788690$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1DAUhi1URC_wAAgJWWLTLjL4FjtmNxm1gDTAImVteTwnM26duLUTIR6A9ybDDF100a58Ft93jvX_p-iojz0g9JaSGaVEf7xe1PWMEUZnnChCGX-BTmhZqkJrKY52syiLUkt-jE5zviGECU3EK3TMuaoqqckJ-lOH6G5xAza5LW6G6LY2D97hxndjsIOPPZ6HTUx-2Hb4vA5N08wvPuE5vpq4Z4U2JvwtriH4foOXNm0A135SoPPOBvwdhl8x3ebX6GVrQ4Y3h_cM_by6vF58KZY_Pn9dzJeF40IPxQqIlUIzXjngaympdqXg7aqVpKqck9yxCloitVIgSyVbBpxVmvPWCsGY5WfofL_3LsX7EfJgOp8dhGB7iGM2rCRKcapKOaEfHqE3cUz99DvDFCGCipKQiXp_oMZVB2tzl3xn02_zP-AJoHvApZhzgvYBocTsSjS7Es2uRHMocXLUI8f54V-yQ7I-PGm-25seAB4uaT5Fxir-F2mCp98 |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1177_11769351221087028 |
| Cites_doi | 10.1063/1.4922923 10.1063/1.2919546 10.1007/978-3-319-63113-4 10.1371/journal.pone.0060159 10.1016/j.biosystems.2017.10.011 10.4049/jimmunol.1102003 10.1016/0021-9991(76)90041-3 10.1146/annurev.immunol.021908.132541 10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U 10.1063/1.4896985 10.1103/PhysRevE.85.066109 10.1146/annurev.pc.39.100188.001321 10.2174/1871530317666170828111113 10.1088/0268-1242/3/6/014 10.1109/TCBB.2016.2530066 10.1063/1.2218339 10.1007/978-1-4614-5847-0_2 10.1038/sj.embor.7400132 10.1128/aem.55.2.468-477.1989 10.1021/jp993732q 10.1103/PhysRevE.51.R867 10.1016/j.compbiolchem.2005.10.007 10.1021/j100540a008 10.1038/339360a0 10.1063/1.1778376 10.1088/1478-3975/4/1/003 10.1109/TCBB.2009.47 10.1063/1.3154624 10.1063/1.3297948 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/TCBB.2021.3070123 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Statistics Biology |
| EISSN | 1557-9964 |
| EndPage | 2123 |
| ExternalDocumentID | 33788690 10_1109_TCBB_2021_3070123 9392328 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Council of Scientific and Industrial Research, India; CSIR, India grantid: 9/93 (0150)/2013 funderid: 10.13039/501100001412 – fundername: SERB, DST grantid: MSC/2020/000350 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION ADPZR NPM RIC W7O 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-be0a649238ce3d6619c543fbf6088cc63c28ef06977e6576f2e328933fa4422a3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840575900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 07:12:33 EDT 2025 Sun Nov 09 08:13:55 EST 2025 Thu Jan 02 22:57:25 EST 2025 Tue Nov 18 22:32:05 EST 2025 Sat Nov 29 01:52:05 EST 2025 Wed Aug 27 02:14:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-be0a649238ce3d6619c543fbf6088cc63c28ef06977e6576f2e328933fa4422a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-5529-8436 0000-0001-6080-1131 |
| PMID | 33788690 |
| PQID | 2700414500 |
| PQPubID | 85499 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2507731756 crossref_primary_10_1109_TCBB_2021_3070123 pubmed_primary_33788690 crossref_citationtrail_10_1109_TCBB_2021_3070123 proquest_journals_2700414500 ieee_primary_9392328 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref1 ref17 ref16 ref19 ref18 ref24 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 Thanh (ref23) 2013 ref3 ref6 ref5 Ibsen (ref2) 1961; 21 |
| References_xml | – ident: ref16 doi: 10.1063/1.4922923 – ident: ref24 doi: 10.1063/1.2919546 – ident: ref31 doi: 10.1007/978-3-319-63113-4 – ident: ref29 doi: 10.1371/journal.pone.0060159 – volume: 21 start-page: 829 issue: 7 year: 1961 ident: ref2 article-title: The crabtree effect: A review publication-title: Cancer Res. – ident: ref18 doi: 10.1016/j.biosystems.2017.10.011 – ident: ref28 doi: 10.4049/jimmunol.1102003 – ident: ref8 doi: 10.1016/0021-9991(76)90041-3 – ident: ref27 doi: 10.1146/annurev.immunol.021908.132541 – ident: ref30 doi: 10.1002/1097-4601(2000)32:10<589::AID-KIN2>3.0.CO;2-U – ident: ref15 doi: 10.1063/1.4896985 – ident: ref14 doi: 10.1103/PhysRevE.85.066109 – ident: ref25 doi: 10.1146/annurev.pc.39.100188.001321 – ident: ref6 doi: 10.2174/1871530317666170828111113 – ident: ref21 doi: 10.1088/0268-1242/3/6/014 – ident: ref17 doi: 10.1109/TCBB.2016.2530066 – ident: ref20 doi: 10.1063/1.2218339 – ident: ref3 doi: 10.1007/978-1-4614-5847-0_2 – ident: ref4 doi: 10.1038/sj.embor.7400132 – ident: ref5 doi: 10.1128/aem.55.2.468-477.1989 – ident: ref10 doi: 10.1021/jp993732q – year: 2013 ident: ref23 article-title: On efficient algorithms for stochastic simulation of biochemical reaction systems – ident: ref22 doi: 10.1103/PhysRevE.51.R867 – ident: ref7 doi: 10.1016/j.compbiolchem.2005.10.007 – ident: ref9 doi: 10.1021/j100540a008 – ident: ref26 doi: 10.1038/339360a0 – ident: ref11 doi: 10.1063/1.1778376 – ident: ref1 doi: 10.1088/1478-3975/4/1/003 – ident: ref19 doi: 10.1109/TCBB.2009.47 – ident: ref12 doi: 10.1063/1.3154624 – ident: ref13 doi: 10.1063/1.3297948 |
| SSID | ssj0024904 |
| Score | 2.304558 |
| Snippet | Stochastic simulation algorithms are extensively used for exploring stochastic behavior of biochemical pathways/networks. Computational cost of these... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2111 |
| SubjectTerms | 1,3-Butadiene Algorithms B cell receptor signaling network Biochemistry Biological system modeling Colloidal aggregation network and stochastic modeling Computational efficiency Computational modeling Computer applications Computing costs Data structures Fc receptors FceRI signaling network Gillespie algorithm Indexes Mathematical model Networks Oxidation Signaling Simulation Statistics Stiff network Stiffness Stochastic processes Stochasticity |
| Title | Block Search Stochastic Simulation Algorithm (BlSSSA): A Fast Stochastic Simulation Algorithm for Modeling Large Biochemical Networks |
| URI | https://ieeexplore.ieee.org/document/9392328 https://www.ncbi.nlm.nih.gov/pubmed/33788690 https://www.proquest.com/docview/2700414500 https://www.proquest.com/docview/2507731756 |
| Volume | 19 |
| WOSCitedRecordID | wos000840575900018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FaC98Gh5BEplJA6ASJvYjhNz261YcahWSClob5HXa9OK7QZtd5H4AfxvZhxv4MBD3CLZTix9Y883mRfAc402gJ5rnwpf8FTmrkyNKcvU5q4ouPa5C-18Pp6Vk0k1ner3O_C6z4VxzoXgM3dMj8GXP2_thn6VnWhU5oJXu7BblqrL1fpZV0-HVoHECNICpSp6MPNMn5yfjkZoCfL8mAQcr-oB3BJUR13RTfyLOgr9Vf5MNYPKGd_5v83ehduRWrJhJwv3YMct9-Fm12zy2z4MiFd2ZZkP4PsIldhn1gUbs3rd2gtDQ6y-vIoNvdhw8aldXa4vrtiL0aKu6-HLN2zIxjjvnwuQCTPqska57uyMgs0Z7sPG4gRs0sWeX9-HD-O356fv0tiRIbVC6nU6c5lRVNKtsk7MUbVrW0jhZ17hZWWtEpZXzmcKSaVTaMl4jlAjIxLeSMm5EQ9gb9ku3SNg0ntZWW6QASqZkaGMxufM5NYjx1Jzl0C2BaaxsVw5dc1YNMFsyXRDsDYEaxNhTeBVv-RLV6vjb5MPCLN-YoQrgcMt-k08zdcNOedlLossS-BZP4znkJwrZunaDc5BYl0SGVMJPOykpn_3Vtge__6bT2DAKakiBAEfwt56tXFP4Yb9ikKxOkJhn1ZHQdh_AIcC9pY |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD4a49YXLhuXwAAj8QCIbIntXMxbO1ENUSqklGlvkevabKJrUNci8QP435zjuIEHLuItku3E0nfs852cG8AzhTaAmikXC5fxWKa2iLUuitikNsu4cqn17XyOR8V4XJ6cqA9b8KrLhbHW-uAzu0-P3pc_a8yafpUdKFTmgpeX4HImJU_abK2flfWUbxZInCDOUK6CDzNN1MHkcDBAW5Cn-yTieFn34JqgSuo53cW_KCTfYeXPZNMrneHN_9vuLbgRyCXrt9JwG7bsYgeutu0mv-1Aj5hlW5h5F74PUI19Zm24MatWjTnVNMSqs_PQ0ov155-a5dnq9Jw9H8yrquq_eM36bIjz_rkAuTCjPmuU7c5GFG7OcB8mlCdg4zb6_OIOfBy-mRwexaEnQ2yEVKt4ahOdU1G30lgxQ-WuTCaFm7ocrytjcmF4aV2SI620OdoyjiPYyImE0wgZ1-IubC-ahb0PTDonS8M1csBcJmQqo_k51alxyLLymY0g2QBTm1CwnPpmzGtvuCSqJlhrgrUOsEbwslvypa3W8bfJu4RZNzHAFcHeBv06nOeLmtzzMpVZkkTwtBvGk0juFb2wzRrnILUuiI7lEdxrpaZ790bYHvz-m0_g-tHk_agevR2_ewg9TikWPiR4D7ZXy7V9BFfMVxSQ5WMv8j8Ar0349Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Block+Search+Stochastic+Simulation+Algorithm+%28BlSSSA%29%3A+A+Fast+Stochastic+Simulation+Algorithm+for+Modeling+Large+Biochemical+Networks&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Ghosh%2C+Debraj&rft.au=De%2C+Rajat+K&rft.date=2022-07-01&rft.eissn=1557-9964&rft.volume=PP&rft_id=info:doi/10.1109%2FTCBB.2021.3070123&rft_id=info%3Apmid%2F33788690&rft.externalDocID=33788690 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |