A real-time object detection algorithm for video

Deep learning technology has been widely used in object detection. Although the deep learning technology greatly improves the accuracy of object detection, we also have the challenge of a high computational time. You Only Look Once (YOLO) is a network for object detection in images. In this paper, w...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & electrical engineering Ročník 77; s. 398 - 408
Hlavní autori: Lu, Shengyu, Wang, Beizhan, Wang, Hongji, Chen, Lihao, Linjian, Ma, Zhang, Xiaoyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 01.07.2019
Elsevier BV
Predmet:
ISSN:0045-7906, 1879-0755
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Deep learning technology has been widely used in object detection. Although the deep learning technology greatly improves the accuracy of object detection, we also have the challenge of a high computational time. You Only Look Once (YOLO) is a network for object detection in images. In this paper, we propose a real-time object detection algorithm for videos based on the YOLO network. We eliminate the influence of the image background by image preprocessing, and then we train the Fast YOLO model for object detection to obtain the object information. Based on the Google Inception Net (GoogLeNet) architecture, we improve the YOLO network by using a small convolution operation to replace the original convolution operation, which can reduce the number of parameters and greatly shorten the time for object detection. Our Fast YOLO algorithm can be applied to real-time object detection in video.
AbstractList Deep learning technology has been widely used in object detection. Although the deep learning technology greatly improves the accuracy of object detection, we also have the challenge of a high computational time. You Only Look Once (YOLO) is a network for object detection in images. In this paper, we propose a real-time object detection algorithm for videos based on the YOLO network. We eliminate the influence of the image background by image preprocessing, and then we train the Fast YOLO model for object detection to obtain the object information. Based on the Google Inception Net (GoogLeNet) architecture, we improve the YOLO network by using a small convolution operation to replace the original convolution operation, which can reduce the number of parameters and greatly shorten the time for object detection. Our Fast YOLO algorithm can be applied to real-time object detection in video.
Author Chen, Lihao
Linjian, Ma
Wang, Hongji
Wang, Beizhan
Lu, Shengyu
Zhang, Xiaoyan
Author_xml – sequence: 1
  givenname: Shengyu
  surname: Lu
  fullname: Lu, Shengyu
  organization: Software School, Xiamen University, Siming South Road, Xiamen City, Fujian Province, 361005, China
– sequence: 2
  givenname: Beizhan
  surname: Wang
  fullname: Wang, Beizhan
  email: wangbz@xmu.edu.cn, 3137349575@qq.com
  organization: Software School, Xiamen University, Siming South Road, Xiamen City, Fujian Province, 361005, China
– sequence: 3
  givenname: Hongji
  surname: Wang
  fullname: Wang, Hongji
  organization: Software School, Xiamen University, Siming South Road, Xiamen City, Fujian Province, 361005, China
– sequence: 4
  givenname: Lihao
  surname: Chen
  fullname: Chen, Lihao
  organization: Beijing University of Posts and Telecommunication, West Tucheng Road, Beijing City, Beijing, 100876, China
– sequence: 5
  givenname: Ma
  surname: Linjian
  fullname: Linjian, Ma
  organization: Software School, Xiamen University, Siming South Road, Xiamen City, Fujian Province, 361005, China
– sequence: 6
  givenname: Xiaoyan
  surname: Zhang
  fullname: Zhang, Xiaoyan
  organization: Tan Kah Kee College, Xiamen University, Siming South Road, Xiamen City, Fujian Province, 361005, China
BookMark eNqNkMtqwzAQRUVJoUnaf3Dp2u5Ytix7VULoCwLdtGshyaNUxrZSWQn076uQLkpXWV0G5p4ZzoLMRjciIbc5ZDnk1X2XaTfssEeN4zajkDcZsAyguSDzvOZNCpyxGZkDlCzlDVRXZDFNHcS5yus5gVXiUfZpsAMmTnWoQ9JiiGHdmMh-67wNn0NinE8OtkV3TS6N7Ce8-c0l-Xh6fF-_pJu359f1apPqomxCqnjbgtKcFsxQU3OgiumyZApzVlBqZK2gpbwsEKFQlaKaGlNSqSpayoY2xZLcnbg77772OAXRub0f40lBaV1XPCJp3Ho4bWnvpsmjEdoGefw9eGl7kYM4ahKd-KNJHDUJYCJqioTmH2Hn7SD991nd9amLUcTBoheTtjhqbK2PBkXr7BmUH4zSizw
CitedBy_id crossref_primary_10_1016_j_compeleceng_2020_106863
crossref_primary_10_1007_s00521_025_11494_x
crossref_primary_10_1177_02676591241265052
crossref_primary_10_1049_iet_its_2019_0665
crossref_primary_10_1007_s11740_024_01278_y
crossref_primary_10_1016_j_aei_2023_101988
crossref_primary_10_3390_app14188198
crossref_primary_10_1109_ACCESS_2023_3329068
crossref_primary_10_3390_app13053338
crossref_primary_10_1002_cpe_7461
crossref_primary_10_2478_amns_2025_0600
crossref_primary_10_1007_s11042_021_11480_0
crossref_primary_10_1016_j_trpro_2023_11_255
crossref_primary_10_1134_S1054661821040192
crossref_primary_10_1080_1743727X_2025_2503712
crossref_primary_10_3390_rs12071128
crossref_primary_10_1007_s00170_023_12043_3
crossref_primary_10_3390_math9182287
crossref_primary_10_1016_j_jvcir_2021_103132
crossref_primary_10_3390_app131810436
crossref_primary_10_35940_ijies_D4597_12050525
crossref_primary_10_2478_jee_2021_0039
crossref_primary_10_3390_electronics10010014
crossref_primary_10_1109_ACCESS_2023_3344805
crossref_primary_10_1155_2022_6155300
crossref_primary_10_1007_s11042_021_11560_1
crossref_primary_10_1007_s42979_024_02628_4
crossref_primary_10_1016_j_jag_2022_103111
crossref_primary_10_1088_1742_6596_1962_1_012041
crossref_primary_10_3390_agriculture12010073
crossref_primary_10_3390_app122211318
crossref_primary_10_1007_s11042_021_11848_2
crossref_primary_10_1016_j_atech_2022_100166
crossref_primary_10_1016_j_compeleceng_2022_108237
crossref_primary_10_1109_ACCESS_2020_3005444
crossref_primary_10_1109_ACCESS_2023_3347169
crossref_primary_10_1109_ACCESS_2021_3118541
crossref_primary_10_1016_j_compeleceng_2021_107406
crossref_primary_10_3390_agriculture13081527
crossref_primary_10_3389_fdata_2024_1359906
crossref_primary_10_1016_j_compeleceng_2022_108159
crossref_primary_10_1109_ACCESS_2025_3557569
crossref_primary_10_3390_en13226104
crossref_primary_10_1007_s11277_020_07627_1
crossref_primary_10_1007_s11042_021_10864_6
crossref_primary_10_1007_s11042_023_15981_y
crossref_primary_10_3390_aerospace8120383
crossref_primary_10_3390_app10196662
Cites_doi 10.1016/j.camwa.2007.02.007
10.1109/TIP.2012.2226043
10.1016/j.cosrev.2018.03.001
10.1016/j.procs.2016.07.132
10.1016/j.diii.2019.03.002
10.1504/IJTMCP.2017.082107
10.1016/j.procs.2018.07.112
10.1504/IJSTDS.2019.097600
10.1016/j.procs.2016.07.236
10.1016/j.infrared.2015.12.027
10.1016/j.neucom.2018.03.030
10.1016/j.ipl.2018.05.010
10.1016/j.ijleo.2018.12.067
10.1504/IJSTDS.2019.097607
10.1007/s10489-013-0461-5
10.1016/j.infrared.2016.07.012
10.1016/j.neucom.2016.11.023
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright Elsevier BV Jul 2019
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 2019
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.compeleceng.2019.05.009
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
EndPage 408
ExternalDocumentID 10_1016_j_compeleceng_2019_05_009
S0045790618319682
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c349t-b7dd0bc7235f2f8702b5c445be15322fa8b0d2743ee03b6b2c2ff42ab624a9293
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000483629600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sun Nov 09 08:30:00 EST 2025
Tue Nov 18 22:11:16 EST 2025
Sat Nov 29 07:28:45 EST 2025
Fri Feb 23 02:26:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords YOLO
GoogleNet
Real-time
Video
Object detection
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-b7dd0bc7235f2f8702b5c445be15322fa8b0d2743ee03b6b2c2ff42ab624a9293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2288677022
PQPubID 2045266
PageCount 11
ParticipantIDs proquest_journals_2288677022
crossref_citationtrail_10_1016_j_compeleceng_2019_05_009
crossref_primary_10_1016_j_compeleceng_2019_05_009
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2019_05_009
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computers & electrical engineering
PublicationYear 2019
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Girshick, Donahue, Darrell, Malik (bib0004) 2014
Shinde, Kothari, Gupta (bib0017) 2018; 133
Ramík, Sabourin, Moreno, Madani (bib0001) 2014; 40
Lou, Cui (bib0005) 2007; 54
Sun, Wu, Hoi (bib0006) 2018; 299
Sudowe, Leibe (bib0023) 2011; 6962
Shu, Duan, Jiao (bib0008) 2019; 181
Lu (bib0003) 2018
Ramya, Rajeswari (bib0018) 2016; 93
Sharma, Yadav (bib0013) 2017; 2
Lu, Chen, Zhou, Wang, Wang, Hong (bib0022) 2018; 2018
Zhang, Cao, Mao (bib0019) 2016; 91
Zha, Luisier, Andrews, Srivastava, Salakhutdinov (bib0021) 2015
Li, Su, Geng, Yin (bib0007) 2018; 51
Sharma, Yadav, Singh (bib0015) 2016; 78
Tang, Wang, Kwong (bib0016) 2017; 225
Yadav, Singh (bib0014) 2016; 76
Morinaga, Hara, Inoue, Urahama (bib0020) 2018; 138
Zhao, Ngo (bib0002) 2013; 22
Sharma, Lohan (bib0011) 2019; 1
Yazdi, Bouwmans (bib0012) 2018; 28
Yadav, Singh (bib0010) 2019; 1
Couteaux (bib0009) 2019; 100
Zhang (10.1016/j.compeleceng.2019.05.009_bib0019) 2016; 91
Couteaux (10.1016/j.compeleceng.2019.05.009_bib0009) 2019; 100
Li (10.1016/j.compeleceng.2019.05.009_bib0007) 2018; 51
Ramya (10.1016/j.compeleceng.2019.05.009_bib0018) 2016; 93
Ramík (10.1016/j.compeleceng.2019.05.009_bib0001) 2014; 40
Yadav (10.1016/j.compeleceng.2019.05.009_bib0014) 2016; 76
Tang (10.1016/j.compeleceng.2019.05.009_bib0016) 2017; 225
Morinaga (10.1016/j.compeleceng.2019.05.009_bib0020) 2018; 138
Lou (10.1016/j.compeleceng.2019.05.009_bib0005) 2007; 54
Sharma (10.1016/j.compeleceng.2019.05.009_bib0013) 2017; 2
Girshick (10.1016/j.compeleceng.2019.05.009_bib0004) 2014
Yazdi (10.1016/j.compeleceng.2019.05.009_bib0012) 2018; 28
Shinde (10.1016/j.compeleceng.2019.05.009_bib0017) 2018; 133
Sun (10.1016/j.compeleceng.2019.05.009_bib0006) 2018; 299
Zhao (10.1016/j.compeleceng.2019.05.009_bib0002) 2013; 22
Yadav (10.1016/j.compeleceng.2019.05.009_bib0010) 2019; 1
Sharma (10.1016/j.compeleceng.2019.05.009_bib0011) 2019; 1
Sharma (10.1016/j.compeleceng.2019.05.009_bib0015) 2016; 78
Lu (10.1016/j.compeleceng.2019.05.009_bib0022) 2018; 2018
Sudowe (10.1016/j.compeleceng.2019.05.009_bib0023) 2011; 6962
Shu (10.1016/j.compeleceng.2019.05.009_bib0008) 2019; 181
Lu (10.1016/j.compeleceng.2019.05.009_bib0003) 2018
Zha (10.1016/j.compeleceng.2019.05.009_bib0021) 2015
References_xml – volume: 1
  start-page: 4
  year: 2019
  end-page: 21
  ident: bib0010
  article-title: Adaptive background modelling technique for moving object detection in video under dynamic environment
  publication-title: Int J Spatio-Temporal Data Sci
– start-page: 580
  year: 2014
  end-page: 587
  ident: bib0004
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 51
  start-page: 76
  year: 2018
  end-page: 81
  ident: bib0007
  article-title: Real-time detection of steel strip surface defects based on improved YOLO detection network
  publication-title: IFAC-Pap
– volume: 299
  start-page: 42
  year: 2018
  end-page: 50
  ident: bib0006
  article-title: Face detection using deep learning: an improved faster RCNN approach
  publication-title: Neurocomputing
– volume: 28
  start-page: 157
  year: 2018
  end-page: 177
  ident: bib0012
  article-title: New trends on moving object detection in video images captured by a moving camera: a survey
  publication-title: Comput Sci Rev
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0003
  article-title: An image retrieval learning platform with authentication system
  publication-title: 2018 13th International Conference on Computer Science & Education (ICCSE)
– volume: 76
  start-page: 21
  year: 2016
  end-page: 31
  ident: bib0014
  article-title: A combined approach of kullback–leibler divergence and background subtraction for moving object detection in thermal video
  publication-title: Infrared Phys Technol
– volume: 181
  start-page: 372
  year: 2019
  end-page: 377
  ident: bib0008
  article-title: SSD evolution model in HF etching of fused silica optics
  publication-title: Optik (Stuttg)
– start-page: 60.1
  year: 2015
  end-page: 60.13
  ident: bib0021
  article-title: Exploiting image-trained CNN architectures for unconstrained video classification
  publication-title: Procedings of the British Machine Vision Conference 2015
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0022
  article-title: Graph-Based collaborative filtering with MLP
  publication-title: Math Probl. Eng
– volume: 22
  start-page: 980
  year: 2013
  end-page: 991
  ident: bib0002
  article-title: Flip-Invariant SIFT for copy and object detection
  publication-title: IEEE Trans Image Process
– volume: 93
  start-page: 478
  year: 2016
  end-page: 485
  ident: bib0018
  article-title: A modified frame difference method using correlation coefficient for background subtraction
  publication-title: Procedia Comput Sci
– volume: 138
  start-page: 31
  year: 2018
  end-page: 34
  ident: bib0020
  article-title: Classification between natural and graphics images based on generalized Gaussian distributions
  publication-title: Inf Process Lett
– volume: 225
  start-page: 188
  year: 2017
  end-page: 197
  ident: bib0016
  article-title: G-MS2F: googLeNet based multi-stage feature fusion of deep CNN for scene recognition
  publication-title: Neurocomputing
– volume: 54
  start-page: 589
  year: 2007
  end-page: 598
  ident: bib0005
  article-title: Boundedness and exponential stability for nonautonomous RCNNs with distributed delays
  publication-title: Comput Math Appl
– volume: 91
  start-page: 995
  year: 2016
  end-page: 1000
  ident: bib0019
  article-title: Moving object detection based on Non-parametric methods and frame difference for traceability video analysis
  publication-title: Procedia Comput Sci
– volume: 40
  start-page: 358
  year: 2014
  end-page: 375
  ident: bib0001
  article-title: A machine learning based intelligent vision system for autonomous object detection and recognition
  publication-title: Appl Intell
– volume: 78
  start-page: 118
  year: 2016
  end-page: 128
  ident: bib0015
  article-title: ‘Fisher's linear discriminant ratio based threshold for moving human detection in thermal video’
  publication-title: Infrared Phys Technol
– volume: 2
  start-page: 74
  year: 2017
  end-page: 92
  ident: bib0013
  article-title: Histogram-based adaptive learning for background modelling: moving object detection in video surveillance
  publication-title: Int J Telemed Clin Pract
– volume: 100
  start-page: 235
  year: 2019
  end-page: 242
  ident: bib0009
  article-title: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN
  publication-title: Diagn Interv Imaging
– volume: 1
  start-page: 22
  year: 2019
  end-page: 53
  ident: bib0011
  article-title: Performance analysis of moving object detection using BGS techniques in visual surveillance
  publication-title: Int J Spatio-Temporal Data Sci
– volume: 133
  start-page: 831
  year: 2018
  end-page: 838
  ident: bib0017
  article-title: YOLO based human action recognition and localization
  publication-title: Procedia Comput Sci
– volume: 6962
  start-page: 11
  year: 2011
  end-page: 20
  ident: bib0023
  article-title: Efficient use of geometric constraints for sliding-window object detection in video
  publication-title: Computer vision systems
– volume: 6962
  start-page: 11
  year: 2011
  ident: 10.1016/j.compeleceng.2019.05.009_bib0023
  article-title: Efficient use of geometric constraints for sliding-window object detection in video
– volume: 51
  start-page: 76
  issue: 21
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0007
  article-title: Real-time detection of steel strip surface defects based on improved YOLO detection network
  publication-title: IFAC-Pap
– volume: 54
  start-page: 589
  issue: Aug. (4)
  year: 2007
  ident: 10.1016/j.compeleceng.2019.05.009_bib0005
  article-title: Boundedness and exponential stability for nonautonomous RCNNs with distributed delays
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2007.02.007
– volume: 22
  start-page: 980
  issue: Mar. (3)
  year: 2013
  ident: 10.1016/j.compeleceng.2019.05.009_bib0002
  article-title: Flip-Invariant SIFT for copy and object detection
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2226043
– volume: 28
  start-page: 157
  issue: May
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0012
  article-title: New trends on moving object detection in video images captured by a moving camera: a survey
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2018.03.001
– volume: 91
  start-page: 995
  year: 2016
  ident: 10.1016/j.compeleceng.2019.05.009_bib0019
  article-title: Moving object detection based on Non-parametric methods and frame difference for traceability video analysis
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.132
– volume: 100
  start-page: 235
  issue: Apr. (4)
  year: 2019
  ident: 10.1016/j.compeleceng.2019.05.009_bib0009
  article-title: Automatic knee meniscus tear detection and orientation classification with Mask-RCNN
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.03.002
– volume: 2018
  start-page: 1
  issue: Dec.
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0022
  article-title: Graph-Based collaborative filtering with MLP
  publication-title: Math Probl. Eng
– volume: 2
  start-page: 74
  issue: Feb.
  year: 2017
  ident: 10.1016/j.compeleceng.2019.05.009_bib0013
  article-title: Histogram-based adaptive learning for background modelling: moving object detection in video surveillance
  publication-title: Int J Telemed Clin Pract
  doi: 10.1504/IJTMCP.2017.082107
– volume: 133
  start-page: 831
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0017
  article-title: YOLO based human action recognition and localization
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2018.07.112
– volume: 1
  start-page: 4
  issue: Jan. (1)
  year: 2019
  ident: 10.1016/j.compeleceng.2019.05.009_bib0010
  article-title: Adaptive background modelling technique for moving object detection in video under dynamic environment
  publication-title: Int J Spatio-Temporal Data Sci
  doi: 10.1504/IJSTDS.2019.097600
– volume: 93
  start-page: 478
  year: 2016
  ident: 10.1016/j.compeleceng.2019.05.009_bib0018
  article-title: A modified frame difference method using correlation coefficient for background subtraction
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.07.236
– start-page: 580
  year: 2014
  ident: 10.1016/j.compeleceng.2019.05.009_bib0004
  article-title: Rich feature hierarchies for accurate object detection and semantic segmentation
– volume: 76
  start-page: 21
  issue: May
  year: 2016
  ident: 10.1016/j.compeleceng.2019.05.009_bib0014
  article-title: A combined approach of kullback–leibler divergence and background subtraction for moving object detection in thermal video
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2015.12.027
– volume: 299
  start-page: 42
  issue: Jul.
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0006
  article-title: Face detection using deep learning: an improved faster RCNN approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.030
– volume: 138
  start-page: 31
  issue: Oct.
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0020
  article-title: Classification between natural and graphics images based on generalized Gaussian distributions
  publication-title: Inf Process Lett
  doi: 10.1016/j.ipl.2018.05.010
– start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2019.05.009_bib0003
  article-title: An image retrieval learning platform with authentication system
– volume: 181
  start-page: 372
  issue: Mar.
  year: 2019
  ident: 10.1016/j.compeleceng.2019.05.009_bib0008
  article-title: SSD evolution model in HF etching of fused silica optics
  publication-title: Optik (Stuttg)
  doi: 10.1016/j.ijleo.2018.12.067
– volume: 1
  start-page: 22
  issue: Jan. (1)
  year: 2019
  ident: 10.1016/j.compeleceng.2019.05.009_bib0011
  article-title: Performance analysis of moving object detection using BGS techniques in visual surveillance
  publication-title: Int J Spatio-Temporal Data Sci
  doi: 10.1504/IJSTDS.2019.097607
– volume: 40
  start-page: 358
  issue: Mar. (2)
  year: 2014
  ident: 10.1016/j.compeleceng.2019.05.009_bib0001
  article-title: A machine learning based intelligent vision system for autonomous object detection and recognition
  publication-title: Appl Intell
  doi: 10.1007/s10489-013-0461-5
– volume: 78
  start-page: 118
  issue: Sep.
  year: 2016
  ident: 10.1016/j.compeleceng.2019.05.009_bib0015
  article-title: ‘Fisher's linear discriminant ratio based threshold for moving human detection in thermal video’
  publication-title: Infrared Phys Technol
  doi: 10.1016/j.infrared.2016.07.012
– volume: 225
  start-page: 188
  issue: Feb.
  year: 2017
  ident: 10.1016/j.compeleceng.2019.05.009_bib0016
  article-title: G-MS2F: googLeNet based multi-stage feature fusion of deep CNN for scene recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.11.023
– start-page: 60.1
  year: 2015
  ident: 10.1016/j.compeleceng.2019.05.009_bib0021
  article-title: Exploiting image-trained CNN architectures for unconstrained video classification
SSID ssj0004618
Score 2.5090582
Snippet Deep learning technology has been widely used in object detection. Although the deep learning technology greatly improves the accuracy of object detection, we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 398
SubjectTerms Algorithms
Cameras
Computing time
Convolution
Deep learning
GoogleNet
Image detection
Machine learning
Object detection
Object recognition
Real time
Video
Vision systems
YOLO
Title A real-time object detection algorithm for video
URI https://dx.doi.org/10.1016/j.compeleceng.2019.05.009
https://www.proquest.com/docview/2288677022
Volume 77
WOSCitedRecordID wos000483629600031&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZgFyE4IJ5iYUFBYk9VJNdO1rHEpUCrBVWFQxf1ZsWOs01Vkm4fq4Vfz_iRh0CLyoFLVDlyVc98GX-djL9B6C0lnMQZpyHN-2kYMcxCnnEVMsmVlTPva6szO2aTSTKb8a--dGhj2wmwskyur_nqv7oaxsDZ5ujsP7i7-VIYgM_gdLiC2-G6l-MHPeCBy9A0je9V0qRZepneat8SfHlRrYvt_LstLzRn8KouPa17PGwsIlyLHOtF3coWNiU8O5s5ncOtH7s2L-9ix3td_Jy3wKuHz6ryYlG0JQUu5o2LeVp10w_2xFM3_dCei_nWDbOR0cHEXuPaRdaEmblOk7cOvb6Di4ud1LWj_iOmu_TCwrhkZRYOyzIledwqrmLebmT1y_vJFzE6H4_FdDibntDR6jI0TcbMy_gT-tE5_DY6JCzmEMkPB5-Gs8-do7R9t3n7FdxFb9qSwBt-wU2U5rfN3TKW6UP0wP_VCAYOIo_QLV0-Rvc7ApRPEB4EDVgCB5agAUvQgCUAsAQWLE_R-Wg4_XAW-h4aoaIR34aSZRmWihEa5ySH4ExkrKIolhq2OkLyNJE4I0AjtcZUnkqiSJ5HJJWnJEqBOtNn6KCsSv0cBZGREuQKGGKuwEy5TEkf44xRIJkyjcgRSmozCOUF5k2fk6WoKwkXomNBYSwocCzAgkeINFNXTmVln0nvalsLTxcdDRSAnH2mH9f-Ef7x3QhCEiPwCMT2xd9vv0T32qfhGB1s1zv9Ct1RV9tis37tUfULlMST6w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+real-time+object+detection+algorithm+for+video&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Lu%2C+Shengyu&rft.au=Wang%2C+Beizhan&rft.au=Wang%2C+Hongji&rft.au=Chen%2C+Lihao&rft.date=2019-07-01&rft.pub=Elsevier+BV&rft.issn=0045-7906&rft.eissn=1879-0755&rft.volume=77&rft.spage=398&rft_id=info:doi/10.1016%2Fj.compeleceng.2019.05.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon