A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems

Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimizatio...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 50; no. 2; pp. 536 - 549
Main Authors: Wang, Handing, Jin, Yaochu
Format: Journal Article
Language:English
Published: United States IEEE 01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.
AbstractList Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.
Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.
Author Jin, Yaochu
Wang, Handing
Author_xml – sequence: 1
  givenname: Handing
  orcidid: 0000-0002-4805-3780
  surname: Wang
  fullname: Wang, Handing
  email: hdwang@xidian.edu.cn
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
– sequence: 2
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: yaochu.jin@surrey.ac.uk
  organization: Department of Computer Science, University of Surrey, Guildford, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30273180$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFCEYxompsbX2AxgTQ-LFy6z8WQbmuG7_aFLTRNeDJ8IwjLKZgRWYJvUL-LV9p7vtoQc5AIHf88L7PC_RUYjBIfSakgWlpPmwWf_4uGCEqgVTdVPL5TN0wmitKsakOHrc1_IYneW8JTAUHDXqBTrmhElOFTlBf1f4qwldHPFlTC6XapWzz8V1-OI2DlPxMZh0h1fDz5h8-TXiPiZ8boqpzpO_dQGvY8glGR9A8mUaQNBunS1wB1dj64MpoDQDvtkVP_o_Zi6JY483yUyjwd_u4LUxv0LPezNkd3ZYT9H3y4vN-lN1fXP1eb26rixfNqVqZdspLhgjPZHCKuhcdNLaXnXM1IIpx4mly44QIwVvnAVjmoYzJ7tamJrzU_R-X3eX4u8JGtajz9YNgwkuTlkzSoUUFOwB9N0TdBunFOB3mnFOCK1hAurtgZra0XV6l_wIjukHiwGQe8CmmHNyvba-3Lsw2zZoSvScp57z1HOe-pAnKOkT5UPx_2ne7DXeOffIq6VkXHD-D9t0q3I
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_swevo_2022_101080
crossref_primary_10_1109_TNNLS_2021_3113158
crossref_primary_10_1371_journal_pone_0273564
crossref_primary_10_1016_j_ins_2023_02_044
crossref_primary_10_1016_j_aei_2024_102999
crossref_primary_10_1109_TNNLS_2022_3186671
crossref_primary_10_1177_02676591241253459
crossref_primary_10_1093_bib_bbab368
crossref_primary_10_1016_j_ins_2021_06_054
crossref_primary_10_1007_s00158_022_03419_2
crossref_primary_10_1016_j_ins_2024_120405
crossref_primary_10_1016_j_trc_2022_103827
crossref_primary_10_1109_TCYB_2022_3219452
crossref_primary_10_1109_TSMC_2023_3259947
crossref_primary_10_1016_j_swevo_2025_102060
crossref_primary_10_1007_s10951_022_00722_0
crossref_primary_10_1109_TEVC_2021_3117990
crossref_primary_10_1007_s40747_020_00249_x
crossref_primary_10_1109_TCYB_2021_3062949
crossref_primary_10_1007_s12293_022_00380_x
crossref_primary_10_1109_TCYB_2021_3126341
crossref_primary_10_3390_math13010158
crossref_primary_10_1016_j_ins_2024_121620
crossref_primary_10_1109_TFUZZ_2020_2973121
crossref_primary_10_1016_j_swevo_2025_102058
crossref_primary_10_1109_TETCI_2024_3370033
crossref_primary_10_1109_TCYB_2021_3056176
crossref_primary_10_1097_MD_0000000000026279
crossref_primary_10_1109_TEVC_2023_3334233
crossref_primary_10_1016_j_asoc_2023_110061
crossref_primary_10_1109_TEVC_2023_3250350
crossref_primary_10_1007_s10617_019_09220_7
crossref_primary_10_1007_s41965_024_00169_6
crossref_primary_10_1016_j_ejor_2021_04_032
crossref_primary_10_1109_TEVC_2020_2979740
crossref_primary_10_1109_TCYB_2021_3103811
crossref_primary_10_1109_TSMC_2023_3239953
crossref_primary_10_1109_TEVC_2024_3361000
crossref_primary_10_1109_JIOT_2022_3150747
crossref_primary_10_1109_MCI_2024_3431456
crossref_primary_10_1016_j_ins_2024_121835
crossref_primary_10_1007_s40747_021_00506_7
crossref_primary_10_1109_TEVC_2022_3149601
crossref_primary_10_1007_s00521_023_09176_7
crossref_primary_10_1109_JAS_2024_124320
crossref_primary_10_1109_TEVC_2022_3195668
crossref_primary_10_1007_s40747_023_01276_0
crossref_primary_10_1109_TCYB_2023_3267454
crossref_primary_10_1007_s44336_024_00006_5
crossref_primary_10_1016_j_engappai_2025_110530
crossref_primary_10_1016_j_swevo_2024_101729
crossref_primary_10_1109_TCYB_2023_3312476
crossref_primary_10_1109_TNNLS_2021_3106399
crossref_primary_10_1109_TSTE_2021_3101520
crossref_primary_10_1109_TETCI_2018_2872055
crossref_primary_10_1109_TEVC_2020_3017865
crossref_primary_10_1007_s44196_025_00830_7
crossref_primary_10_3233_JIFS_222832
crossref_primary_10_1016_j_knosys_2021_107049
crossref_primary_10_1109_TSMC_2023_3281822
crossref_primary_10_1007_s12293_021_00326_9
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1109_TCYB_2019_2931983
crossref_primary_10_1016_j_ifacol_2023_10_1145
crossref_primary_10_1016_j_asoc_2023_110874
crossref_primary_10_1109_TEVC_2022_3154231
crossref_primary_10_1109_TR_2021_3073960
crossref_primary_10_3390_math9202633
crossref_primary_10_1007_s11633_022_1317_4
crossref_primary_10_1080_0305215X_2025_2492248
crossref_primary_10_1007_s00366_021_01594_2
crossref_primary_10_1109_TCYB_2021_3105696
crossref_primary_10_1109_JAS_2022_105425
crossref_primary_10_1109_TEVC_2019_2924461
crossref_primary_10_1109_TCYB_2022_3200517
crossref_primary_10_1016_j_swevo_2025_102020
crossref_primary_10_1007_s10898_024_01387_z
crossref_primary_10_1016_j_buildenv_2021_107661
crossref_primary_10_1109_TCYB_2021_3069814
crossref_primary_10_1007_s40747_024_01465_5
crossref_primary_10_1109_TEVC_2021_3078486
crossref_primary_10_1109_TEVC_2023_3243632
crossref_primary_10_1007_s10462_021_10042_y
crossref_primary_10_1109_TEVC_2024_3357819
crossref_primary_10_1109_TEVC_2022_3228516
crossref_primary_10_1016_j_eswa_2023_122179
crossref_primary_10_1145_3474059
crossref_primary_10_1109_TEVC_2023_3327459
crossref_primary_10_1016_j_eswa_2024_125610
crossref_primary_10_1109_TEVC_2023_3300181
crossref_primary_10_1007_s40747_023_00969_w
crossref_primary_10_1016_j_eswa_2022_119495
crossref_primary_10_1109_TCYB_2021_3064676
crossref_primary_10_1109_TEVC_2022_3231493
crossref_primary_10_1109_TSMC_2022_3207457
crossref_primary_10_1109_TCYB_2022_3170344
crossref_primary_10_1007_s00521_023_08661_3
crossref_primary_10_1016_j_swevo_2024_101817
crossref_primary_10_1109_ACCESS_2024_3403889
crossref_primary_10_1007_s40747_023_01179_0
crossref_primary_10_1016_j_ins_2024_121079
crossref_primary_10_1109_JAS_2025_125111
crossref_primary_10_3390_math12060913
crossref_primary_10_1007_s12065_023_00882_8
crossref_primary_10_1109_TNNLS_2023_3297624
crossref_primary_10_1155_2021_5817396
crossref_primary_10_1109_TEVC_2021_3113923
crossref_primary_10_1109_TEVC_2022_3177936
crossref_primary_10_1007_s00521_022_07302_5
crossref_primary_10_1109_TEVC_2021_3120980
crossref_primary_10_1016_j_ins_2022_09_063
crossref_primary_10_1016_j_petsci_2024_09_018
crossref_primary_10_1016_j_asoc_2024_112226
crossref_primary_10_1016_j_asoc_2025_113216
crossref_primary_10_1109_ACCESS_2021_3131587
crossref_primary_10_1016_j_asoc_2022_109263
crossref_primary_10_1109_TCYB_2022_3199147
crossref_primary_10_12998_wjcc_v9_i29_8729
crossref_primary_10_1109_TG_2022_3145886
crossref_primary_10_1007_s00158_020_02575_7
crossref_primary_10_1109_TCYB_2020_3008280
crossref_primary_10_1016_j_swevo_2021_100972
Cites_doi 10.1016/j.ejor.2013.08.001
10.1016/j.asoc.2017.01.039
10.1007/978-3-319-45823-6_31
10.1097/TA.0000000000001802
10.1109/TEVC.2009.2033671
10.1109/CEC.2018.8477766
10.1109/TEVC.2013.2248012
10.1016/j.swevo.2011.05.001
10.1016/S0045-7825(01)00323-1
10.1109/TEVC.2013.2288779
10.1109/TEVC.2013.2262111
10.1007/978-3-319-45823-6_20
10.1007/s002910000046
10.1109/TSMCC.2005.855506
10.1007/s00500-014-1283-z
10.1109/TCYB.2013.2247594
10.1002/mcda.1605
10.1109/TEVC.2009.2027359
10.1016/j.applthermaleng.2010.03.027
10.1016/j.cor.2007.09.009
10.1109/TEVC.2018.2802784
10.1007/s00500-003-0330-y
10.1016/j.swevo.2011.03.001
10.1109/TEVC.2016.2555315
10.1016/j.patcog.2010.08.011
10.1109/CEC.2003.1299639
10.1109/TEVC.2018.2834881
10.1016/j.knosys.2015.09.032
10.1016/j.cma.2005.02.003
10.1109/TEVC.2017.2675628
10.1007/978-3-642-25566-3_40
10.1109/TEVC.2006.872344
10.1109/MCI.2009.933094
10.1137/1.9781611972788.22
10.1080/03052150500211911
10.1109/TEVC.2016.2622301
10.1109/TEVC.2002.800884
10.1007/s00500-003-0328-5
10.1016/j.ejor.2009.06.024
10.1162/EVCO_a_00009
10.1007/978-3-642-40942-4_15
10.1016/j.neunet.2007.04.023
10.1109/TCYB.2017.2710978
10.1109/CEC.2010.5586355
10.1007/978-3-642-41278-3_45
10.1007/978-3-642-20364-0_13
10.1109/TCYB.2016.2562674
10.1080/0305215X.2011.637556
10.1109/TEVC.2009.2039141
10.1109/TEVC.2005.851274
10.1007/978-3-642-12239-2_60
10.2514/2.1999
10.1115/1.4003035
10.1016/S0377-0427(00)00430-1
10.1007/s10898-014-0213-z
10.1023/A:1010933404324
10.1017/CBO9780511815867
10.1007/s40747-017-0057-5
10.1109/4235.873238
10.1109/TEVC.2005.859463
10.3233/JCM-2012-0402
10.1109/4235.996017
10.1007/978-3-642-04617-9_22
10.1109/TMTT.2016.2583427
10.1162/EVCO_a_00053
10.1201/9781420089653.ch10
10.1007/s00500-003-0329-4
10.1111/j.1475-3995.2011.00840.x
10.1145/1143997.1144268
10.1016/j.surge.2013.10.001
10.1109/CEC.2010.5586124
10.1002/mcda.4020030204
10.1109/TEVC.2007.892759
10.1145/1276958.1277203
10.1109/CEC.2011.5949693
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2018.2869674
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList PubMed
Aerospace Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Forestry
EISSN 2168-2275
EndPage 549
ExternalDocumentID 30273180
10_1109_TCYB_2018_2869674
8472353
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61590922; 61876123
  funderid: 10.13039/501100001809
– fundername: Engineering and Physical Sciences Research Council
  grantid: EP/M017869/1
  funderid: 10.13039/501100000266
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-b7bd835220f075c88695d7ccf8d2a6528e30c14d00a7539ec9679932e7d65a633
IEDL.DBID RIE
ISICitedReferencesCount 148
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506849800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 06:45:48 EDT 2025
Sun Jun 29 16:16:19 EDT 2025
Thu Jan 02 23:00:09 EST 2025
Sat Nov 29 02:02:26 EST 2025
Tue Nov 18 22:23:59 EST 2025
Wed Aug 27 02:38:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b7bd835220f075c88695d7ccf8d2a6528e30c14d00a7539ec9679932e7d65a633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4805-3780
0000-0003-1100-0631
PMID 30273180
PQID 2330016300
PQPubID 85422
PageCount 14
ParticipantIDs proquest_miscellaneous_2115751273
crossref_citationtrail_10_1109_TCYB_2018_2869674
ieee_primary_8472353
crossref_primary_10_1109_TCYB_2018_2869674
proquest_journals_2330016300
pubmed_primary_30273180
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
kendall (ref68) 1990
ref56
ref12
ref59
ref15
ref14
ref53
ref52
ref55
ref11
ref54
ref17
ref16
ref18
ref51
ref50
ref46
ref45
ref48
zhou (ref19) 2005; 3
ref47
ref42
ref41
ref44
ref43
ref49
jin (ref26) 2000
ref8
ref7
zhang (ref80) 2008
guo (ref10) 2016
ref9
ref4
ref3
miettinen (ref58) 2012; 12
ref6
ref5
ref82
breiman (ref67) 1984
ref40
ref84
ref83
ref79
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref73
ref72
hollander (ref81) 1999
ref24
ref23
ref69
ref25
ref64
ref20
ref66
ref22
ref65
ref21
ref28
ref27
ref29
ref60
ref62
ref61
liaw (ref63) 2002; 2
References_xml – ident: ref76
  doi: 10.1016/j.ejor.2013.08.001
– ident: ref34
  doi: 10.1016/j.asoc.2017.01.039
– ident: ref56
  doi: 10.1007/978-3-319-45823-6_31
– ident: ref84
  doi: 10.1097/TA.0000000000001802
– start-page: 786
  year: 2000
  ident: ref26
  article-title: On evolutionary optimization with approximate fitness functions
  publication-title: Proc 2nd Genetic Evol Comput Conf
– ident: ref32
  doi: 10.1109/TEVC.2009.2033671
– ident: ref8
  doi: 10.1109/CEC.2018.8477766
– ident: ref11
  doi: 10.1109/TEVC.2013.2248012
– ident: ref6
  doi: 10.1016/j.swevo.2011.05.001
– ident: ref47
  doi: 10.1016/S0045-7825(01)00323-1
– ident: ref43
  doi: 10.1109/TEVC.2013.2288779
– year: 1984
  ident: ref67
  publication-title: Classification and Regression Trees
– ident: ref15
  doi: 10.1109/TEVC.2013.2262111
– ident: ref55
  doi: 10.1007/978-3-319-45823-6_20
– ident: ref2
  doi: 10.1007/s002910000046
– start-page: 1
  year: 2016
  ident: ref10
  article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces
  publication-title: Proc IEEE Symp Series Comput Intell
– ident: ref17
  doi: 10.1109/TSMCC.2005.855506
– ident: ref16
  doi: 10.1007/s00500-014-1283-z
– ident: ref69
  doi: 10.1109/TCYB.2013.2247594
– ident: ref12
  doi: 10.1002/mcda.1605
– volume: 2
  start-page: 18
  year: 2002
  ident: ref63
  article-title: Classification and regression by random forest
  publication-title: R News
– ident: ref22
  doi: 10.1109/TEVC.2009.2027359
– ident: ref23
  doi: 10.1016/j.applthermaleng.2010.03.027
– ident: ref77
  doi: 10.1016/j.cor.2007.09.009
– ident: ref33
  doi: 10.1109/TEVC.2018.2802784
– ident: ref21
  doi: 10.1007/s00500-003-0330-y
– ident: ref59
  doi: 10.1016/j.swevo.2011.03.001
– ident: ref5
  doi: 10.1109/TEVC.2016.2555315
– ident: ref66
  doi: 10.1016/j.patcog.2010.08.011
– ident: ref14
  doi: 10.1109/CEC.2003.1299639
– ident: ref18
  doi: 10.1109/TEVC.2018.2834881
– ident: ref40
  doi: 10.1016/j.knosys.2015.09.032
– ident: ref42
  doi: 10.1016/j.cma.2005.02.003
– ident: ref30
  doi: 10.1109/TEVC.2017.2675628
– ident: ref35
  doi: 10.1007/978-3-642-25566-3_40
– ident: ref44
  doi: 10.1109/TEVC.2006.872344
– ident: ref7
  doi: 10.1109/MCI.2009.933094
– ident: ref74
  doi: 10.1137/1.9781611972788.22
– ident: ref46
  doi: 10.1080/03052150500211911
– ident: ref13
  doi: 10.1109/TEVC.2016.2622301
– ident: ref20
  doi: 10.1109/TEVC.2002.800884
– ident: ref4
  doi: 10.1007/s00500-003-0328-5
– ident: ref3
  doi: 10.1016/j.ejor.2009.06.024
– ident: ref62
  doi: 10.1162/EVCO_a_00009
– ident: ref50
  doi: 10.1007/978-3-642-40942-4_15
– ident: ref39
  doi: 10.1016/j.neunet.2007.04.023
– ident: ref25
  doi: 10.1109/TCYB.2017.2710978
– ident: ref54
  doi: 10.1109/CEC.2010.5586355
– ident: ref37
  doi: 10.1007/978-3-642-41278-3_45
– ident: ref38
  doi: 10.1007/978-3-642-20364-0_13
– ident: ref41
  doi: 10.1109/TCYB.2016.2562674
– ident: ref71
  doi: 10.1080/0305215X.2011.637556
– ident: ref51
  doi: 10.1109/TEVC.2009.2039141
– ident: ref31
  doi: 10.1109/TEVC.2005.851274
– ident: ref52
  doi: 10.1007/978-3-642-12239-2_60
– ident: ref29
  doi: 10.2514/2.1999
– ident: ref45
  doi: 10.1115/1.4003035
– ident: ref1
  doi: 10.1016/S0377-0427(00)00430-1
– ident: ref79
  doi: 10.1007/s10898-014-0213-z
– ident: ref65
  doi: 10.1023/A:1010933404324
– ident: ref70
  doi: 10.1017/CBO9780511815867
– ident: ref73
  doi: 10.1007/s40747-017-0057-5
– ident: ref57
  doi: 10.1109/4235.873238
– ident: ref28
  doi: 10.1109/TEVC.2005.859463
– year: 1990
  ident: ref68
  publication-title: Rank Correlation Methods
– ident: ref49
  doi: 10.3233/JCM-2012-0402
– ident: ref60
  doi: 10.1109/4235.996017
– ident: ref53
  doi: 10.1007/978-3-642-04617-9_22
– volume: 3
  start-page: 2832
  year: 2005
  ident: ref19
  article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm
  publication-title: Proc IEEE Congr Evol Comput
– ident: ref9
  doi: 10.1109/TMTT.2016.2583427
– ident: ref82
  doi: 10.1162/EVCO_a_00053
– ident: ref64
  doi: 10.1201/9781420089653.ch10
– ident: ref27
  doi: 10.1007/s00500-003-0329-4
– ident: ref78
  doi: 10.1111/j.1475-3995.2011.00840.x
– year: 2008
  ident: ref80
  article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition
– ident: ref36
  doi: 10.1145/1143997.1144268
– volume: 12
  year: 2012
  ident: ref58
  publication-title: Nonlinear Multiobjective Optimization
– ident: ref83
  doi: 10.1016/j.surge.2013.10.001
– ident: ref48
  doi: 10.1109/CEC.2010.5586124
– ident: ref75
  doi: 10.1002/mcda.4020030204
– ident: ref61
  doi: 10.1109/TEVC.2007.892759
– ident: ref24
  doi: 10.1145/1276958.1277203
– ident: ref72
  doi: 10.1109/CEC.2011.5949693
– year: 1999
  ident: ref81
  publication-title: Nonparametric Statistical Methods
SSID ssj0000816898
Score 2.6016557
Snippet Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 536
SubjectTerms Combinatorial analysis
Computational modeling
Constrained multiobjective combinatorial optimization
Constraint modelling
data-driven optimization
evolutionary algorithm (EA)
Evolutionary algorithms
Forestry
Linear programming
Mathematical programming
Multiple objective analysis
Optimization
Radial basis function
radial basis function (RBF) networks
Radio frequency
random forest (RF)
Regression analysis
Regression models
surrogate
Systems design
Training
trauma systems
Vegetation
Title A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems
URI https://ieeexplore.ieee.org/document/8472353
https://www.ncbi.nlm.nih.gov/pubmed/30273180
https://www.proquest.com/docview/2330016300
https://www.proquest.com/docview/2115751273
Volume 50
WOSCitedRecordID wos000506849800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21Fap6AdrysaWtjMQBEGm9dhInx-2XOBWEirScIsd2oKhJqmy2Er-Av82M442ERCtxiSLFcZzMs_0mY88DeJMncelSIyM1dRRm5CrKY2kjWu-eVVqYvKq82IS6vMzm8_zzGnwY98I45_ziM3dEpz6Wb1uzpF9lxziSCpnIdVhXKh32ao3_U7yAhJe-FXgSIatQIYg55fnx1em3E1rHlR2JLM2xIVuwSRE7RDT_a0byEiv3s00_61w8-b_2PoXHgV2y2QCHbVhzzQ5skvwmabrtwHboygv2NuSbfrcLv2fsi25sW7OhYIQmI-Nbdn4XgKm7X2x2873trvsfNUOey850r6OzjsZKRqKfXmoCb_Ebetvy5zCO4qUaXW9y7BHn7BOOT3XY-MnaiuFEuaw1C1nTn8HXi_Or049R0GeIjIzzPipVaT2B4xUSD5Phl02sMqbKrNBpIjInuZnGlnONTlHuDH54pEPCKZsmOpXyOWw0beNeAiu5iStpY1NZpBgVVqQ0-loJd2JqtEknwFc2KkxIXk4vdlN4J4bnBVm4IAsXwcITeD_ecjtk7nio8C6ZbywYLDeB_RUQitC3F4WQkogyHibweryMvZJCLbpx7RLLUA4j5FIKq3gxAGise4W7vX8_8xVsCfLp_crwfdjou6U7gEfmrr9edIcI_Xl26KH_B5rM_X8
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkovQFugCwWMxAEQab12nselDxVRFoQWqT1Fju1AqyZB2WwlfkH_dmccbyQkQOISWYrtOJ6x_Y3Hng_gVRaFhY21DJKxJTcjT4IslCag8-5pqYTOytKRTSTTaXp6mn1ZgXfDXRhrrTt8Zncp6Xz5ptEL2irbw5lUyEjegtvEnOVvaw07Ko5CwpHfCkwEiCsS78Yc82xvtn_2nk5ypbsijTNsyjqskc8OdZr_tiY5kpW_40237hzd_78WP4B7Hl-ySa8QG7Bi601YIwJOYnXbhA0_mOfstY84_WYLrifsq6pNU7E-Y4BCI_EbdnjlVVO1v9jk8nvTnnc_KoZIlx2oTgUHLc2WjGg_HdkEFnFXepviop9J8VWFxjeZ9qjp7DPOUJW_-smakuFSuagU83HTH8K3o8PZ_nHgGRoCLcOsC4qkMA7C8RKhh06xZyOTaF2mRqg4EqmVXI9Dw7lCsyizGjseAZGwiYkjFUv5CFbrprbbwAquw1KaUJcGQUaJFSUKra2IWzHWSscj4EsZ5dqHL6cfu8ydGcOznCSck4RzL-ERvB2K_Oxjd_wr8xaJb8joJTeCnaUi5H50z3MhJUFlfIzg5fAaxyU5W1RtmwXmoShGiKYSrOJxr0BD3Uu9e_Lnb76Au8ezTyf5yYfpx6ewLsjCd-fEd2C1axf2GdzRV935vH3uBsAN-A7_4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Random+Forest-Assisted+Evolutionary+Algorithm+for+Data-Driven+Constrained+Multiobjective+Combinatorial+Optimization+of+Trauma+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Handing&rft.au=Jin%2C+Yaochu&rft.date=2020-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=50&rft.issue=2&rft.spage=536&rft_id=info:doi/10.1109%2FTCYB.2018.2869674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon