A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems
Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimizatio...
Uloženo v:
| Vydáno v: | IEEE transactions on cybernetics Ročník 50; číslo 2; s. 536 - 549 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.02.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems. |
|---|---|
| AbstractList | Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems. Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems.Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for evaluating candidate solutions. In this paper, we address a class of expensive data-driven constrained multiobjective combinatorial optimization problems, where the objectives and constraints can be calculated only on the basis of a large amount of data. To solve this class of problems, we propose using random forests (RFs) and radial basis function networks as surrogates to approximate both objective and constraint functions. In addition, logistic regression models are introduced to rectify the surrogate-assisted fitness evaluations and a stochastic ranking selection is adopted to further reduce the influences of the approximated constraint functions. Three variants of the proposed algorithm are empirically evaluated on multiobjective knapsack benchmark problems and two real-world trauma system design problems. Experimental results demonstrate that the variant using RF models as the surrogates is effective and efficient in solving data-driven constrained multiobjective combinatorial optimization problems. |
| Author | Jin, Yaochu Wang, Handing |
| Author_xml | – sequence: 1 givenname: Handing orcidid: 0000-0002-4805-3780 surname: Wang fullname: Wang, Handing email: hdwang@xidian.edu.cn organization: Department of Computer Science, University of Surrey, Guildford, U.K – sequence: 2 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: yaochu.jin@surrey.ac.uk organization: Department of Computer Science, University of Surrey, Guildford, U.K |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30273180$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9vFCEYxompsbX2AxgTQ-LFy6z8WQbmuG7_aFLTRNeDJ8IwjLKZgRWYJvUL-LV9p7vtoQc5AIHf88L7PC_RUYjBIfSakgWlpPmwWf_4uGCEqgVTdVPL5TN0wmitKsakOHrc1_IYneW8JTAUHDXqBTrmhElOFTlBf1f4qwldHPFlTC6XapWzz8V1-OI2DlPxMZh0h1fDz5h8-TXiPiZ8boqpzpO_dQGvY8glGR9A8mUaQNBunS1wB1dj64MpoDQDvtkVP_o_Zi6JY483yUyjwd_u4LUxv0LPezNkd3ZYT9H3y4vN-lN1fXP1eb26rixfNqVqZdspLhgjPZHCKuhcdNLaXnXM1IIpx4mly44QIwVvnAVjmoYzJ7tamJrzU_R-X3eX4u8JGtajz9YNgwkuTlkzSoUUFOwB9N0TdBunFOB3mnFOCK1hAurtgZra0XV6l_wIjukHiwGQe8CmmHNyvba-3Lsw2zZoSvScp57z1HOe-pAnKOkT5UPx_2ne7DXeOffIq6VkXHD-D9t0q3I |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1016_j_swevo_2022_101080 crossref_primary_10_1109_TNNLS_2021_3113158 crossref_primary_10_1371_journal_pone_0273564 crossref_primary_10_1016_j_ins_2023_02_044 crossref_primary_10_1016_j_aei_2024_102999 crossref_primary_10_1109_TNNLS_2022_3186671 crossref_primary_10_1177_02676591241253459 crossref_primary_10_1093_bib_bbab368 crossref_primary_10_1016_j_ins_2021_06_054 crossref_primary_10_1007_s00158_022_03419_2 crossref_primary_10_1016_j_ins_2024_120405 crossref_primary_10_1016_j_trc_2022_103827 crossref_primary_10_1109_TCYB_2022_3219452 crossref_primary_10_1109_TSMC_2023_3259947 crossref_primary_10_1016_j_swevo_2025_102060 crossref_primary_10_1007_s10951_022_00722_0 crossref_primary_10_1109_TEVC_2021_3117990 crossref_primary_10_1007_s40747_020_00249_x crossref_primary_10_1109_TCYB_2021_3062949 crossref_primary_10_1007_s12293_022_00380_x crossref_primary_10_1109_TCYB_2021_3126341 crossref_primary_10_3390_math13010158 crossref_primary_10_1016_j_ins_2024_121620 crossref_primary_10_1109_TFUZZ_2020_2973121 crossref_primary_10_1016_j_swevo_2025_102058 crossref_primary_10_1109_TETCI_2024_3370033 crossref_primary_10_1109_TCYB_2021_3056176 crossref_primary_10_1097_MD_0000000000026279 crossref_primary_10_1109_TEVC_2023_3334233 crossref_primary_10_1016_j_asoc_2023_110061 crossref_primary_10_1109_TEVC_2023_3250350 crossref_primary_10_1007_s10617_019_09220_7 crossref_primary_10_1007_s41965_024_00169_6 crossref_primary_10_1016_j_ejor_2021_04_032 crossref_primary_10_1109_TEVC_2020_2979740 crossref_primary_10_1109_TCYB_2021_3103811 crossref_primary_10_1109_TSMC_2023_3239953 crossref_primary_10_1109_TEVC_2024_3361000 crossref_primary_10_1109_JIOT_2022_3150747 crossref_primary_10_1109_MCI_2024_3431456 crossref_primary_10_1016_j_ins_2024_121835 crossref_primary_10_1007_s40747_021_00506_7 crossref_primary_10_1109_TEVC_2022_3149601 crossref_primary_10_1007_s00521_023_09176_7 crossref_primary_10_1109_JAS_2024_124320 crossref_primary_10_1109_TEVC_2022_3195668 crossref_primary_10_1007_s40747_023_01276_0 crossref_primary_10_1109_TCYB_2023_3267454 crossref_primary_10_1007_s44336_024_00006_5 crossref_primary_10_1016_j_engappai_2025_110530 crossref_primary_10_1016_j_swevo_2024_101729 crossref_primary_10_1109_TCYB_2023_3312476 crossref_primary_10_1109_TNNLS_2021_3106399 crossref_primary_10_1109_TSTE_2021_3101520 crossref_primary_10_1109_TETCI_2018_2872055 crossref_primary_10_1109_TEVC_2020_3017865 crossref_primary_10_1007_s44196_025_00830_7 crossref_primary_10_3233_JIFS_222832 crossref_primary_10_1016_j_knosys_2021_107049 crossref_primary_10_1109_TSMC_2023_3281822 crossref_primary_10_1007_s12293_021_00326_9 crossref_primary_10_1016_j_engappai_2024_108104 crossref_primary_10_1109_TCYB_2019_2931983 crossref_primary_10_1016_j_ifacol_2023_10_1145 crossref_primary_10_1016_j_asoc_2023_110874 crossref_primary_10_1109_TEVC_2022_3154231 crossref_primary_10_1109_TR_2021_3073960 crossref_primary_10_3390_math9202633 crossref_primary_10_1007_s11633_022_1317_4 crossref_primary_10_1080_0305215X_2025_2492248 crossref_primary_10_1007_s00366_021_01594_2 crossref_primary_10_1109_TCYB_2021_3105696 crossref_primary_10_1109_JAS_2022_105425 crossref_primary_10_1109_TEVC_2019_2924461 crossref_primary_10_1109_TCYB_2022_3200517 crossref_primary_10_1016_j_swevo_2025_102020 crossref_primary_10_1007_s10898_024_01387_z crossref_primary_10_1016_j_buildenv_2021_107661 crossref_primary_10_1109_TCYB_2021_3069814 crossref_primary_10_1007_s40747_024_01465_5 crossref_primary_10_1109_TEVC_2021_3078486 crossref_primary_10_1109_TEVC_2023_3243632 crossref_primary_10_1007_s10462_021_10042_y crossref_primary_10_1109_TEVC_2024_3357819 crossref_primary_10_1109_TEVC_2022_3228516 crossref_primary_10_1016_j_eswa_2023_122179 crossref_primary_10_1145_3474059 crossref_primary_10_1109_TEVC_2023_3327459 crossref_primary_10_1016_j_eswa_2024_125610 crossref_primary_10_1109_TEVC_2023_3300181 crossref_primary_10_1007_s40747_023_00969_w crossref_primary_10_1016_j_eswa_2022_119495 crossref_primary_10_1109_TCYB_2021_3064676 crossref_primary_10_1109_TEVC_2022_3231493 crossref_primary_10_1109_TSMC_2022_3207457 crossref_primary_10_1109_TCYB_2022_3170344 crossref_primary_10_1007_s00521_023_08661_3 crossref_primary_10_1016_j_swevo_2024_101817 crossref_primary_10_1109_ACCESS_2024_3403889 crossref_primary_10_1007_s40747_023_01179_0 crossref_primary_10_1016_j_ins_2024_121079 crossref_primary_10_1109_JAS_2025_125111 crossref_primary_10_3390_math12060913 crossref_primary_10_1007_s12065_023_00882_8 crossref_primary_10_1109_TNNLS_2023_3297624 crossref_primary_10_1155_2021_5817396 crossref_primary_10_1109_TEVC_2021_3113923 crossref_primary_10_1109_TEVC_2022_3177936 crossref_primary_10_1007_s00521_022_07302_5 crossref_primary_10_1109_TEVC_2021_3120980 crossref_primary_10_1016_j_ins_2022_09_063 crossref_primary_10_1016_j_petsci_2024_09_018 crossref_primary_10_1016_j_asoc_2024_112226 crossref_primary_10_1016_j_asoc_2025_113216 crossref_primary_10_1109_ACCESS_2021_3131587 crossref_primary_10_1016_j_asoc_2022_109263 crossref_primary_10_1109_TCYB_2022_3199147 crossref_primary_10_12998_wjcc_v9_i29_8729 crossref_primary_10_1109_TG_2022_3145886 crossref_primary_10_1007_s00158_020_02575_7 crossref_primary_10_1109_TCYB_2020_3008280 crossref_primary_10_1016_j_swevo_2021_100972 |
| Cites_doi | 10.1016/j.ejor.2013.08.001 10.1016/j.asoc.2017.01.039 10.1007/978-3-319-45823-6_31 10.1097/TA.0000000000001802 10.1109/TEVC.2009.2033671 10.1109/CEC.2018.8477766 10.1109/TEVC.2013.2248012 10.1016/j.swevo.2011.05.001 10.1016/S0045-7825(01)00323-1 10.1109/TEVC.2013.2288779 10.1109/TEVC.2013.2262111 10.1007/978-3-319-45823-6_20 10.1007/s002910000046 10.1109/TSMCC.2005.855506 10.1007/s00500-014-1283-z 10.1109/TCYB.2013.2247594 10.1002/mcda.1605 10.1109/TEVC.2009.2027359 10.1016/j.applthermaleng.2010.03.027 10.1016/j.cor.2007.09.009 10.1109/TEVC.2018.2802784 10.1007/s00500-003-0330-y 10.1016/j.swevo.2011.03.001 10.1109/TEVC.2016.2555315 10.1016/j.patcog.2010.08.011 10.1109/CEC.2003.1299639 10.1109/TEVC.2018.2834881 10.1016/j.knosys.2015.09.032 10.1016/j.cma.2005.02.003 10.1109/TEVC.2017.2675628 10.1007/978-3-642-25566-3_40 10.1109/TEVC.2006.872344 10.1109/MCI.2009.933094 10.1137/1.9781611972788.22 10.1080/03052150500211911 10.1109/TEVC.2016.2622301 10.1109/TEVC.2002.800884 10.1007/s00500-003-0328-5 10.1016/j.ejor.2009.06.024 10.1162/EVCO_a_00009 10.1007/978-3-642-40942-4_15 10.1016/j.neunet.2007.04.023 10.1109/TCYB.2017.2710978 10.1109/CEC.2010.5586355 10.1007/978-3-642-41278-3_45 10.1007/978-3-642-20364-0_13 10.1109/TCYB.2016.2562674 10.1080/0305215X.2011.637556 10.1109/TEVC.2009.2039141 10.1109/TEVC.2005.851274 10.1007/978-3-642-12239-2_60 10.2514/2.1999 10.1115/1.4003035 10.1016/S0377-0427(00)00430-1 10.1007/s10898-014-0213-z 10.1023/A:1010933404324 10.1017/CBO9780511815867 10.1007/s40747-017-0057-5 10.1109/4235.873238 10.1109/TEVC.2005.859463 10.3233/JCM-2012-0402 10.1109/4235.996017 10.1007/978-3-642-04617-9_22 10.1109/TMTT.2016.2583427 10.1162/EVCO_a_00053 10.1201/9781420089653.ch10 10.1007/s00500-003-0329-4 10.1111/j.1475-3995.2011.00840.x 10.1145/1143997.1144268 10.1016/j.surge.2013.10.001 10.1109/CEC.2010.5586124 10.1002/mcda.4020030204 10.1109/TEVC.2007.892759 10.1145/1276958.1277203 10.1109/CEC.2011.5949693 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| DOI | 10.1109/TCYB.2018.2869674 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | PubMed Aerospace Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Forestry |
| EISSN | 2168-2275 |
| EndPage | 549 |
| ExternalDocumentID | 30273180 10_1109_TCYB_2018_2869674 8472353 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61590922; 61876123 funderid: 10.13039/501100001809 – fundername: Engineering and Physical Sciences Research Council grantid: EP/M017869/1 funderid: 10.13039/501100000266 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7SC 7SP 7TB 8FD F28 FR3 H8D JQ2 L7M L~C L~D 7X8 |
| ID | FETCH-LOGICAL-c349t-b7bd835220f075c88695d7ccf8d2a6528e30c14d00a7539ec9679932e7d65a633 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 148 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506849800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 06:45:48 EDT 2025 Sun Jun 29 16:16:19 EDT 2025 Thu Jan 02 23:00:09 EST 2025 Sat Nov 29 02:02:26 EST 2025 Tue Nov 18 22:23:59 EST 2025 Wed Aug 27 02:38:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-b7bd835220f075c88695d7ccf8d2a6528e30c14d00a7539ec9679932e7d65a633 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-4805-3780 0000-0003-1100-0631 |
| PMID | 30273180 |
| PQID | 2330016300 |
| PQPubID | 85422 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2115751273 crossref_citationtrail_10_1109_TCYB_2018_2869674 ieee_primary_8472353 crossref_primary_10_1109_TCYB_2018_2869674 proquest_journals_2330016300 pubmed_primary_30273180 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-01 |
| PublicationDateYYYYMMDD | 2020-02-01 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 kendall (ref68) 1990 ref56 ref12 ref59 ref15 ref14 ref53 ref52 ref55 ref11 ref54 ref17 ref16 ref18 ref51 ref50 ref46 ref45 ref48 zhou (ref19) 2005; 3 ref47 ref42 ref41 ref44 ref43 ref49 jin (ref26) 2000 ref8 ref7 zhang (ref80) 2008 guo (ref10) 2016 ref9 ref4 ref3 miettinen (ref58) 2012; 12 ref6 ref5 ref82 breiman (ref67) 1984 ref40 ref84 ref83 ref79 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 hollander (ref81) 1999 ref24 ref23 ref69 ref25 ref64 ref20 ref66 ref22 ref65 ref21 ref28 ref27 ref29 ref60 ref62 ref61 liaw (ref63) 2002; 2 |
| References_xml | – ident: ref76 doi: 10.1016/j.ejor.2013.08.001 – ident: ref34 doi: 10.1016/j.asoc.2017.01.039 – ident: ref56 doi: 10.1007/978-3-319-45823-6_31 – ident: ref84 doi: 10.1097/TA.0000000000001802 – start-page: 786 year: 2000 ident: ref26 article-title: On evolutionary optimization with approximate fitness functions publication-title: Proc 2nd Genetic Evol Comput Conf – ident: ref32 doi: 10.1109/TEVC.2009.2033671 – ident: ref8 doi: 10.1109/CEC.2018.8477766 – ident: ref11 doi: 10.1109/TEVC.2013.2248012 – ident: ref6 doi: 10.1016/j.swevo.2011.05.001 – ident: ref47 doi: 10.1016/S0045-7825(01)00323-1 – ident: ref43 doi: 10.1109/TEVC.2013.2288779 – year: 1984 ident: ref67 publication-title: Classification and Regression Trees – ident: ref15 doi: 10.1109/TEVC.2013.2262111 – ident: ref55 doi: 10.1007/978-3-319-45823-6_20 – ident: ref2 doi: 10.1007/s002910000046 – start-page: 1 year: 2016 ident: ref10 article-title: Small data driven evolutionary multi-objective optimization of fused magnesium furnaces publication-title: Proc IEEE Symp Series Comput Intell – ident: ref17 doi: 10.1109/TSMCC.2005.855506 – ident: ref16 doi: 10.1007/s00500-014-1283-z – ident: ref69 doi: 10.1109/TCYB.2013.2247594 – ident: ref12 doi: 10.1002/mcda.1605 – volume: 2 start-page: 18 year: 2002 ident: ref63 article-title: Classification and regression by random forest publication-title: R News – ident: ref22 doi: 10.1109/TEVC.2009.2027359 – ident: ref23 doi: 10.1016/j.applthermaleng.2010.03.027 – ident: ref77 doi: 10.1016/j.cor.2007.09.009 – ident: ref33 doi: 10.1109/TEVC.2018.2802784 – ident: ref21 doi: 10.1007/s00500-003-0330-y – ident: ref59 doi: 10.1016/j.swevo.2011.03.001 – ident: ref5 doi: 10.1109/TEVC.2016.2555315 – ident: ref66 doi: 10.1016/j.patcog.2010.08.011 – ident: ref14 doi: 10.1109/CEC.2003.1299639 – ident: ref18 doi: 10.1109/TEVC.2018.2834881 – ident: ref40 doi: 10.1016/j.knosys.2015.09.032 – ident: ref42 doi: 10.1016/j.cma.2005.02.003 – ident: ref30 doi: 10.1109/TEVC.2017.2675628 – ident: ref35 doi: 10.1007/978-3-642-25566-3_40 – ident: ref44 doi: 10.1109/TEVC.2006.872344 – ident: ref7 doi: 10.1109/MCI.2009.933094 – ident: ref74 doi: 10.1137/1.9781611972788.22 – ident: ref46 doi: 10.1080/03052150500211911 – ident: ref13 doi: 10.1109/TEVC.2016.2622301 – ident: ref20 doi: 10.1109/TEVC.2002.800884 – ident: ref4 doi: 10.1007/s00500-003-0328-5 – ident: ref3 doi: 10.1016/j.ejor.2009.06.024 – ident: ref62 doi: 10.1162/EVCO_a_00009 – ident: ref50 doi: 10.1007/978-3-642-40942-4_15 – ident: ref39 doi: 10.1016/j.neunet.2007.04.023 – ident: ref25 doi: 10.1109/TCYB.2017.2710978 – ident: ref54 doi: 10.1109/CEC.2010.5586355 – ident: ref37 doi: 10.1007/978-3-642-41278-3_45 – ident: ref38 doi: 10.1007/978-3-642-20364-0_13 – ident: ref41 doi: 10.1109/TCYB.2016.2562674 – ident: ref71 doi: 10.1080/0305215X.2011.637556 – ident: ref51 doi: 10.1109/TEVC.2009.2039141 – ident: ref31 doi: 10.1109/TEVC.2005.851274 – ident: ref52 doi: 10.1007/978-3-642-12239-2_60 – ident: ref29 doi: 10.2514/2.1999 – ident: ref45 doi: 10.1115/1.4003035 – ident: ref1 doi: 10.1016/S0377-0427(00)00430-1 – ident: ref79 doi: 10.1007/s10898-014-0213-z – ident: ref65 doi: 10.1023/A:1010933404324 – ident: ref70 doi: 10.1017/CBO9780511815867 – ident: ref73 doi: 10.1007/s40747-017-0057-5 – ident: ref57 doi: 10.1109/4235.873238 – ident: ref28 doi: 10.1109/TEVC.2005.859463 – year: 1990 ident: ref68 publication-title: Rank Correlation Methods – ident: ref49 doi: 10.3233/JCM-2012-0402 – ident: ref60 doi: 10.1109/4235.996017 – ident: ref53 doi: 10.1007/978-3-642-04617-9_22 – volume: 3 start-page: 2832 year: 2005 ident: ref19 article-title: A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm publication-title: Proc IEEE Congr Evol Comput – ident: ref9 doi: 10.1109/TMTT.2016.2583427 – ident: ref82 doi: 10.1162/EVCO_a_00053 – ident: ref64 doi: 10.1201/9781420089653.ch10 – ident: ref27 doi: 10.1007/s00500-003-0329-4 – ident: ref78 doi: 10.1111/j.1475-3995.2011.00840.x – year: 2008 ident: ref80 article-title: Multiobjective optimization test instances for the CEC 2009 special session and competition – ident: ref36 doi: 10.1145/1143997.1144268 – volume: 12 year: 2012 ident: ref58 publication-title: Nonlinear Multiobjective Optimization – ident: ref83 doi: 10.1016/j.surge.2013.10.001 – ident: ref48 doi: 10.1109/CEC.2010.5586124 – ident: ref75 doi: 10.1002/mcda.4020030204 – ident: ref61 doi: 10.1109/TEVC.2007.892759 – ident: ref24 doi: 10.1145/1276958.1277203 – ident: ref72 doi: 10.1109/CEC.2011.5949693 – year: 1999 ident: ref81 publication-title: Nonparametric Statistical Methods |
| SSID | ssj0000816898 |
| Score | 2.6016557 |
| Snippet | Many real-world optimization problems can be solved by using the data-driven approach only, simply because no analytic objective functions are available for... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 536 |
| SubjectTerms | Combinatorial analysis Computational modeling Constrained multiobjective combinatorial optimization Constraint modelling data-driven optimization evolutionary algorithm (EA) Evolutionary algorithms Forestry Linear programming Mathematical programming Multiple objective analysis Optimization Radial basis function radial basis function (RBF) networks Radio frequency random forest (RF) Regression analysis Regression models surrogate Systems design Training trauma systems Vegetation |
| Title | A Random Forest-Assisted Evolutionary Algorithm for Data-Driven Constrained Multiobjective Combinatorial Optimization of Trauma Systems |
| URI | https://ieeexplore.ieee.org/document/8472353 https://www.ncbi.nlm.nih.gov/pubmed/30273180 https://www.proquest.com/docview/2330016300 https://www.proquest.com/docview/2115751273 |
| Volume | 50 |
| WOSCitedRecordID | wos000506849800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FUJcgLY8FkplJA6ASOvEGzs-Ln2IU0GoSMspcmwHipoEZbOV-AX8bWYcbyQkQOISRbLjPObz-JvYng_gRSVdnXnpEm-FTBAUPMFxPEUiJ_LaCoU-sQpiE-riolgu9YcteDPthfHeh8Vn_ohOw1y-6-yafpUdoyfNRC62YVspOe7Vmv6nBAGJIH2b4UmCrELFScyU6-PLk89vaR1XcZQVUktFcjw0Y4eI5r-NSEFi5e9sM4w65_f-73nvw93ILtlihMMubPl2D26T_CZpuu3BbuzKK_Yy5pt-tQ8_F-yjaV3XsLFigiYj4zt2dhOBafofbHH9peuvhq8NQ57LTs1gktOefCUj0c8gNYGXhA29XfVt9KNY1GDoTYE94py9R__UxI2frKsZDpTrxrCYNf0BfDo_uzx5l0R9hsSKuR6SSlUuEDheI_GwBX7Z3Clr68JlRuZZ4QW36dxxbjAo0t7ih0c6lHnlZG6kEA9hp-1a_xiYzrmstElTq_W80nmVKqtTUyP7ENzM5Qz4xkaljcnL6cWuyxDEcF2ShUuycBktPIPX0yXfx8wd_6q8T-abKkbLzeBgA4Qy9u1VmQlBRBkPM3g-FWOvpKkW0_pujXUohxFyKYVNPBoBNLW9wd2TP9_zKdzJKKYPK8MPYGfo1_4Z3LI3w9WqP0ToL4vDAP1fd5P8qQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgigXoC2PhQJG4gCItE68ceLj0oeKKAtCi9SeIsd2SlE3QdlsJX4Bf5sZxxsJCZC4RJb8SOIZj7_xYz6AF6W0VeKkjZwRMkKl4BHO4zECOZFWRmRoE0tPNpFNp_npqfq0Bm-GuzDOOX_4zO1S0u_l28YsaalsDy1pIlJxDa4Tc1a4rTWsqHgKCU9-m2AiQlyRhW3MmKu92f7ZWzrJle8muVQyI0Ie2rNDnea_zUmeZOXveNPPO0d3_u-L78LtgC_ZpFeITVhz9RbcJAJOYnXbgs0wmBfsZYg4_Wobfk7YZ13bZs76ghEKjcRv2eFVUE3d_mCTy_Omvei-zhkiXXagOx0dtGQtGdF-erIJrOKv9Dblt96SYtYcnW9y7VHT2Ue0UPNw9ZM1FcOpcjnXLMRNvwdfjg5n-8dRYGiIjBirLiqz0noIxyuEHibHnk1tZkyV20TLNMmd4CYeW841ukXKGex4BESJy6xMtRTiPqzXTe0eAlMpl6XScWyUGpcqLePMqFhXiD8E12M5Ar6SUWFC-HL6scvCuzFcFSThgiRcBAmP4PVQ5Xsfu-NfhbdJfEPBILkR7KwUoQije1EkQhBUxscIng_ZOC5ps0XXrlliGYpihGgqwyYe9Ao0tL3Su0d_fucz2DiefTgpTt5N3z-GWwl5-P6c-A6sd-3SPYEb5qq7WLRP_QD4Bc-b_wo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Random+Forest-Assisted+Evolutionary+Algorithm+for+Data-Driven+Constrained+Multiobjective+Combinatorial+Optimization+of+Trauma+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Handing&rft.au=Jin%2C+Yaochu&rft.date=2020-02-01&rft.eissn=2168-2275&rft.volume=50&rft.issue=2&rft.spage=536&rft_id=info:doi/10.1109%2FTCYB.2018.2869674&rft_id=info%3Apmid%2F30273180&rft.externalDocID=30273180 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |