AggreSet: Rich and Scalable Set Exploration using Visualizations of Element Aggregations

Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set intersections. Increasing the number of sets results in a c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on visualization and computer graphics Ročník 22; číslo 1; s. 688 - 697
Hlavní autoři: Yalcin, M. Adil, Elmqvist, Niklas, Bederson, Benjamin B.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1077-2626, 1941-0506, 1941-0506
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set intersections. Increasing the number of sets results in a combinatorial growth of relations and creates scalability challenges. Exploratory tasks (e.g. selection, comparison) have commonly been designed in separation for set-typed attributes, which reduces interface consistency. To improve on scalability and to support rich, contextual exploration of set-typed data, we present AggreSet. AggreSet creates aggregations for each data dimension: sets, set-degrees, set-pair intersections, and other attributes. It visualizes the element count per aggregate using a matrix plot for set-pair intersections, and histograms for set lists, set-degrees and other attributes. Its non-overlapping visual design is scalable to numerous and large sets. AggreSet supports selection, filtering, and comparison as core exploratory tasks. It allows analysis of set relations inluding subsets, disjoint sets and set intersection strength, and also features perceptual set ordering for detecting patterns in set matrices. Its interaction is designed for rich and rapid data exploration. We demonstrate results on a wide range of datasets from different domains with varying characteristics, and report on expert reviews and a case study using student enrollment and degree data with assistant deans at a major public university.
AbstractList Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set intersections. Increasing the number of sets results in a combinatorial growth of relations and creates scalability challenges. Exploratory tasks (e.g. selection, comparison) have commonly been designed in separation for set-typed attributes, which reduces interface consistency. To improve on scalability and to support rich, contextual exploration of set-typed data, we present AggreSet. AggreSet creates aggregations for each data dimension: sets, set-degrees, set-pair intersections, and other attributes. It visualizes the element count per aggregate using a matrix plot for set-pair intersections, and histograms for set lists, set-degrees and other attributes. Its non-overlapping visual design is scalable to numerous and large sets. AggreSet supports selection, filtering, and comparison as core exploratory tasks. It allows analysis of set relations inluding subsets, disjoint sets and set intersection strength, and also features perceptual set ordering for detecting patterns in set matrices. Its interaction is designed for rich and rapid data exploration. We demonstrate results on a wide range of datasets from different domains with varying characteristics, and report on expert reviews and a case study using student enrollment and degree data with assistant deans at a major public university.
Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set intersections. Increasing the number of sets results in a combinatorial growth of relations and creates scalability challenges. Exploratory tasks (e.g. selection, comparison) have commonly been designed in separation for set-typed attributes, which reduces interface consistency. To improve on scalability and to support rich, contextual exploration of set-typed data, we present AggreSet. AggreSet creates aggregations for each data dimension: sets, set-degrees, set-pair intersections, and other attributes. It visualizes the element count per aggregate using a matrix plot for set-pair intersections, and histograms for set lists, set-degrees and other attributes. Its non-overlapping visual design is scalable to numerous and large sets. AggreSet supports selection, filtering, and comparison as core exploratory tasks. It allows analysis of set relations inluding subsets, disjoint sets and set intersection strength, and also features perceptual set ordering for detecting patterns in set matrices. Its interaction is designed for rich and rapid data exploration. We demonstrate results on a wide range of datasets from different domains with varying characteristics, and report on expert reviews and a case study using student enrollment and degree data with assistant deans at a major public university.Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per student. Set-typed attributes describe rich relations across elements, sets, and the set intersections. Increasing the number of sets results in a combinatorial growth of relations and creates scalability challenges. Exploratory tasks (e.g. selection, comparison) have commonly been designed in separation for set-typed attributes, which reduces interface consistency. To improve on scalability and to support rich, contextual exploration of set-typed data, we present AggreSet. AggreSet creates aggregations for each data dimension: sets, set-degrees, set-pair intersections, and other attributes. It visualizes the element count per aggregate using a matrix plot for set-pair intersections, and histograms for set lists, set-degrees and other attributes. Its non-overlapping visual design is scalable to numerous and large sets. AggreSet supports selection, filtering, and comparison as core exploratory tasks. It allows analysis of set relations inluding subsets, disjoint sets and set intersection strength, and also features perceptual set ordering for detecting patterns in set matrices. Its interaction is designed for rich and rapid data exploration. We demonstrate results on a wide range of datasets from different domains with varying characteristics, and report on expert reviews and a case study using student enrollment and degree data with assistant deans at a major public university.
Author Elmqvist, Niklas
Bederson, Benjamin B.
Yalcin, M. Adil
Author_xml – sequence: 1
  givenname: M. Adil
  surname: Yalcin
  fullname: Yalcin, M. Adil
  email: yalcin@umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 2
  givenname: Niklas
  surname: Elmqvist
  fullname: Elmqvist, Niklas
  email: elm@umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
– sequence: 3
  givenname: Benjamin B.
  surname: Bederson
  fullname: Bederson, Benjamin B.
  email: bederson@umd.edu
  organization: Univ. of Maryland, College Park, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26390465$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1LHEEQhhtRom7yAyQQGrx4mU1_93RusqwfIAhqJLemp6dm09I7s-meAfXXO_uhBw85VfHyvFVFvcdov-1aQOiEkimlxPx8eJxdThmhcsqE0kTSPXREjaAFkUTtjz3RumCKqUN0nPMTIVSI0nxBh0xxQ4SSR-jP-WKR4B76X_gu-L_YtTW-9y66KgIeZTx_XsUuuT50LR5yaBf4MeTBxfC60TLuGjyPsIS2x5tZi63-FR00Lmb4tqsT9Pti_jC7Km5uL69n5zeF58L0RaVASKN4DbppjCMlM2VFas6NN6KWAFJLUTFDPXhFaxC6lo0vSVVSWnINfILOtnNXqfs3QO7tMmQPMboWuiFbqjlR2ghFR_T0E_rUDakdr7OMasGMYeMlE_RjRw3VEmq7SmHp0ot9_9kI0C3gU5dzguYDocSuc7HrXOw6F7vLZfToTx4f-s2j-uRC_K_z-9YZAOBjkx5jLqXgb3ZUmSI
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2021_3140153
crossref_primary_10_1109_TVCG_2021_3102966
crossref_primary_10_1136_bmjopen_2022_064887
crossref_primary_10_1177_1473871618754343
crossref_primary_10_1007_s12650_024_00996_w
crossref_primary_10_1109_TVCG_2024_3402834
crossref_primary_10_1093_bib_bbab108
crossref_primary_10_1109_TVCG_2019_2921544
crossref_primary_10_1109_TVCG_2016_2598496
crossref_primary_10_1109_TVCG_2020_3047111
crossref_primary_10_1631_FITEE_2200547
crossref_primary_10_1007_s12650_025_01045_w
crossref_primary_10_1109_TVCG_2016_2598432
crossref_primary_10_1109_TVCG_2017_2723393
Cites_doi 10.1109/MCG.2005.102
10.1109/TVCG.2014.2346248
10.1109/TVCG.2007.70539
10.1038/srep00196
10.1109/TVCG.2014.2346249
10.1016/j.intcom.2007.05.004
10.1515/9783110854688
10.1109/TVCG.2007.70535
10.1109/CMV.2007.20
10.1109/TVCG.2009.122
10.1111/j.1467-8659.2012.03080.x
10.1109/TVCG.2008.141
10.1016/j.jvlc.2013.08.006
10.1109/TVCG.2011.186
10.1109/TVCG.2011.185
10.1109/INFVIS.2004.1
10.2307/2288400
10.1177/1473871611413180
10.1109/HICSS.2011.339
10.1002/sam.10071
10.1109/TVCG.2013.76
10.1109/TVCG.2010.210
10.1109/TVCG.2013.184
10.1145/1865841.1865844
10.1145/22949.22950
10.1038/nmeth.3033
10.1145/1753326.1753357
10.1109/TVCG.2008.144
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TVCG.2015.2467051
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 697
ExternalDocumentID 26390465
10_1109_TVCG_2015_2467051
7194854
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TN5
AAYXX
CITATION
5VS
AAYOK
AETIX
AI.
AIBXA
AKJIK
ALLEH
H~9
IFJZH
NPM
RIG
RNI
RZB
VH1
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-b6e45963de7ff9a08298b0d339c94d5ee5754b291cec61de47d5fc80b811837e3
IEDL.DBID RIE
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000364043400074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Sat Sep 27 21:24:14 EDT 2025
Sun Nov 09 08:23:56 EST 2025
Thu Apr 03 07:05:58 EDT 2025
Tue Nov 18 22:37:44 EST 2025
Sat Nov 29 06:05:35 EST 2025
Wed Aug 27 02:47:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords set visualization
visualization
sets
Multi-valued attributes
design
interaction
data exploration
scalability
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-b6e45963de7ff9a08298b0d339c94d5ee5754b291cec61de47d5fc80b811837e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26390465
PQID 2174299296
PQPubID 75741
PageCount 10
ParticipantIDs proquest_miscellaneous_1730679461
proquest_journals_2174299296
pubmed_primary_26390465
ieee_primary_7194854
crossref_primary_10_1109_TVCG_2015_2467051
crossref_citationtrail_10_1109_TVCG_2015_2467051
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref34
ref12
ref15
ref14
ref31
ref30
ref11
ref32
ref2
(ref10) 0
ref17
ref16
(ref35) 0
ref19
ref18
alsallakh (ref5) 2014
knuth (ref22) 1993; 37
raymond (ref28) 2003
shneiderman (ref33) 2009
ahlberg (ref1) 0
ref24
ref23
ref26
ref25
ref20
ref21
(ref36) 0
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref34
  doi: 10.1109/MCG.2005.102
– ident: ref24
  doi: 10.1109/TVCG.2014.2346248
– ident: ref19
  doi: 10.1109/TVCG.2007.70539
– ident: ref2
  doi: 10.1038/srep00196
– volume: 37
  year: 1993
  ident: ref22
  publication-title: The Stanford GraphBase A Platform for Combinatorial Computing
– ident: ref32
  doi: 10.1109/TVCG.2014.2346249
– ident: ref21
  doi: 10.1016/j.intcom.2007.05.004
– ident: ref8
  doi: 10.1515/9783110854688
– ident: ref14
  doi: 10.1109/TVCG.2007.70535
– ident: ref30
  doi: 10.1109/CMV.2007.20
– ident: ref12
  doi: 10.1109/TVCG.2009.122
– ident: ref13
  doi: 10.1111/j.1467-8659.2012.03080.x
– year: 0
  ident: ref35
  article-title: Breach Level Index
  publication-title: Breach Level Index
– year: 2003
  ident: ref28
  publication-title: The Art of Unix Programming
– start-page: 313
  year: 0
  ident: ref1
  article-title: Visual Information Seeking: Tight Coupling of Dynamic Query Filters with Starfield Displays
  publication-title: Proceedings of the SIGCHI conference on Human factors in computing systems
– ident: ref20
  doi: 10.1109/TVCG.2008.141
– ident: ref31
  doi: 10.1016/j.jvlc.2013.08.006
– ident: ref3
  doi: 10.1109/TVCG.2011.186
– ident: ref9
  doi: 10.1109/TVCG.2011.185
– ident: ref17
  doi: 10.1109/INFVIS.2004.1
– ident: ref11
  doi: 10.2307/2288400
– year: 0
  ident: ref36
  article-title: The Design Ethos of Dieter Rams
  publication-title: San Francisco Museum of Modern Art
– ident: ref15
  doi: 10.1177/1473871611413180
– ident: ref6
  doi: 10.1109/HICSS.2011.339
– ident: ref25
  doi: 10.1002/sam.10071
– ident: ref27
  doi: 10.1109/TVCG.2013.76
– ident: ref29
  doi: 10.1109/TVCG.2010.210
– ident: ref4
  doi: 10.1109/TVCG.2013.184
– ident: ref7
  doi: 10.1145/1865841.1865844
– ident: ref26
  doi: 10.1145/22949.22950
– ident: ref23
  doi: 10.1038/nmeth.3033
– start-page: 1
  year: 2014
  ident: ref5
  publication-title: Visualizing Sets and Set-typed Data State-of-the-Art and Future Challenges
– year: 0
  ident: ref10
  article-title: The World Factbook
  publication-title: The World Factbook
– year: 2009
  ident: ref33
  publication-title: Designing the User Interface Strategies for Effective Human-Computer Interaction
– ident: ref18
  doi: 10.1145/1753326.1753357
– ident: ref16
  doi: 10.1109/TVCG.2008.144
SSID ssj0014489
Score 2.2414985
Snippet Datasets commonly include multi-value (set-typed) attributes that describe set memberships over elements, such as genres per movie or courses taken per...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 688
SubjectTerms Aggregates
Chapters
Colleges & universities
Combinatorial analysis
data exploration
Data visualization
Datasets
design
Domains
Enrollments
Exploration
Filtering
Histograms
interaction
Intersections
Motion pictures
Multi-valued attributes
Scalability
set visualization
sets
Visualization
Title AggreSet: Rich and Scalable Set Exploration using Visualizations of Element Aggregations
URI https://ieeexplore.ieee.org/document/7194854
https://www.ncbi.nlm.nih.gov/pubmed/26390465
https://www.proquest.com/docview/2174299296
https://www.proquest.com/docview/1730679461
Volume 22
WOSCitedRecordID wos000364043400074&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B6gEO0PLcliIj9VQRiBMnjntDaLc9ISQo2lvktScrJJRF7C6_vzOONwKpVOotcmzH8jfOzHheAN8aL7EqUpV46_JEoSkSq41MLInOzsqmki4NxSb09XU1HpubNTjrY2EQMTif4Tk_Blu-n7klX5VdaMm5TNQ6rGutu1it3mJAaobp_At1kpGUHi2YMjUXd_dXP9mJqzjP6LdAVMgZgIkzk2pYvGFHob7K-6JmYDmjnf9b7EfYjqKluOxo4ROsYbsLW68SDu7B-HJK-vUtLn4IjqgXtvXillDi-ClBzaJzyQtoCXaJn4r7hznHXcZoTTFrxLDzOBdhrmnXvg-_R8O7q19JrK2QuFyZRTIpURV0-DzqpjGWI2yrSerz3DijfIFIYpyaZEY6dKX0qLRnb690UpFGkmvMD2CjnbV4BKLIuSYVgZpjpSyiQStRlZVpGp-l1g8gXW1x7WLica5_8VgHBSQ1NQNUM0B1BGgA3_shT13WjX913uPd7zvGjR_A8QrHOp7Lec0KGDHgzJQDOO1f04liM4ltcbac11KzGmVUSTMfdvj3c6_I5vPfv_kFNmll8YrmGDYWz0v8Ch_cy-Jh_nxCZDuuTgLZ_gHbBea7
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dTxQxEJ8gmigPoIJ6gloTn4wL293uR3kjBMSIFxNOcm9Nr529kJA9wt3x9zvT7W0wURPeNt222_Q33ZnpfAF8arzEukhV4q3LE4W6SGylZWJJdHZWNrV0aSg2UQ2H9Xisf67Blz4WBhGD8xnu82Ow5fuZW_JV2UElOZeJegSPC6Uy2UVr9TYDUjR052FYJRnJ6dGGKVN9MLo8_spuXMV-Rj8GokPOAUy8mZTD4g-GFCqs_FvYDEzndOthy30Om1G4FEcdNbyANWxfwsa9lIPbMD6akoZ9gYtDwTH1wrZeXBBOHEElqFl0TnkBL8FO8VNxeTXnyMsYrylmjTjpfM5FmGvate_Ar9OT0fFZEqsrJC5XepFMSlQFHT-PVdNoyzG29ST1ea6dVr5AJEFOTTItHbpSelSVZ3-vdFKTTpJXmL-C9XbW4hsQRc5VqQjWHGtlETVaiaqsddP4LLV-AOlqi42Lqce5Asa1CSpIqg0DZBggEwEawOd-yE2Xd-N_nbd59_uOceMHsLfC0cSTOTesghELznQ5gI_9azpTbCixLc6WcyMrVqS0Kmnm1x3-_dwrsnn7929-gKdnox_n5vzb8PsuPKNVxgubPVhf3C7xHTxxd4ur-e37QLy_AZGo6Ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AggreSet%3A+Rich+and+Scalable+Set+Exploration+using+Visualizations+of+Element+Aggregations&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Yal%C3%A7in%2C+M+Adil&rft.au=Elmqvist%2C+Niklas&rft.au=Bederson%2C+Benjamin+B&rft.date=2016-01-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=22&rft.issue=1&rft.spage=688&rft_id=info:doi/10.1109%2FTVCG.2015.2467051&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon