Graph cuts with interacting edge weights: examples, approximations, and algorithms

We study an extension of the classical graph cut problem, wherein we replace the modular (sum of edge weights) cost function by a submodular set function defined over graph edges. Special cases of this problem have appeared in different applications in signal processing, machine learning, and comput...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming Vol. 162; no. 1-2; pp. 241 - 282
Main Authors: Jegelka, Stefanie, Bilmes, Jeff A.
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.03.2017
Springer Nature B.V
Subjects:
ISSN:0025-5610, 1436-4646
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We study an extension of the classical graph cut problem, wherein we replace the modular (sum of edge weights) cost function by a submodular set function defined over graph edges. Special cases of this problem have appeared in different applications in signal processing, machine learning, and computer vision. In this paper, we connect these applications via the generic formulation of “cooperative graph cuts”, for which we study complexity, algorithms, and connections to polymatroidal network flows. Finally, we compare the proposed algorithms empirically.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-016-1038-y