A Deep Convolutional Autoencoder for Automatic Motion Artifact Removal in Electrodermal Activity
Objective: This study aimed to develop a robust and data driven automatic motion artifacts (MA) removal technique from electrodermal activity (EDA) signal. Methods: we proposed a deep convolutional autoencoder (DCAE) approach for automatic MA removal in EDA signals. Our model was trained using sever...
Uloženo v:
| Vydáno v: | IEEE transactions on biomedical engineering Ročník 69; číslo 12; s. 3601 - 3611 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!