Assessment of producer gas composition in air gasification of biomass using artificial neural network model

Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of hydrogen energy Ročník 43; číslo 20; s. 9558 - 9568
Hlavní autori: George, Joel, Arun, P., Muraleedharan, C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 17.05.2018
Predmet:
ISSN:0360-3199, 1879-3487
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model is developed using MATLAB software for gasification process simulation based on extensive data obtained from experimental investigations. Experimental investigations on air gasification are conducted in a bubbling fluidised bed gasifier with different locally available biomasses at various operating conditions to obtain the producer gas. The developed artificial neural network consists of seven input variables, output layer with four output variables and one hidden layer with fifteen neurons. The multi-layer feed-forward neural network is trained employing Levenberg–Marquardt back-propagation algorithm. Performance of the model appraised using mean squared error and regression analysis shows good agreement between the output and target values with a regression coefficient, R = 0.987 and mean squared error, MSE = 0.71. The developed model is implemented to predict the producer gas composition from selected biomasses within the operating range. This model satisfactorily predicted the effect of operating parameters on producer gas yield, and is thus a useful tool for the simulation and performance assessment of the gasification system. [Display omitted] •Robust ANN model for fluidised bed gasification with generalization capability.•ANN model formulated based on extensive in-house experimental data.•Reasonable prediction of producer gas yield and composition.•Parametric studies on biomass gasification process using developed ANN model.•Illustration of ANN as useful tool for performance assessment of gasification.
AbstractList Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model is developed using MATLAB software for gasification process simulation based on extensive data obtained from experimental investigations. Experimental investigations on air gasification are conducted in a bubbling fluidised bed gasifier with different locally available biomasses at various operating conditions to obtain the producer gas. The developed artificial neural network consists of seven input variables, output layer with four output variables and one hidden layer with fifteen neurons. The multi-layer feed-forward neural network is trained employing Levenberg–Marquardt back-propagation algorithm. Performance of the model appraised using mean squared error and regression analysis shows good agreement between the output and target values with a regression coefficient, R = 0.987 and mean squared error, MSE = 0.71. The developed model is implemented to predict the producer gas composition from selected biomasses within the operating range. This model satisfactorily predicted the effect of operating parameters on producer gas yield, and is thus a useful tool for the simulation and performance assessment of the gasification system. [Display omitted] •Robust ANN model for fluidised bed gasification with generalization capability.•ANN model formulated based on extensive in-house experimental data.•Reasonable prediction of producer gas yield and composition.•Parametric studies on biomass gasification process using developed ANN model.•Illustration of ANN as useful tool for performance assessment of gasification.
Author Arun, P.
Muraleedharan, C.
George, Joel
Author_xml – sequence: 1
  givenname: Joel
  orcidid: 0000-0003-3492-9400
  surname: George
  fullname: George, Joel
  email: joelpull@gmail.com
– sequence: 2
  givenname: P.
  surname: Arun
  fullname: Arun, P.
  email: arun.p@nitc.ac.in
– sequence: 3
  givenname: C.
  surname: Muraleedharan
  fullname: Muraleedharan, C.
  email: murali@nitc.ac.in
BookMark eNqFkM1qwzAQhEVJoUnaVyh6Absry_EP9NAQ-geBXtqzkOV1uk4sBclpyds3cdpLLzkNzO4MzDdhI-ssMnYrIBYgsrs2pvZzX6PFOAFRxJDGAPkFG4siLyOZFvmIjUFmEElRlldsEkILIHJIyzFbz0PAEDq0PXcN33pX7wx6vtKBG9dtXaCenOVkuabBpoaMHrzDf0Wu0yHwXSC74tr3xyvpDbe484P0386veedq3Fyzy0ZvAt786pR9PD2-L16i5dvz62K-jIxMyz6qEg04M1AnjUgyk8gZghZVmedVIwvUaapnukiyrJZVWs5Q6EZiYiSCyYqyqeSUZade410IHhu19dRpv1cC1BGZatUfMnVEpiBVB2SH4P2_oKF-2Np7TZvz8YdTHA_jvgi9CobQGqzJo-lV7ehcxQ_hi5In
CitedBy_id crossref_primary_10_1016_j_psep_2023_12_069
crossref_primary_10_3390_pr12020254
crossref_primary_10_1016_j_cej_2020_126229
crossref_primary_10_1007_s13399_022_02496_z
crossref_primary_10_1016_j_rser_2025_116223
crossref_primary_10_1007_s42452_019_1440_1
crossref_primary_10_1016_j_fuel_2022_123142
crossref_primary_10_1007_s41939_024_00468_6
crossref_primary_10_1016_j_ijhydene_2022_12_110
crossref_primary_10_1016_j_tsep_2021_101031
crossref_primary_10_1038_s41598_023_37793_8
crossref_primary_10_1016_j_ijhydene_2022_10_101
crossref_primary_10_1016_j_cdc_2019_100321
crossref_primary_10_1016_j_enconman_2025_119735
crossref_primary_10_1016_j_renene_2019_07_136
crossref_primary_10_1016_j_renene_2025_122376
crossref_primary_10_1111_gcbb_12816
crossref_primary_10_1016_j_rser_2021_111902
crossref_primary_10_1515_cppm_2025_0015
crossref_primary_10_1007_s41660_022_00291_x
crossref_primary_10_1007_s41939_024_00552_x
crossref_primary_10_3390_en15010211
crossref_primary_10_1016_j_ijhydene_2025_150194
crossref_primary_10_3390_app13179826
crossref_primary_10_1016_j_ijhydene_2023_02_082
crossref_primary_10_1007_s10973_025_14292_8
crossref_primary_10_1016_j_biortech_2021_126083
crossref_primary_10_1016_j_energy_2024_131482
crossref_primary_10_1016_j_fuproc_2022_107417
crossref_primary_10_1515_cppm_2024_0085
crossref_primary_10_1016_j_chemosphere_2023_140191
crossref_primary_10_1016_j_biombioe_2024_107048
crossref_primary_10_1016_j_ijhydene_2024_11_329
crossref_primary_10_1016_j_ijhydene_2023_02_002
crossref_primary_10_1016_j_energy_2025_136819
crossref_primary_10_1016_j_ijhydene_2021_02_047
crossref_primary_10_1016_j_ijhydene_2022_04_174
crossref_primary_10_1016_j_ijhydene_2021_01_122
crossref_primary_10_1515_cppm_2024_0096
crossref_primary_10_1016_j_ces_2024_120000
crossref_primary_10_1016_j_energy_2023_127134
crossref_primary_10_1016_j_ijhydene_2024_06_007
crossref_primary_10_1016_j_energy_2018_09_131
crossref_primary_10_1016_j_jaap_2021_105180
crossref_primary_10_1515_cppm_2024_0014
crossref_primary_10_3390_en16207042
crossref_primary_10_1007_s11814_024_00181_7
crossref_primary_10_1016_j_envres_2020_109547
crossref_primary_10_1016_j_energy_2023_128336
crossref_primary_10_3390_inventions7040126
crossref_primary_10_3390_fermentation7020071
crossref_primary_10_1016_j_ecmx_2025_101254
crossref_primary_10_1016_j_bej_2021_108054
crossref_primary_10_1016_j_enconman_2019_112260
crossref_primary_10_1016_j_biombioe_2024_107291
crossref_primary_10_1016_j_renene_2019_10_109
crossref_primary_10_1016_j_energy_2020_118800
crossref_primary_10_1016_j_compchemeng_2020_107048
crossref_primary_10_1007_s41939_024_00647_5
crossref_primary_10_1016_j_cej_2021_130881
crossref_primary_10_1016_j_biteb_2022_100976
crossref_primary_10_1016_j_ijhydene_2021_03_184
crossref_primary_10_1016_j_biombioe_2025_107626
crossref_primary_10_1016_j_fuel_2022_126055
crossref_primary_10_1016_j_energy_2021_121010
crossref_primary_10_1002_er_4682
crossref_primary_10_3390_su16198719
crossref_primary_10_1007_s41939_024_00503_6
crossref_primary_10_1016_j_apenergy_2022_119289
crossref_primary_10_1039_D5SE00869G
crossref_primary_10_1016_j_joei_2023_101430
crossref_primary_10_1016_j_biortech_2022_128076
crossref_primary_10_3390_en14102932
crossref_primary_10_1016_j_fuel_2020_119903
crossref_primary_10_1016_j_biortech_2020_122926
crossref_primary_10_1016_j_jaap_2021_105286
crossref_primary_10_1515_cppm_2024_0115
crossref_primary_10_1007_s10098_020_01883_2
crossref_primary_10_1016_j_ijhydene_2025_151367
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_engappai_2025_111805
crossref_primary_10_1016_j_ijhydene_2024_04_283
crossref_primary_10_1016_j_apenergy_2021_117567
crossref_primary_10_1515_cppm_2024_0040
crossref_primary_10_1515_cppm_2024_0043
crossref_primary_10_1016_j_aej_2025_09_003
crossref_primary_10_3390_ijerph17072555
crossref_primary_10_1016_j_chemosphere_2021_132052
crossref_primary_10_1016_j_energy_2018_11_056
crossref_primary_10_1088_1755_1315_1386_1_012018
crossref_primary_10_1016_j_matpr_2020_01_436
crossref_primary_10_1007_s10668_023_03631_0
crossref_primary_10_1039_D5SE00504C
crossref_primary_10_1016_j_ijhydene_2023_08_033
crossref_primary_10_1007_s41247_020_00083_2
crossref_primary_10_1016_j_joei_2022_05_003
crossref_primary_10_1016_j_energy_2024_132762
crossref_primary_10_1016_j_applthermaleng_2022_119334
crossref_primary_10_3390_catal9090738
crossref_primary_10_1016_j_joei_2018_10_014
crossref_primary_10_1016_j_ijhydene_2023_08_259
crossref_primary_10_1016_j_scitotenv_2022_155243
crossref_primary_10_1016_j_renene_2024_121318
crossref_primary_10_1016_j_fuel_2022_125478
crossref_primary_10_1016_j_fuel_2022_124701
crossref_primary_10_1016_j_fuel_2022_123976
crossref_primary_10_1002_bbb_2417
Cites_doi 10.1002/er.1534
10.1016/j.rser.2010.07.030
10.1177/0144598717716282
10.1016/S0960-8524(01)00120-1
10.1039/C6EE00935B
10.1016/j.rser.2014.07.129
10.1016/j.ijhydene.2011.07.071
10.1016/j.biombioe.2017.01.029
10.1021/ef2010892
10.1016/j.ijhydene.2008.11.055
10.1016/j.ijhydene.2011.09.067
10.1016/j.ijhydene.2016.07.104
10.1021/ie990738t
10.1016/j.ijhydene.2010.08.137
10.1002/er.3381
10.1007/s13399-013-0083-5
10.1016/j.biortech.2010.08.015
10.1016/S0016-2361(97)00122-1
10.1016/j.rser.2010.07.026
10.1016/S0960-8524(01)00118-3
10.1016/j.ijhydene.2016.01.094
10.1016/j.ijhydene.2007.05.018
10.1016/S1364-0321(01)00006-5
10.1016/j.rser.2016.01.075
10.1016/j.ijhydene.2009.08.025
10.1021/ie101267c
10.1016/j.biombioe.2012.12.012
10.1016/j.wasman.2016.08.023
10.1016/j.ijhydene.2013.09.055
10.1016/j.ijhydene.2008.07.074
10.1016/j.fuel.2016.12.046
10.1016/j.fuel.2011.11.039
10.1016/j.ijhydene.2010.04.137
10.1016/j.energy.2016.11.145
10.1016/j.wasman.2008.02.022
10.1016/S0961-9534(00)00009-X
10.1021/ie960273w
10.1016/j.ijhydene.2012.12.109
10.1016/j.jpowsour.2010.05.055
10.1016/j.ijhydene.2009.08.083
10.1016/j.rser.2012.01.035
10.1016/j.rser.2015.09.030
10.1016/j.ijhydene.2013.02.136
10.1016/j.rser.2014.01.025
10.1016/j.renene.2013.12.025
10.1016/j.rser.2017.05.215
10.1016/j.enconman.2014.03.036
10.1016/j.applthermaleng.2017.10.134
10.1016/S0960-8524(00)00106-1
10.1016/S1359-4311(00)00023-5
10.1016/j.jaap.2016.04.013
ContentType Journal Article
Copyright 2018 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2018 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2018.04.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 9568
ExternalDocumentID 10_1016_j_ijhydene_2018_04_007
S0360319918310991
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
~HD
ID FETCH-LOGICAL-c349t-b2a0e5c0d2f126c235e0a1b977bf38ea44a5a8266d3b495e1af3e2c3e0c689fb3
ISICitedReferencesCount 113
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432768500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0360-3199
IngestDate Tue Nov 18 21:04:35 EST 2025
Sat Nov 29 07:18:44 EST 2025
Fri Feb 23 02:47:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 20
Keywords Producer gas yield
Biomass gasification
Feed-forward back-propagation algorithm
Bubbling fluidised bed gasifier
Artificial neural network model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-b2a0e5c0d2f126c235e0a1b977bf38ea44a5a8266d3b495e1af3e2c3e0c689fb3
ORCID 0000-0003-3492-9400
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2018_04_007
crossref_citationtrail_10_1016_j_ijhydene_2018_04_007
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_04_007
PublicationCentury 2000
PublicationDate 2018-05-17
PublicationDateYYYYMMDD 2018-05-17
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-17
  day: 17
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ian, Orio, Aznar, Corella (bib21) 1996; 5885
Guo, Li, Cheng, Lü, Shen (bib32) 2001; 76
Pandey, Das, Pan, Leahy, Kwapinski (bib44) 2016; 58
Caballero, Corella, Aznar, Gil (bib22) 2000
Campoy, Go, Fuentes-cano, Ollero (bib24) 2010; 49
Hossain, Jewaratnam, Ganesan (bib1) 2016; 41
Delgado, Aznar (bib18) 1997
Esfahani, Wan Ab Karim Ghani, Mohd Salleh, Ali (bib25) 2012; 26
Mahishi, Goswami (bib30) 2007; 32
Balat, Kırtay (bib3) 2010; 35
Ahmed, Ahmad, Yusup, Inayat, Khan (bib28) 2012; 16
Jiang (bib8) 2012; 37
Hiloidhari, Das, Baruah (bib52) 2014; 32
Xiao, Ni, Chi, Jin, Xiao, Zhong, Huang (bib38) 2009; 29
McKendry (bib19) 2002; 83
Karaci, Caglar, Aydinli, Pekol (bib42) 2016; 41
Hosseini, Wahid, Jamil, Azli, Misbah (bib4) 2015; 39
Zamaniyan, Joda, Behroozsarand, Ebrahimi (bib37) 2013; 38
Chavan, Sharma, Mall, Rajurkar, Tambe, Sharma (bib50) 2012; 93
Puig-Arnavat, Bruno, Coronas (bib29) 2010; 14
Souza, Nemer, Barreto, Quitete (bib39) 2012
Mohanraj, Jayaraj, Muraleedharan (bib54) 2009
Nowotny, Veziroglu (bib5) 2011; 36
Puig-Arnavat, Hernández, Bruno, Coronas (bib41) 2013; 49
Kellogg, Koylu, Dogan (bib11) 2010; 195
Ahmad, Zawawi, Kasim, Inayat, Khasri (bib15) 2016; 53
Colpan, Hamdullahpur, Dincer, Yoo (bib9) 2010; 35
Pio, Tarelho, Matos (bib26) 2017; 120
Nasr, Hafez, El, Nakhla (bib36) 2013; 38
Parthasarathy, Narayanan (bib13) 2014; 66
Sansaniwal, Rosen, Tyagi (bib17) 2017; 80
Kalogirou (bib33) 2001; 5
Basu (bib7) 2010
Aydinli, Caglar, Pekol, Karaci (bib45) 2017
Alimuddin, Zainal, Lahijani, Mohammadi, Rahman (bib14) 2010; 14
Warnecke (bib20) 2000; 18
Baruah, Baruah, Hazarika (bib47) 2017; 98
Bing, Youting, Dingkai, Fu (bib48) 1997; 76
Wang, Wan (bib34) 2009; 34
Li, Liu, Li, Fang, Shan, Guo (bib51) 2018; 129
Sikarwar, Zhao, Clough, Yao, Zhong, Memon (bib16) 2016; 9
Nougues, Pan, Velo, Puigjaner (bib49) 2000; 20
Rosales-Colunga, Garcia, Rodriguez (bib35) 2010; 35
Udomsirichakorn, Basu, Salam (bib6) 2013; 38
Sun, Liu, Wang, Yang, Tu (bib43) 2016; 120
Sharma, Rakesh, Dasappa (bib10) 2016; 60
Karmakar, Datta (bib31) 2011; 102
Sreejith, Muraleedharan, Arun (bib40) 2013; 3
McKendry (bib2) 2002; 83
Skoulou, Koufodimos, Samaras, Zabaniotou (bib23) 2008; 33
Abuadala, Dincer, Naterer (bib12) 2010; 35
Baruah, Baruah (bib27) 2014; 39
Sunphorka, Chalermsinsuwan, Piumsomboon (bib46) 2017; 193
Mikulandrić, Lončar, Böhning, Böhme, Beckmann (bib53) 2014; 87
Hosseini (10.1016/j.ijhydene.2018.04.007_bib4) 2015; 39
Sikarwar (10.1016/j.ijhydene.2018.04.007_bib16) 2016; 9
Udomsirichakorn (10.1016/j.ijhydene.2018.04.007_bib6) 2013; 38
Campoy (10.1016/j.ijhydene.2018.04.007_bib24) 2010; 49
Puig-Arnavat (10.1016/j.ijhydene.2018.04.007_bib29) 2010; 14
Baruah (10.1016/j.ijhydene.2018.04.007_bib47) 2017; 98
Wang (10.1016/j.ijhydene.2018.04.007_bib34) 2009; 34
Sreejith (10.1016/j.ijhydene.2018.04.007_bib40) 2013; 3
Mohanraj (10.1016/j.ijhydene.2018.04.007_bib54) 2009
Karmakar (10.1016/j.ijhydene.2018.04.007_bib31) 2011; 102
Sunphorka (10.1016/j.ijhydene.2018.04.007_bib46) 2017; 193
Aydinli (10.1016/j.ijhydene.2018.04.007_bib45) 2017
Sharma (10.1016/j.ijhydene.2018.04.007_bib10) 2016; 60
McKendry (10.1016/j.ijhydene.2018.04.007_bib2) 2002; 83
Jiang (10.1016/j.ijhydene.2018.04.007_bib8) 2012; 37
McKendry (10.1016/j.ijhydene.2018.04.007_bib19) 2002; 83
Esfahani (10.1016/j.ijhydene.2018.04.007_bib25) 2012; 26
Guo (10.1016/j.ijhydene.2018.04.007_bib32) 2001; 76
Sansaniwal (10.1016/j.ijhydene.2018.04.007_bib17) 2017; 80
Sun (10.1016/j.ijhydene.2018.04.007_bib43) 2016; 120
Ahmed (10.1016/j.ijhydene.2018.04.007_bib28) 2012; 16
Li (10.1016/j.ijhydene.2018.04.007_bib51) 2018; 129
Karaci (10.1016/j.ijhydene.2018.04.007_bib42) 2016; 41
Pio (10.1016/j.ijhydene.2018.04.007_bib26) 2017; 120
Nowotny (10.1016/j.ijhydene.2018.04.007_bib5) 2011; 36
Ahmad (10.1016/j.ijhydene.2018.04.007_bib15) 2016; 53
Caballero (10.1016/j.ijhydene.2018.04.007_bib22) 2000
Ian (10.1016/j.ijhydene.2018.04.007_bib21) 1996; 5885
Pandey (10.1016/j.ijhydene.2018.04.007_bib44) 2016; 58
Skoulou (10.1016/j.ijhydene.2018.04.007_bib23) 2008; 33
Rosales-Colunga (10.1016/j.ijhydene.2018.04.007_bib35) 2010; 35
Colpan (10.1016/j.ijhydene.2018.04.007_bib9) 2010; 35
Nasr (10.1016/j.ijhydene.2018.04.007_bib36) 2013; 38
Souza (10.1016/j.ijhydene.2018.04.007_bib39) 2012
Puig-Arnavat (10.1016/j.ijhydene.2018.04.007_bib41) 2013; 49
Nougues (10.1016/j.ijhydene.2018.04.007_bib49) 2000; 20
Zamaniyan (10.1016/j.ijhydene.2018.04.007_bib37) 2013; 38
Balat (10.1016/j.ijhydene.2018.04.007_bib3) 2010; 35
Bing (10.1016/j.ijhydene.2018.04.007_bib48) 1997; 76
Warnecke (10.1016/j.ijhydene.2018.04.007_bib20) 2000; 18
Kalogirou (10.1016/j.ijhydene.2018.04.007_bib33) 2001; 5
Abuadala (10.1016/j.ijhydene.2018.04.007_bib12) 2010; 35
Chavan (10.1016/j.ijhydene.2018.04.007_bib50) 2012; 93
Hossain (10.1016/j.ijhydene.2018.04.007_bib1) 2016; 41
Delgado (10.1016/j.ijhydene.2018.04.007_bib18) 1997
Mikulandrić (10.1016/j.ijhydene.2018.04.007_bib53) 2014; 87
Kellogg (10.1016/j.ijhydene.2018.04.007_bib11) 2010; 195
Parthasarathy (10.1016/j.ijhydene.2018.04.007_bib13) 2014; 66
Xiao (10.1016/j.ijhydene.2018.04.007_bib38) 2009; 29
Basu (10.1016/j.ijhydene.2018.04.007_bib7) 2010
Hiloidhari (10.1016/j.ijhydene.2018.04.007_bib52) 2014; 32
Mahishi (10.1016/j.ijhydene.2018.04.007_bib30) 2007; 32
Alimuddin (10.1016/j.ijhydene.2018.04.007_bib14) 2010; 14
Baruah (10.1016/j.ijhydene.2018.04.007_bib27) 2014; 39
References_xml – volume: 98
  start-page: 264
  year: 2017
  end-page: 271
  ident: bib47
  article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers
  publication-title: Biomass Bioenergy
– year: 2012
  ident: bib39
  article-title: Neural network based modeling and operational optimization of biomass gasification processes technology & medicine
  publication-title: Gasif. Pract. Appl.
– volume: 35
  start-page: 7416
  year: 2010
  end-page: 7426
  ident: bib3
  article-title: Hydrogen from biomass – present scenario and future prospects
  publication-title: Int J Hydrogen Energy
– volume: 53
  start-page: 1333
  year: 2016
  end-page: 1347
  ident: bib15
  article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation
  publication-title: Renew Sustain Energy Rev
– volume: 16
  start-page: 2304
  year: 2012
  end-page: 2315
  ident: bib28
  article-title: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review
  publication-title: Renew Sustain Energy Rev
– volume: 35
  start-page: 4981
  year: 2010
  end-page: 4990
  ident: bib12
  article-title: Exergy analysis of hydrogen production from biomass gasification
  publication-title: Int J Hydrogen Energy
– volume: 120
  start-page: 915
  year: 2017
  end-page: 928
  ident: bib26
  article-title: Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor
  publication-title: Energy
– volume: 37
  start-page: 449
  year: 2012
  end-page: 470
  ident: bib8
  article-title: Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges
  publication-title: Int J Hydrogen Energy
– volume: 33
  start-page: 6515
  year: 2008
  end-page: 6524
  ident: bib23
  article-title: Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas
  publication-title: Int J Hydrogen Energy
– volume: 102
  start-page: 1907
  year: 2011
  end-page: 1913
  ident: bib31
  article-title: Generation of hydrogen rich gas through fluidized bed gasification of biomass
  publication-title: Bioresour Technol
– volume: 32
  start-page: 3831
  year: 2007
  end-page: 3840
  ident: bib30
  article-title: Thermodynamic optimization of biomass gasifier for hydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 38
  start-page: 14495
  year: 2013
  end-page: 14504
  ident: bib6
  article-title: Effect of CaO on tar reforming to hydrogen- enriched gas with in-process CO
  publication-title: Int J Hydrogen Energy
– volume: 32
  start-page: 504
  year: 2014
  end-page: 512
  ident: bib52
  article-title: Bioenergy potential from crop residue biomass in India
  publication-title: Renew Sustain Energy Rev
– volume: 36
  start-page: 13218
  year: 2011
  end-page: 13224
  ident: bib5
  article-title: Impact of hydrogen on the environment
  publication-title: Int J Hydrogen Energy
– volume: 83
  start-page: 37
  year: 2002
  end-page: 46
  ident: bib2
  article-title: Energy production from biomass (Part 1): overview of biomass
  publication-title: Bioresour Technol
– volume: 38
  start-page: 6289
  year: 2013
  end-page: 6297
  ident: bib37
  article-title: Application of artificial neural networks ( ANN ) for modeling of industrial hydrogen plant
  publication-title: Int J Hydrogen Energy
– volume: 120
  start-page: 94
  year: 2016
  end-page: 102
  ident: bib43
  article-title: Pyrolysis products from industrial waste biomass based on a neural network model
  publication-title: J Anal Appl Pyrolysis
– volume: 41
  start-page: 4570
  year: 2016
  end-page: 4578
  ident: bib42
  article-title: The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN)
  publication-title: Int J Hydrogen Energy
– start-page: 1143
  year: 2000
  end-page: 1154
  ident: bib22
  article-title: Biomass gasification with air in fluidized bed. Hot gas Cleanup with selected commercial and full-size nickel-based catalysts
  publication-title: Ind Eng Chem Res
– volume: 20
  start-page: 1561
  year: 2000
  end-page: 1575
  ident: bib49
  article-title: Identification of a pilot scale fluidised-bed coal gasification unit by using neural networks
  publication-title: Appl Therm Eng
– volume: 29
  start-page: 240
  year: 2009
  end-page: 244
  ident: bib38
  article-title: Gasification characteristics of MSW and an ANN prediction model
  publication-title: Waste Manag
– volume: 35
  start-page: 13186
  year: 2010
  end-page: 13192
  ident: bib35
  article-title: Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network
  publication-title: Int J Hydrogen Energy
– volume: 14
  start-page: 2841
  year: 2010
  end-page: 2851
  ident: bib29
  article-title: Review and analysis of biomass gasification models
  publication-title: Renew Sustain Energy Rev
– volume: 14
  start-page: 2852
  year: 2010
  end-page: 2862
  ident: bib14
  article-title: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development : a review
  publication-title: Renew Sustain Energy Rev
– volume: 38
  start-page: 3189
  year: 2013
  end-page: 3195
  ident: bib36
  article-title: Application of artificial neural networks for modeling of biohydrogen production
  publication-title: Int J Hydrogen Energy
– volume: 58
  start-page: 202
  year: 2016
  end-page: 213
  ident: bib44
  article-title: Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor
  publication-title: Waste Manag
– start-page: 1005
  year: 2009
  end-page: 1020
  ident: bib54
  article-title: Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks
  publication-title: Int J Energy Res
– volume: 66
  start-page: 570
  year: 2014
  end-page: 579
  ident: bib13
  article-title: Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review
  publication-title: Renew Energy
– volume: 93
  start-page: 44
  year: 2012
  end-page: 51
  ident: bib50
  article-title: Development of data-driven models for fluidized-bed coal gasification process
  publication-title: Fuel
– volume: 80
  start-page: 23
  year: 2017
  end-page: 43
  ident: bib17
  article-title: Global challenges in the sustainable development of biomass gasification an overview
  publication-title: Renew Sustain Energy Rev
– volume: 3
  start-page: 283
  year: 2013
  end-page: 304
  ident: bib40
  article-title: Performance prediction of fluidised bed gasification of biomass using experimental data-based simulation models
  publication-title: Biomass Convers Biorefinery
– volume: 39
  start-page: 1597
  year: 2015
  end-page: 1615
  ident: bib4
  article-title: A review on biomass-based hydrogen production for renewable energy supply
  publication-title: Int J Energy Res
– volume: 60
  start-page: 450
  year: 2016
  end-page: 463
  ident: bib10
  article-title: Solid oxide fuel cell operating with biomass derived producer gas: status and challenges
  publication-title: Renew Sustain Energy Rev
– volume: 39
  start-page: 806
  year: 2014
  end-page: 815
  ident: bib27
  article-title: Modeling of biomass gasification: a review
  publication-title: Renew Sustain Energy Rev
– volume: 83
  start-page: 55
  year: 2002
  end-page: 63
  ident: bib19
  article-title: Energy production from biomass (Part 3): gasification technologies
  publication-title: Bioresour Technol
– volume: 41
  start-page: 16637
  year: 2016
  end-page: 16655
  ident: bib1
  article-title: Prospect of hydrogen production from oil palm biomass by thermochemical process – a review
  publication-title: Int J Hydrogen Energy
– volume: 26
  start-page: 1185
  year: 2012
  end-page: 1191
  ident: bib25
  article-title: Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactor
  publication-title: Energy Fuels
– volume: 129
  start-page: 1518
  year: 2018
  end-page: 1526
  ident: bib51
  article-title: Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization
  publication-title: Appl Therm Eng
– volume: 5
  start-page: 373
  year: 2001
  end-page: 401
  ident: bib33
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sustain Energy Rev
– volume: 35
  start-page: 5001
  year: 2010
  end-page: 5009
  ident: bib9
  article-title: Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems
  publication-title: Int J Hydrogen Energy
– volume: 49
  start-page: 279
  year: 2013
  end-page: 289
  ident: bib41
  article-title: Artificial neural network models for biomass gasification in fluidized bed gasifiers
  publication-title: Biomass Bioenergy
– volume: 9
  start-page: 2939
  year: 2016
  end-page: 2977
  ident: bib16
  article-title: An overview of advances in biomass gasification
  publication-title: Energy Environ Sci
– volume: 34
  start-page: 1253
  year: 2009
  end-page: 1259
  ident: bib34
  article-title: Application of desirability function based on neural network for optimizing biohydrogen production process
  publication-title: Int J Hydrogen Energy
– volume: 76
  start-page: 77
  year: 2001
  end-page: 83
  ident: bib32
  article-title: Simulation of biomass gasification with a hybrid neural network model
  publication-title: Bioresour Technol
– year: 2010
  ident: bib7
  article-title: Biomass gasification and pyrolysis: practical design and theory
– volume: 193
  start-page: 142
  year: 2017
  end-page: 158
  ident: bib46
  article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
  publication-title: Fuel
– start-page: 1535
  year: 1997
  end-page: 1543
  ident: bib18
  article-title: Biomass Gasification with steam in fluidized bed : effectiveness of CaO, MgO, and CaO - MgO for hot raw gas cleaning
  publication-title: Ind Eng Chem Res
– volume: 18
  start-page: 489
  year: 2000
  end-page: 497
  ident: bib20
  article-title: Gasification of biomass : comparison of fixed bed and fluidized bed gasifier
  publication-title: Biomass Bioenergy
– volume: 49
  start-page: 11294
  year: 2010
  end-page: 11301
  ident: bib24
  article-title: Tar reduction by primary measures in an autothermal air-blown fluidized bed biomass gasifier
  publication-title: Ind Eng Chem Res
– volume: 87
  start-page: 1210
  year: 2014
  end-page: 1223
  ident: bib53
  article-title: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers
  publication-title: Energy Convers Manag
– volume: 195
  start-page: 7238
  year: 2010
  end-page: 7242
  ident: bib11
  article-title: Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel
  publication-title: J Power Sources
– volume: 5885
  start-page: 2110
  year: 1996
  end-page: 2120
  ident: bib21
  article-title: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of
  publication-title: Ind Eng Chem Res
– start-page: 698
  year: 2017
  end-page: 712
  ident: bib45
  article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network
  publication-title: Energy Explor Exploit
– volume: 76
  start-page: 1159
  year: 1997
  end-page: 1164
  ident: bib48
  article-title: Modelling coal gasification with a hybrid neural network
  publication-title: Fuel
– start-page: 1005
  year: 2009
  ident: 10.1016/j.ijhydene.2018.04.007_bib54
  article-title: Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks
  publication-title: Int J Energy Res
  doi: 10.1002/er.1534
– volume: 14
  start-page: 2841
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib29
  article-title: Review and analysis of biomass gasification models
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.07.030
– start-page: 698
  year: 2017
  ident: 10.1016/j.ijhydene.2018.04.007_bib45
  article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network
  publication-title: Energy Explor Exploit
  doi: 10.1177/0144598717716282
– volume: 83
  start-page: 55
  year: 2002
  ident: 10.1016/j.ijhydene.2018.04.007_bib19
  article-title: Energy production from biomass (Part 3): gasification technologies
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(01)00120-1
– volume: 9
  start-page: 2939
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib16
  article-title: An overview of advances in biomass gasification
  publication-title: Energy Environ Sci
  doi: 10.1039/C6EE00935B
– volume: 39
  start-page: 806
  year: 2014
  ident: 10.1016/j.ijhydene.2018.04.007_bib27
  article-title: Modeling of biomass gasification: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.129
– volume: 36
  start-page: 13218
  year: 2011
  ident: 10.1016/j.ijhydene.2018.04.007_bib5
  article-title: Impact of hydrogen on the environment
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.07.071
– year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib7
– volume: 98
  start-page: 264
  year: 2017
  ident: 10.1016/j.ijhydene.2018.04.007_bib47
  article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2017.01.029
– volume: 26
  start-page: 1185
  year: 2012
  ident: 10.1016/j.ijhydene.2018.04.007_bib25
  article-title: Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactor
  publication-title: Energy Fuels
  doi: 10.1021/ef2010892
– volume: 34
  start-page: 1253
  year: 2009
  ident: 10.1016/j.ijhydene.2018.04.007_bib34
  article-title: Application of desirability function based on neural network for optimizing biohydrogen production process
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.055
– volume: 5885
  start-page: 2110
  year: 1996
  ident: 10.1016/j.ijhydene.2018.04.007_bib21
  article-title: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of
  publication-title: Ind Eng Chem Res
– volume: 37
  start-page: 449
  year: 2012
  ident: 10.1016/j.ijhydene.2018.04.007_bib8
  article-title: Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.09.067
– volume: 41
  start-page: 16637
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib1
  article-title: Prospect of hydrogen production from oil palm biomass by thermochemical process – a review
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.07.104
– start-page: 1143
  year: 2000
  ident: 10.1016/j.ijhydene.2018.04.007_bib22
  article-title: Biomass gasification with air in fluidized bed. Hot gas Cleanup with selected commercial and full-size nickel-based catalysts
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie990738t
– volume: 35
  start-page: 13186
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib35
  article-title: Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.08.137
– volume: 39
  start-page: 1597
  year: 2015
  ident: 10.1016/j.ijhydene.2018.04.007_bib4
  article-title: A review on biomass-based hydrogen production for renewable energy supply
  publication-title: Int J Energy Res
  doi: 10.1002/er.3381
– volume: 3
  start-page: 283
  year: 2013
  ident: 10.1016/j.ijhydene.2018.04.007_bib40
  article-title: Performance prediction of fluidised bed gasification of biomass using experimental data-based simulation models
  publication-title: Biomass Convers Biorefinery
  doi: 10.1007/s13399-013-0083-5
– volume: 102
  start-page: 1907
  year: 2011
  ident: 10.1016/j.ijhydene.2018.04.007_bib31
  article-title: Generation of hydrogen rich gas through fluidized bed gasification of biomass
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2010.08.015
– year: 2012
  ident: 10.1016/j.ijhydene.2018.04.007_bib39
  article-title: Neural network based modeling and operational optimization of biomass gasification processes technology & medicine
– volume: 76
  start-page: 1159
  year: 1997
  ident: 10.1016/j.ijhydene.2018.04.007_bib48
  article-title: Modelling coal gasification with a hybrid neural network
  publication-title: Fuel
  doi: 10.1016/S0016-2361(97)00122-1
– volume: 14
  start-page: 2852
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib14
  article-title: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development : a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2010.07.026
– volume: 83
  start-page: 37
  year: 2002
  ident: 10.1016/j.ijhydene.2018.04.007_bib2
  article-title: Energy production from biomass (Part 1): overview of biomass
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(01)00118-3
– volume: 41
  start-page: 4570
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib42
  article-title: The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN)
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.01.094
– volume: 32
  start-page: 3831
  year: 2007
  ident: 10.1016/j.ijhydene.2018.04.007_bib30
  article-title: Thermodynamic optimization of biomass gasifier for hydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.05.018
– volume: 5
  start-page: 373
  year: 2001
  ident: 10.1016/j.ijhydene.2018.04.007_bib33
  article-title: Artificial neural networks in renewable energy systems applications: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/S1364-0321(01)00006-5
– volume: 60
  start-page: 450
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib10
  article-title: Solid oxide fuel cell operating with biomass derived producer gas: status and challenges
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.01.075
– volume: 35
  start-page: 4981
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib12
  article-title: Exergy analysis of hydrogen production from biomass gasification
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.025
– volume: 49
  start-page: 11294
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib24
  article-title: Tar reduction by primary measures in an autothermal air-blown fluidized bed biomass gasifier
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie101267c
– volume: 49
  start-page: 279
  year: 2013
  ident: 10.1016/j.ijhydene.2018.04.007_bib41
  article-title: Artificial neural network models for biomass gasification in fluidized bed gasifiers
  publication-title: Biomass Bioenergy
  doi: 10.1016/j.biombioe.2012.12.012
– volume: 58
  start-page: 202
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib44
  article-title: Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2016.08.023
– volume: 38
  start-page: 14495
  year: 2013
  ident: 10.1016/j.ijhydene.2018.04.007_bib6
  article-title: Effect of CaO on tar reforming to hydrogen- enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.055
– volume: 33
  start-page: 6515
  year: 2008
  ident: 10.1016/j.ijhydene.2018.04.007_bib23
  article-title: Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.07.074
– volume: 193
  start-page: 142
  year: 2017
  ident: 10.1016/j.ijhydene.2018.04.007_bib46
  article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.12.046
– volume: 93
  start-page: 44
  year: 2012
  ident: 10.1016/j.ijhydene.2018.04.007_bib50
  article-title: Development of data-driven models for fluidized-bed coal gasification process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.11.039
– volume: 35
  start-page: 7416
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib3
  article-title: Hydrogen from biomass – present scenario and future prospects
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.04.137
– volume: 120
  start-page: 915
  year: 2017
  ident: 10.1016/j.ijhydene.2018.04.007_bib26
  article-title: Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor
  publication-title: Energy
  doi: 10.1016/j.energy.2016.11.145
– volume: 29
  start-page: 240
  year: 2009
  ident: 10.1016/j.ijhydene.2018.04.007_bib38
  article-title: Gasification characteristics of MSW and an ANN prediction model
  publication-title: Waste Manag
  doi: 10.1016/j.wasman.2008.02.022
– volume: 18
  start-page: 489
  year: 2000
  ident: 10.1016/j.ijhydene.2018.04.007_bib20
  article-title: Gasification of biomass : comparison of fixed bed and fluidized bed gasifier
  publication-title: Biomass Bioenergy
  doi: 10.1016/S0961-9534(00)00009-X
– start-page: 1535
  year: 1997
  ident: 10.1016/j.ijhydene.2018.04.007_bib18
  article-title: Biomass Gasification with steam in fluidized bed : effectiveness of CaO, MgO, and CaO - MgO for hot raw gas cleaning
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie960273w
– volume: 38
  start-page: 3189
  year: 2013
  ident: 10.1016/j.ijhydene.2018.04.007_bib36
  article-title: Application of artificial neural networks for modeling of biohydrogen production
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.12.109
– volume: 195
  start-page: 7238
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib11
  article-title: Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2010.05.055
– volume: 35
  start-page: 5001
  year: 2010
  ident: 10.1016/j.ijhydene.2018.04.007_bib9
  article-title: Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.08.083
– volume: 16
  start-page: 2304
  year: 2012
  ident: 10.1016/j.ijhydene.2018.04.007_bib28
  article-title: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2012.01.035
– volume: 53
  start-page: 1333
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib15
  article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.09.030
– volume: 38
  start-page: 6289
  year: 2013
  ident: 10.1016/j.ijhydene.2018.04.007_bib37
  article-title: Application of artificial neural networks ( ANN ) for modeling of industrial hydrogen plant
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.02.136
– volume: 32
  start-page: 504
  year: 2014
  ident: 10.1016/j.ijhydene.2018.04.007_bib52
  article-title: Bioenergy potential from crop residue biomass in India
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.01.025
– volume: 66
  start-page: 570
  year: 2014
  ident: 10.1016/j.ijhydene.2018.04.007_bib13
  article-title: Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.12.025
– volume: 80
  start-page: 23
  year: 2017
  ident: 10.1016/j.ijhydene.2018.04.007_bib17
  article-title: Global challenges in the sustainable development of biomass gasification an overview
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.215
– volume: 87
  start-page: 1210
  year: 2014
  ident: 10.1016/j.ijhydene.2018.04.007_bib53
  article-title: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.03.036
– volume: 129
  start-page: 1518
  year: 2018
  ident: 10.1016/j.ijhydene.2018.04.007_bib51
  article-title: Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2017.10.134
– volume: 76
  start-page: 77
  year: 2001
  ident: 10.1016/j.ijhydene.2018.04.007_bib32
  article-title: Simulation of biomass gasification with a hybrid neural network model
  publication-title: Bioresour Technol
  doi: 10.1016/S0960-8524(00)00106-1
– volume: 20
  start-page: 1561
  year: 2000
  ident: 10.1016/j.ijhydene.2018.04.007_bib49
  article-title: Identification of a pilot scale fluidised-bed coal gasification unit by using neural networks
  publication-title: Appl Therm Eng
  doi: 10.1016/S1359-4311(00)00023-5
– volume: 120
  start-page: 94
  year: 2016
  ident: 10.1016/j.ijhydene.2018.04.007_bib43
  article-title: Pyrolysis products from industrial waste biomass based on a neural network model
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2016.04.013
SSID ssj0017049
Score 2.5650022
Snippet Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 9558
SubjectTerms Artificial neural network model
Biomass gasification
Bubbling fluidised bed gasifier
Feed-forward back-propagation algorithm
Producer gas yield
Title Assessment of producer gas composition in air gasification of biomass using artificial neural network model
URI https://dx.doi.org/10.1016/j.ijhydene.2018.04.007
Volume 43
WOSCitedRecordID wos000432768500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3487
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017049
  issn: 0360-3199
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELailAMcEE9RCsgHbtUGr-3N2scIFQGHqoci5bbyer0lIdpUaVKVX8Nf7fi1a1BE6YHLJrKyTpz5djwznvkGofe6EUKBq5GZKScZzzk8c6CKM1HXlEhVSqp8s4ny9FTM5_JsNPoVa2GuV2XXiZsbeflfRQ1jIGxbOnsPcfeTwgC8B6HDFcQO138S_Kzn2nTZzI7R1WyOL9SVyx8PSVo2zqEWbtgmC_WGoy3HB3v6eOdiCHb6QDFhiS_di0sb9x10Usv299BiQkjx_WezWV_YZgKuzLBP-HHBeB_AN6sBdzunBs8mCRJgDzONJZb2CQKTNFKRC3vI7gsz-wotq_N9Q6SofT1JU0AZJYkulYUndQ_7sq1r3KvzffhhOVksYUGwFJuvJyaeFX3Y5eLJ_h-bX5-SGLPdllWcp7LzVIRXjq3ggJaFFGN0MPtyMv_aH1SVwcOKS0uK0Pf_ov32T2LTnD9Bj4MzgmceRE_RyHTP0KOEovI5-jHACa9bHOGEATc4gRNedBjghFM42c8HOGEHJzzACXs44QAn7OD0An37dHL-8XMWGnRkmnG5zWqqiCk0aWib06mmrDBE5TW4FHXLhFGcq0KB_zptWA2OuMlVywzVzBA9FbKt2Us07tadeYWwLkjDGDe81DnXTQkahPDWBuk1a4pcHaIi_m2VDuz1tonKqvq74A7Rh_6-S8_fcucdMkqlClaoty4rANwd976-97cdoYfDo_IGjbebnXmLHujr7eJq8y6g7RYYnrMr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+producer+gas+composition+in+air+gasification+of+biomass+using+artificial+neural+network+model&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=George%2C+Joel&rft.au=Arun%2C+P.&rft.au=Muraleedharan%2C+C.&rft.date=2018-05-17&rft.issn=0360-3199&rft.volume=43&rft.issue=20&rft.spage=9558&rft.epage=9568&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2018_04_007
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon