Assessment of producer gas composition in air gasification of biomass using artificial neural network model
Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model i...
Uložené v:
| Vydané v: | International journal of hydrogen energy Ročník 43; číslo 20; s. 9558 - 9568 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
17.05.2018
|
| Predmet: | |
| ISSN: | 0360-3199, 1879-3487 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model is developed using MATLAB software for gasification process simulation based on extensive data obtained from experimental investigations. Experimental investigations on air gasification are conducted in a bubbling fluidised bed gasifier with different locally available biomasses at various operating conditions to obtain the producer gas. The developed artificial neural network consists of seven input variables, output layer with four output variables and one hidden layer with fifteen neurons. The multi-layer feed-forward neural network is trained employing Levenberg–Marquardt back-propagation algorithm. Performance of the model appraised using mean squared error and regression analysis shows good agreement between the output and target values with a regression coefficient, R = 0.987 and mean squared error, MSE = 0.71. The developed model is implemented to predict the producer gas composition from selected biomasses within the operating range. This model satisfactorily predicted the effect of operating parameters on producer gas yield, and is thus a useful tool for the simulation and performance assessment of the gasification system.
[Display omitted]
•Robust ANN model for fluidised bed gasification with generalization capability.•ANN model formulated based on extensive in-house experimental data.•Reasonable prediction of producer gas yield and composition.•Parametric studies on biomass gasification process using developed ANN model.•Illustration of ANN as useful tool for performance assessment of gasification. |
|---|---|
| AbstractList | Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently extracted from biomass through thermo-chemical conversion process of gasification. In the present work, an artificial neural network (ANN) model is developed using MATLAB software for gasification process simulation based on extensive data obtained from experimental investigations. Experimental investigations on air gasification are conducted in a bubbling fluidised bed gasifier with different locally available biomasses at various operating conditions to obtain the producer gas. The developed artificial neural network consists of seven input variables, output layer with four output variables and one hidden layer with fifteen neurons. The multi-layer feed-forward neural network is trained employing Levenberg–Marquardt back-propagation algorithm. Performance of the model appraised using mean squared error and regression analysis shows good agreement between the output and target values with a regression coefficient, R = 0.987 and mean squared error, MSE = 0.71. The developed model is implemented to predict the producer gas composition from selected biomasses within the operating range. This model satisfactorily predicted the effect of operating parameters on producer gas yield, and is thus a useful tool for the simulation and performance assessment of the gasification system.
[Display omitted]
•Robust ANN model for fluidised bed gasification with generalization capability.•ANN model formulated based on extensive in-house experimental data.•Reasonable prediction of producer gas yield and composition.•Parametric studies on biomass gasification process using developed ANN model.•Illustration of ANN as useful tool for performance assessment of gasification. |
| Author | Arun, P. Muraleedharan, C. George, Joel |
| Author_xml | – sequence: 1 givenname: Joel orcidid: 0000-0003-3492-9400 surname: George fullname: George, Joel email: joelpull@gmail.com – sequence: 2 givenname: P. surname: Arun fullname: Arun, P. email: arun.p@nitc.ac.in – sequence: 3 givenname: C. surname: Muraleedharan fullname: Muraleedharan, C. email: murali@nitc.ac.in |
| BookMark | eNqFkM1qwzAQhEVJoUnaVyh6Absry_EP9NAQ-geBXtqzkOV1uk4sBclpyds3cdpLLzkNzO4MzDdhI-ssMnYrIBYgsrs2pvZzX6PFOAFRxJDGAPkFG4siLyOZFvmIjUFmEElRlldsEkILIHJIyzFbz0PAEDq0PXcN33pX7wx6vtKBG9dtXaCenOVkuabBpoaMHrzDf0Wu0yHwXSC74tr3xyvpDbe484P0386veedq3Fyzy0ZvAt786pR9PD2-L16i5dvz62K-jIxMyz6qEg04M1AnjUgyk8gZghZVmedVIwvUaapnukiyrJZVWs5Q6EZiYiSCyYqyqeSUZade410IHhu19dRpv1cC1BGZatUfMnVEpiBVB2SH4P2_oKF-2Np7TZvz8YdTHA_jvgi9CobQGqzJo-lV7ehcxQ_hi5In |
| CitedBy_id | crossref_primary_10_1016_j_psep_2023_12_069 crossref_primary_10_3390_pr12020254 crossref_primary_10_1016_j_cej_2020_126229 crossref_primary_10_1007_s13399_022_02496_z crossref_primary_10_1016_j_rser_2025_116223 crossref_primary_10_1007_s42452_019_1440_1 crossref_primary_10_1016_j_fuel_2022_123142 crossref_primary_10_1007_s41939_024_00468_6 crossref_primary_10_1016_j_ijhydene_2022_12_110 crossref_primary_10_1016_j_tsep_2021_101031 crossref_primary_10_1038_s41598_023_37793_8 crossref_primary_10_1016_j_ijhydene_2022_10_101 crossref_primary_10_1016_j_cdc_2019_100321 crossref_primary_10_1016_j_enconman_2025_119735 crossref_primary_10_1016_j_renene_2019_07_136 crossref_primary_10_1016_j_renene_2025_122376 crossref_primary_10_1111_gcbb_12816 crossref_primary_10_1016_j_rser_2021_111902 crossref_primary_10_1515_cppm_2025_0015 crossref_primary_10_1007_s41660_022_00291_x crossref_primary_10_1007_s41939_024_00552_x crossref_primary_10_3390_en15010211 crossref_primary_10_1016_j_ijhydene_2025_150194 crossref_primary_10_3390_app13179826 crossref_primary_10_1016_j_ijhydene_2023_02_082 crossref_primary_10_1007_s10973_025_14292_8 crossref_primary_10_1016_j_biortech_2021_126083 crossref_primary_10_1016_j_energy_2024_131482 crossref_primary_10_1016_j_fuproc_2022_107417 crossref_primary_10_1515_cppm_2024_0085 crossref_primary_10_1016_j_chemosphere_2023_140191 crossref_primary_10_1016_j_biombioe_2024_107048 crossref_primary_10_1016_j_ijhydene_2024_11_329 crossref_primary_10_1016_j_ijhydene_2023_02_002 crossref_primary_10_1016_j_energy_2025_136819 crossref_primary_10_1016_j_ijhydene_2021_02_047 crossref_primary_10_1016_j_ijhydene_2022_04_174 crossref_primary_10_1016_j_ijhydene_2021_01_122 crossref_primary_10_1515_cppm_2024_0096 crossref_primary_10_1016_j_ces_2024_120000 crossref_primary_10_1016_j_energy_2023_127134 crossref_primary_10_1016_j_ijhydene_2024_06_007 crossref_primary_10_1016_j_energy_2018_09_131 crossref_primary_10_1016_j_jaap_2021_105180 crossref_primary_10_1515_cppm_2024_0014 crossref_primary_10_3390_en16207042 crossref_primary_10_1007_s11814_024_00181_7 crossref_primary_10_1016_j_envres_2020_109547 crossref_primary_10_1016_j_energy_2023_128336 crossref_primary_10_3390_inventions7040126 crossref_primary_10_3390_fermentation7020071 crossref_primary_10_1016_j_ecmx_2025_101254 crossref_primary_10_1016_j_bej_2021_108054 crossref_primary_10_1016_j_enconman_2019_112260 crossref_primary_10_1016_j_biombioe_2024_107291 crossref_primary_10_1016_j_renene_2019_10_109 crossref_primary_10_1016_j_energy_2020_118800 crossref_primary_10_1016_j_compchemeng_2020_107048 crossref_primary_10_1007_s41939_024_00647_5 crossref_primary_10_1016_j_cej_2021_130881 crossref_primary_10_1016_j_biteb_2022_100976 crossref_primary_10_1016_j_ijhydene_2021_03_184 crossref_primary_10_1016_j_biombioe_2025_107626 crossref_primary_10_1016_j_fuel_2022_126055 crossref_primary_10_1016_j_energy_2021_121010 crossref_primary_10_1002_er_4682 crossref_primary_10_3390_su16198719 crossref_primary_10_1007_s41939_024_00503_6 crossref_primary_10_1016_j_apenergy_2022_119289 crossref_primary_10_1039_D5SE00869G crossref_primary_10_1016_j_joei_2023_101430 crossref_primary_10_1016_j_biortech_2022_128076 crossref_primary_10_3390_en14102932 crossref_primary_10_1016_j_fuel_2020_119903 crossref_primary_10_1016_j_biortech_2020_122926 crossref_primary_10_1016_j_jaap_2021_105286 crossref_primary_10_1515_cppm_2024_0115 crossref_primary_10_1007_s10098_020_01883_2 crossref_primary_10_1016_j_ijhydene_2025_151367 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_engappai_2025_111805 crossref_primary_10_1016_j_ijhydene_2024_04_283 crossref_primary_10_1016_j_apenergy_2021_117567 crossref_primary_10_1515_cppm_2024_0040 crossref_primary_10_1515_cppm_2024_0043 crossref_primary_10_1016_j_aej_2025_09_003 crossref_primary_10_3390_ijerph17072555 crossref_primary_10_1016_j_chemosphere_2021_132052 crossref_primary_10_1016_j_energy_2018_11_056 crossref_primary_10_1088_1755_1315_1386_1_012018 crossref_primary_10_1016_j_matpr_2020_01_436 crossref_primary_10_1007_s10668_023_03631_0 crossref_primary_10_1039_D5SE00504C crossref_primary_10_1016_j_ijhydene_2023_08_033 crossref_primary_10_1007_s41247_020_00083_2 crossref_primary_10_1016_j_joei_2022_05_003 crossref_primary_10_1016_j_energy_2024_132762 crossref_primary_10_1016_j_applthermaleng_2022_119334 crossref_primary_10_3390_catal9090738 crossref_primary_10_1016_j_joei_2018_10_014 crossref_primary_10_1016_j_ijhydene_2023_08_259 crossref_primary_10_1016_j_scitotenv_2022_155243 crossref_primary_10_1016_j_renene_2024_121318 crossref_primary_10_1016_j_fuel_2022_125478 crossref_primary_10_1016_j_fuel_2022_124701 crossref_primary_10_1016_j_fuel_2022_123976 crossref_primary_10_1002_bbb_2417 |
| Cites_doi | 10.1002/er.1534 10.1016/j.rser.2010.07.030 10.1177/0144598717716282 10.1016/S0960-8524(01)00120-1 10.1039/C6EE00935B 10.1016/j.rser.2014.07.129 10.1016/j.ijhydene.2011.07.071 10.1016/j.biombioe.2017.01.029 10.1021/ef2010892 10.1016/j.ijhydene.2008.11.055 10.1016/j.ijhydene.2011.09.067 10.1016/j.ijhydene.2016.07.104 10.1021/ie990738t 10.1016/j.ijhydene.2010.08.137 10.1002/er.3381 10.1007/s13399-013-0083-5 10.1016/j.biortech.2010.08.015 10.1016/S0016-2361(97)00122-1 10.1016/j.rser.2010.07.026 10.1016/S0960-8524(01)00118-3 10.1016/j.ijhydene.2016.01.094 10.1016/j.ijhydene.2007.05.018 10.1016/S1364-0321(01)00006-5 10.1016/j.rser.2016.01.075 10.1016/j.ijhydene.2009.08.025 10.1021/ie101267c 10.1016/j.biombioe.2012.12.012 10.1016/j.wasman.2016.08.023 10.1016/j.ijhydene.2013.09.055 10.1016/j.ijhydene.2008.07.074 10.1016/j.fuel.2016.12.046 10.1016/j.fuel.2011.11.039 10.1016/j.ijhydene.2010.04.137 10.1016/j.energy.2016.11.145 10.1016/j.wasman.2008.02.022 10.1016/S0961-9534(00)00009-X 10.1021/ie960273w 10.1016/j.ijhydene.2012.12.109 10.1016/j.jpowsour.2010.05.055 10.1016/j.ijhydene.2009.08.083 10.1016/j.rser.2012.01.035 10.1016/j.rser.2015.09.030 10.1016/j.ijhydene.2013.02.136 10.1016/j.rser.2014.01.025 10.1016/j.renene.2013.12.025 10.1016/j.rser.2017.05.215 10.1016/j.enconman.2014.03.036 10.1016/j.applthermaleng.2017.10.134 10.1016/S0960-8524(00)00106-1 10.1016/S1359-4311(00)00023-5 10.1016/j.jaap.2016.04.013 |
| ContentType | Journal Article |
| Copyright | 2018 Hydrogen Energy Publications LLC |
| Copyright_xml | – notice: 2018 Hydrogen Energy Publications LLC |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijhydene.2018.04.007 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3487 |
| EndPage | 9568 |
| ExternalDocumentID | 10_1016_j_ijhydene_2018_04_007 S0360319918310991 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF R2- SAC SCB SEW T9H WUQ ~HD |
| ID | FETCH-LOGICAL-c349t-b2a0e5c0d2f126c235e0a1b977bf38ea44a5a8266d3b495e1af3e2c3e0c689fb3 |
| ISICitedReferencesCount | 113 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000432768500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-3199 |
| IngestDate | Tue Nov 18 21:04:35 EST 2025 Sat Nov 29 07:18:44 EST 2025 Fri Feb 23 02:47:14 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Keywords | Producer gas yield Biomass gasification Feed-forward back-propagation algorithm Bubbling fluidised bed gasifier Artificial neural network model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-b2a0e5c0d2f126c235e0a1b977bf38ea44a5a8266d3b495e1af3e2c3e0c689fb3 |
| ORCID | 0000-0003-3492-9400 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2018_04_007 crossref_citationtrail_10_1016_j_ijhydene_2018_04_007 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_04_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-05-17 |
| PublicationDateYYYYMMDD | 2018-05-17 |
| PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of hydrogen energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ian, Orio, Aznar, Corella (bib21) 1996; 5885 Guo, Li, Cheng, Lü, Shen (bib32) 2001; 76 Pandey, Das, Pan, Leahy, Kwapinski (bib44) 2016; 58 Caballero, Corella, Aznar, Gil (bib22) 2000 Campoy, Go, Fuentes-cano, Ollero (bib24) 2010; 49 Hossain, Jewaratnam, Ganesan (bib1) 2016; 41 Delgado, Aznar (bib18) 1997 Esfahani, Wan Ab Karim Ghani, Mohd Salleh, Ali (bib25) 2012; 26 Mahishi, Goswami (bib30) 2007; 32 Balat, Kırtay (bib3) 2010; 35 Ahmed, Ahmad, Yusup, Inayat, Khan (bib28) 2012; 16 Jiang (bib8) 2012; 37 Hiloidhari, Das, Baruah (bib52) 2014; 32 Xiao, Ni, Chi, Jin, Xiao, Zhong, Huang (bib38) 2009; 29 McKendry (bib19) 2002; 83 Karaci, Caglar, Aydinli, Pekol (bib42) 2016; 41 Hosseini, Wahid, Jamil, Azli, Misbah (bib4) 2015; 39 Zamaniyan, Joda, Behroozsarand, Ebrahimi (bib37) 2013; 38 Chavan, Sharma, Mall, Rajurkar, Tambe, Sharma (bib50) 2012; 93 Puig-Arnavat, Bruno, Coronas (bib29) 2010; 14 Souza, Nemer, Barreto, Quitete (bib39) 2012 Mohanraj, Jayaraj, Muraleedharan (bib54) 2009 Nowotny, Veziroglu (bib5) 2011; 36 Puig-Arnavat, Hernández, Bruno, Coronas (bib41) 2013; 49 Kellogg, Koylu, Dogan (bib11) 2010; 195 Ahmad, Zawawi, Kasim, Inayat, Khasri (bib15) 2016; 53 Colpan, Hamdullahpur, Dincer, Yoo (bib9) 2010; 35 Pio, Tarelho, Matos (bib26) 2017; 120 Nasr, Hafez, El, Nakhla (bib36) 2013; 38 Parthasarathy, Narayanan (bib13) 2014; 66 Sansaniwal, Rosen, Tyagi (bib17) 2017; 80 Kalogirou (bib33) 2001; 5 Basu (bib7) 2010 Aydinli, Caglar, Pekol, Karaci (bib45) 2017 Alimuddin, Zainal, Lahijani, Mohammadi, Rahman (bib14) 2010; 14 Warnecke (bib20) 2000; 18 Baruah, Baruah, Hazarika (bib47) 2017; 98 Bing, Youting, Dingkai, Fu (bib48) 1997; 76 Wang, Wan (bib34) 2009; 34 Li, Liu, Li, Fang, Shan, Guo (bib51) 2018; 129 Sikarwar, Zhao, Clough, Yao, Zhong, Memon (bib16) 2016; 9 Nougues, Pan, Velo, Puigjaner (bib49) 2000; 20 Rosales-Colunga, Garcia, Rodriguez (bib35) 2010; 35 Udomsirichakorn, Basu, Salam (bib6) 2013; 38 Sun, Liu, Wang, Yang, Tu (bib43) 2016; 120 Sharma, Rakesh, Dasappa (bib10) 2016; 60 Karmakar, Datta (bib31) 2011; 102 Sreejith, Muraleedharan, Arun (bib40) 2013; 3 McKendry (bib2) 2002; 83 Skoulou, Koufodimos, Samaras, Zabaniotou (bib23) 2008; 33 Abuadala, Dincer, Naterer (bib12) 2010; 35 Baruah, Baruah (bib27) 2014; 39 Sunphorka, Chalermsinsuwan, Piumsomboon (bib46) 2017; 193 Mikulandrić, Lončar, Böhning, Böhme, Beckmann (bib53) 2014; 87 Hosseini (10.1016/j.ijhydene.2018.04.007_bib4) 2015; 39 Sikarwar (10.1016/j.ijhydene.2018.04.007_bib16) 2016; 9 Udomsirichakorn (10.1016/j.ijhydene.2018.04.007_bib6) 2013; 38 Campoy (10.1016/j.ijhydene.2018.04.007_bib24) 2010; 49 Puig-Arnavat (10.1016/j.ijhydene.2018.04.007_bib29) 2010; 14 Baruah (10.1016/j.ijhydene.2018.04.007_bib47) 2017; 98 Wang (10.1016/j.ijhydene.2018.04.007_bib34) 2009; 34 Sreejith (10.1016/j.ijhydene.2018.04.007_bib40) 2013; 3 Mohanraj (10.1016/j.ijhydene.2018.04.007_bib54) 2009 Karmakar (10.1016/j.ijhydene.2018.04.007_bib31) 2011; 102 Sunphorka (10.1016/j.ijhydene.2018.04.007_bib46) 2017; 193 Aydinli (10.1016/j.ijhydene.2018.04.007_bib45) 2017 Sharma (10.1016/j.ijhydene.2018.04.007_bib10) 2016; 60 McKendry (10.1016/j.ijhydene.2018.04.007_bib2) 2002; 83 Jiang (10.1016/j.ijhydene.2018.04.007_bib8) 2012; 37 McKendry (10.1016/j.ijhydene.2018.04.007_bib19) 2002; 83 Esfahani (10.1016/j.ijhydene.2018.04.007_bib25) 2012; 26 Guo (10.1016/j.ijhydene.2018.04.007_bib32) 2001; 76 Sansaniwal (10.1016/j.ijhydene.2018.04.007_bib17) 2017; 80 Sun (10.1016/j.ijhydene.2018.04.007_bib43) 2016; 120 Ahmed (10.1016/j.ijhydene.2018.04.007_bib28) 2012; 16 Li (10.1016/j.ijhydene.2018.04.007_bib51) 2018; 129 Karaci (10.1016/j.ijhydene.2018.04.007_bib42) 2016; 41 Pio (10.1016/j.ijhydene.2018.04.007_bib26) 2017; 120 Nowotny (10.1016/j.ijhydene.2018.04.007_bib5) 2011; 36 Ahmad (10.1016/j.ijhydene.2018.04.007_bib15) 2016; 53 Caballero (10.1016/j.ijhydene.2018.04.007_bib22) 2000 Ian (10.1016/j.ijhydene.2018.04.007_bib21) 1996; 5885 Pandey (10.1016/j.ijhydene.2018.04.007_bib44) 2016; 58 Skoulou (10.1016/j.ijhydene.2018.04.007_bib23) 2008; 33 Rosales-Colunga (10.1016/j.ijhydene.2018.04.007_bib35) 2010; 35 Colpan (10.1016/j.ijhydene.2018.04.007_bib9) 2010; 35 Nasr (10.1016/j.ijhydene.2018.04.007_bib36) 2013; 38 Souza (10.1016/j.ijhydene.2018.04.007_bib39) 2012 Puig-Arnavat (10.1016/j.ijhydene.2018.04.007_bib41) 2013; 49 Nougues (10.1016/j.ijhydene.2018.04.007_bib49) 2000; 20 Zamaniyan (10.1016/j.ijhydene.2018.04.007_bib37) 2013; 38 Balat (10.1016/j.ijhydene.2018.04.007_bib3) 2010; 35 Bing (10.1016/j.ijhydene.2018.04.007_bib48) 1997; 76 Warnecke (10.1016/j.ijhydene.2018.04.007_bib20) 2000; 18 Kalogirou (10.1016/j.ijhydene.2018.04.007_bib33) 2001; 5 Abuadala (10.1016/j.ijhydene.2018.04.007_bib12) 2010; 35 Chavan (10.1016/j.ijhydene.2018.04.007_bib50) 2012; 93 Hossain (10.1016/j.ijhydene.2018.04.007_bib1) 2016; 41 Delgado (10.1016/j.ijhydene.2018.04.007_bib18) 1997 Mikulandrić (10.1016/j.ijhydene.2018.04.007_bib53) 2014; 87 Kellogg (10.1016/j.ijhydene.2018.04.007_bib11) 2010; 195 Parthasarathy (10.1016/j.ijhydene.2018.04.007_bib13) 2014; 66 Xiao (10.1016/j.ijhydene.2018.04.007_bib38) 2009; 29 Basu (10.1016/j.ijhydene.2018.04.007_bib7) 2010 Hiloidhari (10.1016/j.ijhydene.2018.04.007_bib52) 2014; 32 Mahishi (10.1016/j.ijhydene.2018.04.007_bib30) 2007; 32 Alimuddin (10.1016/j.ijhydene.2018.04.007_bib14) 2010; 14 Baruah (10.1016/j.ijhydene.2018.04.007_bib27) 2014; 39 |
| References_xml | – volume: 98 start-page: 264 year: 2017 end-page: 271 ident: bib47 article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers publication-title: Biomass Bioenergy – year: 2012 ident: bib39 article-title: Neural network based modeling and operational optimization of biomass gasification processes technology & medicine publication-title: Gasif. Pract. Appl. – volume: 35 start-page: 7416 year: 2010 end-page: 7426 ident: bib3 article-title: Hydrogen from biomass – present scenario and future prospects publication-title: Int J Hydrogen Energy – volume: 53 start-page: 1333 year: 2016 end-page: 1347 ident: bib15 article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation publication-title: Renew Sustain Energy Rev – volume: 16 start-page: 2304 year: 2012 end-page: 2315 ident: bib28 article-title: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 4981 year: 2010 end-page: 4990 ident: bib12 article-title: Exergy analysis of hydrogen production from biomass gasification publication-title: Int J Hydrogen Energy – volume: 120 start-page: 915 year: 2017 end-page: 928 ident: bib26 article-title: Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor publication-title: Energy – volume: 37 start-page: 449 year: 2012 end-page: 470 ident: bib8 article-title: Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges publication-title: Int J Hydrogen Energy – volume: 33 start-page: 6515 year: 2008 end-page: 6524 ident: bib23 article-title: Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas publication-title: Int J Hydrogen Energy – volume: 102 start-page: 1907 year: 2011 end-page: 1913 ident: bib31 article-title: Generation of hydrogen rich gas through fluidized bed gasification of biomass publication-title: Bioresour Technol – volume: 32 start-page: 3831 year: 2007 end-page: 3840 ident: bib30 article-title: Thermodynamic optimization of biomass gasifier for hydrogen production publication-title: Int J Hydrogen Energy – volume: 38 start-page: 14495 year: 2013 end-page: 14504 ident: bib6 article-title: Effect of CaO on tar reforming to hydrogen- enriched gas with in-process CO publication-title: Int J Hydrogen Energy – volume: 32 start-page: 504 year: 2014 end-page: 512 ident: bib52 article-title: Bioenergy potential from crop residue biomass in India publication-title: Renew Sustain Energy Rev – volume: 36 start-page: 13218 year: 2011 end-page: 13224 ident: bib5 article-title: Impact of hydrogen on the environment publication-title: Int J Hydrogen Energy – volume: 83 start-page: 37 year: 2002 end-page: 46 ident: bib2 article-title: Energy production from biomass (Part 1): overview of biomass publication-title: Bioresour Technol – volume: 38 start-page: 6289 year: 2013 end-page: 6297 ident: bib37 article-title: Application of artificial neural networks ( ANN ) for modeling of industrial hydrogen plant publication-title: Int J Hydrogen Energy – volume: 120 start-page: 94 year: 2016 end-page: 102 ident: bib43 article-title: Pyrolysis products from industrial waste biomass based on a neural network model publication-title: J Anal Appl Pyrolysis – volume: 41 start-page: 4570 year: 2016 end-page: 4578 ident: bib42 article-title: The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN) publication-title: Int J Hydrogen Energy – start-page: 1143 year: 2000 end-page: 1154 ident: bib22 article-title: Biomass gasification with air in fluidized bed. Hot gas Cleanup with selected commercial and full-size nickel-based catalysts publication-title: Ind Eng Chem Res – volume: 20 start-page: 1561 year: 2000 end-page: 1575 ident: bib49 article-title: Identification of a pilot scale fluidised-bed coal gasification unit by using neural networks publication-title: Appl Therm Eng – volume: 29 start-page: 240 year: 2009 end-page: 244 ident: bib38 article-title: Gasification characteristics of MSW and an ANN prediction model publication-title: Waste Manag – volume: 35 start-page: 13186 year: 2010 end-page: 13192 ident: bib35 article-title: Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network publication-title: Int J Hydrogen Energy – volume: 14 start-page: 2841 year: 2010 end-page: 2851 ident: bib29 article-title: Review and analysis of biomass gasification models publication-title: Renew Sustain Energy Rev – volume: 14 start-page: 2852 year: 2010 end-page: 2862 ident: bib14 article-title: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development : a review publication-title: Renew Sustain Energy Rev – volume: 38 start-page: 3189 year: 2013 end-page: 3195 ident: bib36 article-title: Application of artificial neural networks for modeling of biohydrogen production publication-title: Int J Hydrogen Energy – volume: 58 start-page: 202 year: 2016 end-page: 213 ident: bib44 article-title: Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor publication-title: Waste Manag – start-page: 1005 year: 2009 end-page: 1020 ident: bib54 article-title: Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks publication-title: Int J Energy Res – volume: 66 start-page: 570 year: 2014 end-page: 579 ident: bib13 article-title: Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review publication-title: Renew Energy – volume: 93 start-page: 44 year: 2012 end-page: 51 ident: bib50 article-title: Development of data-driven models for fluidized-bed coal gasification process publication-title: Fuel – volume: 80 start-page: 23 year: 2017 end-page: 43 ident: bib17 article-title: Global challenges in the sustainable development of biomass gasification an overview publication-title: Renew Sustain Energy Rev – volume: 3 start-page: 283 year: 2013 end-page: 304 ident: bib40 article-title: Performance prediction of fluidised bed gasification of biomass using experimental data-based simulation models publication-title: Biomass Convers Biorefinery – volume: 39 start-page: 1597 year: 2015 end-page: 1615 ident: bib4 article-title: A review on biomass-based hydrogen production for renewable energy supply publication-title: Int J Energy Res – volume: 60 start-page: 450 year: 2016 end-page: 463 ident: bib10 article-title: Solid oxide fuel cell operating with biomass derived producer gas: status and challenges publication-title: Renew Sustain Energy Rev – volume: 39 start-page: 806 year: 2014 end-page: 815 ident: bib27 article-title: Modeling of biomass gasification: a review publication-title: Renew Sustain Energy Rev – volume: 83 start-page: 55 year: 2002 end-page: 63 ident: bib19 article-title: Energy production from biomass (Part 3): gasification technologies publication-title: Bioresour Technol – volume: 41 start-page: 16637 year: 2016 end-page: 16655 ident: bib1 article-title: Prospect of hydrogen production from oil palm biomass by thermochemical process – a review publication-title: Int J Hydrogen Energy – volume: 26 start-page: 1185 year: 2012 end-page: 1191 ident: bib25 article-title: Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactor publication-title: Energy Fuels – volume: 129 start-page: 1518 year: 2018 end-page: 1526 ident: bib51 article-title: Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization publication-title: Appl Therm Eng – volume: 5 start-page: 373 year: 2001 end-page: 401 ident: bib33 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sustain Energy Rev – volume: 35 start-page: 5001 year: 2010 end-page: 5009 ident: bib9 article-title: Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems publication-title: Int J Hydrogen Energy – volume: 49 start-page: 279 year: 2013 end-page: 289 ident: bib41 article-title: Artificial neural network models for biomass gasification in fluidized bed gasifiers publication-title: Biomass Bioenergy – volume: 9 start-page: 2939 year: 2016 end-page: 2977 ident: bib16 article-title: An overview of advances in biomass gasification publication-title: Energy Environ Sci – volume: 34 start-page: 1253 year: 2009 end-page: 1259 ident: bib34 article-title: Application of desirability function based on neural network for optimizing biohydrogen production process publication-title: Int J Hydrogen Energy – volume: 76 start-page: 77 year: 2001 end-page: 83 ident: bib32 article-title: Simulation of biomass gasification with a hybrid neural network model publication-title: Bioresour Technol – year: 2010 ident: bib7 article-title: Biomass gasification and pyrolysis: practical design and theory – volume: 193 start-page: 142 year: 2017 end-page: 158 ident: bib46 article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents publication-title: Fuel – start-page: 1535 year: 1997 end-page: 1543 ident: bib18 article-title: Biomass Gasification with steam in fluidized bed : effectiveness of CaO, MgO, and CaO - MgO for hot raw gas cleaning publication-title: Ind Eng Chem Res – volume: 18 start-page: 489 year: 2000 end-page: 497 ident: bib20 article-title: Gasification of biomass : comparison of fixed bed and fluidized bed gasifier publication-title: Biomass Bioenergy – volume: 49 start-page: 11294 year: 2010 end-page: 11301 ident: bib24 article-title: Tar reduction by primary measures in an autothermal air-blown fluidized bed biomass gasifier publication-title: Ind Eng Chem Res – volume: 87 start-page: 1210 year: 2014 end-page: 1223 ident: bib53 article-title: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers publication-title: Energy Convers Manag – volume: 195 start-page: 7238 year: 2010 end-page: 7242 ident: bib11 article-title: Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel publication-title: J Power Sources – volume: 5885 start-page: 2110 year: 1996 end-page: 2120 ident: bib21 article-title: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of publication-title: Ind Eng Chem Res – start-page: 698 year: 2017 end-page: 712 ident: bib45 article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network publication-title: Energy Explor Exploit – volume: 76 start-page: 1159 year: 1997 end-page: 1164 ident: bib48 article-title: Modelling coal gasification with a hybrid neural network publication-title: Fuel – start-page: 1005 year: 2009 ident: 10.1016/j.ijhydene.2018.04.007_bib54 article-title: Exergy analysis of direct expansion solar-assisted heat pumps using artificial neural networks publication-title: Int J Energy Res doi: 10.1002/er.1534 – volume: 14 start-page: 2841 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib29 article-title: Review and analysis of biomass gasification models publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.07.030 – start-page: 698 year: 2017 ident: 10.1016/j.ijhydene.2018.04.007_bib45 article-title: The prediction of potential energy and matter production from biomass pyrolysis with artificial neural network publication-title: Energy Explor Exploit doi: 10.1177/0144598717716282 – volume: 83 start-page: 55 year: 2002 ident: 10.1016/j.ijhydene.2018.04.007_bib19 article-title: Energy production from biomass (Part 3): gasification technologies publication-title: Bioresour Technol doi: 10.1016/S0960-8524(01)00120-1 – volume: 9 start-page: 2939 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib16 article-title: An overview of advances in biomass gasification publication-title: Energy Environ Sci doi: 10.1039/C6EE00935B – volume: 39 start-page: 806 year: 2014 ident: 10.1016/j.ijhydene.2018.04.007_bib27 article-title: Modeling of biomass gasification: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.129 – volume: 36 start-page: 13218 year: 2011 ident: 10.1016/j.ijhydene.2018.04.007_bib5 article-title: Impact of hydrogen on the environment publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.07.071 – year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib7 – volume: 98 start-page: 264 year: 2017 ident: 10.1016/j.ijhydene.2018.04.007_bib47 article-title: Artificial neural network based modeling of biomass gasification in fixed bed downdraft gasifiers publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2017.01.029 – volume: 26 start-page: 1185 year: 2012 ident: 10.1016/j.ijhydene.2018.04.007_bib25 article-title: Hydrogen-rich gas production from palm kernel shell by applying air gasification in fluidized bed reactor publication-title: Energy Fuels doi: 10.1021/ef2010892 – volume: 34 start-page: 1253 year: 2009 ident: 10.1016/j.ijhydene.2018.04.007_bib34 article-title: Application of desirability function based on neural network for optimizing biohydrogen production process publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.055 – volume: 5885 start-page: 2110 year: 1996 ident: 10.1016/j.ijhydene.2018.04.007_bib21 article-title: Biomass gasification with air in an atmospheric bubbling fluidized bed. Effect of six operational variables on the quality of publication-title: Ind Eng Chem Res – volume: 37 start-page: 449 year: 2012 ident: 10.1016/j.ijhydene.2018.04.007_bib8 article-title: Nanoscale and nano-structured electrodes of solid oxide fuel cells by infiltration: advances and challenges publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2011.09.067 – volume: 41 start-page: 16637 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib1 article-title: Prospect of hydrogen production from oil palm biomass by thermochemical process – a review publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.07.104 – start-page: 1143 year: 2000 ident: 10.1016/j.ijhydene.2018.04.007_bib22 article-title: Biomass gasification with air in fluidized bed. Hot gas Cleanup with selected commercial and full-size nickel-based catalysts publication-title: Ind Eng Chem Res doi: 10.1021/ie990738t – volume: 35 start-page: 13186 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib35 article-title: Estimation of hydrogen production in genetically modified E. coli fermentations using an artificial neural network publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.08.137 – volume: 39 start-page: 1597 year: 2015 ident: 10.1016/j.ijhydene.2018.04.007_bib4 article-title: A review on biomass-based hydrogen production for renewable energy supply publication-title: Int J Energy Res doi: 10.1002/er.3381 – volume: 3 start-page: 283 year: 2013 ident: 10.1016/j.ijhydene.2018.04.007_bib40 article-title: Performance prediction of fluidised bed gasification of biomass using experimental data-based simulation models publication-title: Biomass Convers Biorefinery doi: 10.1007/s13399-013-0083-5 – volume: 102 start-page: 1907 year: 2011 ident: 10.1016/j.ijhydene.2018.04.007_bib31 article-title: Generation of hydrogen rich gas through fluidized bed gasification of biomass publication-title: Bioresour Technol doi: 10.1016/j.biortech.2010.08.015 – year: 2012 ident: 10.1016/j.ijhydene.2018.04.007_bib39 article-title: Neural network based modeling and operational optimization of biomass gasification processes technology & medicine – volume: 76 start-page: 1159 year: 1997 ident: 10.1016/j.ijhydene.2018.04.007_bib48 article-title: Modelling coal gasification with a hybrid neural network publication-title: Fuel doi: 10.1016/S0016-2361(97)00122-1 – volume: 14 start-page: 2852 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib14 article-title: Gasification of lignocellulosic biomass in fluidized beds for renewable energy development : a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2010.07.026 – volume: 83 start-page: 37 year: 2002 ident: 10.1016/j.ijhydene.2018.04.007_bib2 article-title: Energy production from biomass (Part 1): overview of biomass publication-title: Bioresour Technol doi: 10.1016/S0960-8524(01)00118-3 – volume: 41 start-page: 4570 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib42 article-title: The pyrolysis process verification of hydrogen rich gas (H-rG) production by artificial neural network (ANN) publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.01.094 – volume: 32 start-page: 3831 year: 2007 ident: 10.1016/j.ijhydene.2018.04.007_bib30 article-title: Thermodynamic optimization of biomass gasifier for hydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2007.05.018 – volume: 5 start-page: 373 year: 2001 ident: 10.1016/j.ijhydene.2018.04.007_bib33 article-title: Artificial neural networks in renewable energy systems applications: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/S1364-0321(01)00006-5 – volume: 60 start-page: 450 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib10 article-title: Solid oxide fuel cell operating with biomass derived producer gas: status and challenges publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.01.075 – volume: 35 start-page: 4981 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib12 article-title: Exergy analysis of hydrogen production from biomass gasification publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.025 – volume: 49 start-page: 11294 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib24 article-title: Tar reduction by primary measures in an autothermal air-blown fluidized bed biomass gasifier publication-title: Ind Eng Chem Res doi: 10.1021/ie101267c – volume: 49 start-page: 279 year: 2013 ident: 10.1016/j.ijhydene.2018.04.007_bib41 article-title: Artificial neural network models for biomass gasification in fluidized bed gasifiers publication-title: Biomass Bioenergy doi: 10.1016/j.biombioe.2012.12.012 – volume: 58 start-page: 202 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib44 article-title: Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor publication-title: Waste Manag doi: 10.1016/j.wasman.2016.08.023 – volume: 38 start-page: 14495 year: 2013 ident: 10.1016/j.ijhydene.2018.04.007_bib6 article-title: Effect of CaO on tar reforming to hydrogen- enriched gas with in-process CO2 capture in a bubbling fluidized bed biomass steam gasifier publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.055 – volume: 33 start-page: 6515 year: 2008 ident: 10.1016/j.ijhydene.2018.04.007_bib23 article-title: Low temperature gasification of olive kernels in a 5-kW fluidized bed reactor for H2-rich producer gas publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2008.07.074 – volume: 193 start-page: 142 year: 2017 ident: 10.1016/j.ijhydene.2018.04.007_bib46 article-title: Artificial neural network model for the prediction of kinetic parameters of biomass pyrolysis from its constituents publication-title: Fuel doi: 10.1016/j.fuel.2016.12.046 – volume: 93 start-page: 44 year: 2012 ident: 10.1016/j.ijhydene.2018.04.007_bib50 article-title: Development of data-driven models for fluidized-bed coal gasification process publication-title: Fuel doi: 10.1016/j.fuel.2011.11.039 – volume: 35 start-page: 7416 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib3 article-title: Hydrogen from biomass – present scenario and future prospects publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2010.04.137 – volume: 120 start-page: 915 year: 2017 ident: 10.1016/j.ijhydene.2018.04.007_bib26 article-title: Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor publication-title: Energy doi: 10.1016/j.energy.2016.11.145 – volume: 29 start-page: 240 year: 2009 ident: 10.1016/j.ijhydene.2018.04.007_bib38 article-title: Gasification characteristics of MSW and an ANN prediction model publication-title: Waste Manag doi: 10.1016/j.wasman.2008.02.022 – volume: 18 start-page: 489 year: 2000 ident: 10.1016/j.ijhydene.2018.04.007_bib20 article-title: Gasification of biomass : comparison of fixed bed and fluidized bed gasifier publication-title: Biomass Bioenergy doi: 10.1016/S0961-9534(00)00009-X – start-page: 1535 year: 1997 ident: 10.1016/j.ijhydene.2018.04.007_bib18 article-title: Biomass Gasification with steam in fluidized bed : effectiveness of CaO, MgO, and CaO - MgO for hot raw gas cleaning publication-title: Ind Eng Chem Res doi: 10.1021/ie960273w – volume: 38 start-page: 3189 year: 2013 ident: 10.1016/j.ijhydene.2018.04.007_bib36 article-title: Application of artificial neural networks for modeling of biohydrogen production publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.12.109 – volume: 195 start-page: 7238 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib11 article-title: Solid oxide fuel cell bi-layer anode with gadolinia-doped ceria for utilization of solid carbon fuel publication-title: J Power Sources doi: 10.1016/j.jpowsour.2010.05.055 – volume: 35 start-page: 5001 year: 2010 ident: 10.1016/j.ijhydene.2018.04.007_bib9 article-title: Effect of gasification agent on the performance of solid oxide fuel cell and biomass gasification systems publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2009.08.083 – volume: 16 start-page: 2304 year: 2012 ident: 10.1016/j.ijhydene.2018.04.007_bib28 article-title: Mathematical and computational approaches for design of biomass gasification for hydrogen production: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2012.01.035 – volume: 53 start-page: 1333 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib15 article-title: Assessing the gasification performance of biomass: a review on biomass gasification process conditions, optimization and economic evaluation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.09.030 – volume: 38 start-page: 6289 year: 2013 ident: 10.1016/j.ijhydene.2018.04.007_bib37 article-title: Application of artificial neural networks ( ANN ) for modeling of industrial hydrogen plant publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2013.02.136 – volume: 32 start-page: 504 year: 2014 ident: 10.1016/j.ijhydene.2018.04.007_bib52 article-title: Bioenergy potential from crop residue biomass in India publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.01.025 – volume: 66 start-page: 570 year: 2014 ident: 10.1016/j.ijhydene.2018.04.007_bib13 article-title: Hydrogen production from steam gasification of biomass: influence of process parameters on hydrogen yield – a review publication-title: Renew Energy doi: 10.1016/j.renene.2013.12.025 – volume: 80 start-page: 23 year: 2017 ident: 10.1016/j.ijhydene.2018.04.007_bib17 article-title: Global challenges in the sustainable development of biomass gasification an overview publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.05.215 – volume: 87 start-page: 1210 year: 2014 ident: 10.1016/j.ijhydene.2018.04.007_bib53 article-title: Artificial neural network modelling approach for a biomass gasification process in fixed bed gasifiers publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.03.036 – volume: 129 start-page: 1518 year: 2018 ident: 10.1016/j.ijhydene.2018.04.007_bib51 article-title: Modeling of ash agglomerating fluidized bed gasifier using back propagation neural network based on particle swarm optimization publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2017.10.134 – volume: 76 start-page: 77 year: 2001 ident: 10.1016/j.ijhydene.2018.04.007_bib32 article-title: Simulation of biomass gasification with a hybrid neural network model publication-title: Bioresour Technol doi: 10.1016/S0960-8524(00)00106-1 – volume: 20 start-page: 1561 year: 2000 ident: 10.1016/j.ijhydene.2018.04.007_bib49 article-title: Identification of a pilot scale fluidised-bed coal gasification unit by using neural networks publication-title: Appl Therm Eng doi: 10.1016/S1359-4311(00)00023-5 – volume: 120 start-page: 94 year: 2016 ident: 10.1016/j.ijhydene.2018.04.007_bib43 article-title: Pyrolysis products from industrial waste biomass based on a neural network model publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2016.04.013 |
| SSID | ssj0017049 |
| Score | 2.5650022 |
| Snippet | Energy generation from renewable and carbon-neutral biomass is significant in the context of a sustainable energy framework. Hydrogen can be conveniently... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 9558 |
| SubjectTerms | Artificial neural network model Biomass gasification Bubbling fluidised bed gasifier Feed-forward back-propagation algorithm Producer gas yield |
| Title | Assessment of producer gas composition in air gasification of biomass using artificial neural network model |
| URI | https://dx.doi.org/10.1016/j.ijhydene.2018.04.007 |
| Volume | 43 |
| WOSCitedRecordID | wos000432768500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3487 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017049 issn: 0360-3199 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELailAMcEE9RCsgHbtUGr-3N2scIFQGHqoci5bbyer0lIdpUaVKVX8Nf7fi1a1BE6YHLJrKyTpz5djwznvkGofe6EUKBq5GZKScZzzk8c6CKM1HXlEhVSqp8s4ny9FTM5_JsNPoVa2GuV2XXiZsbeflfRQ1jIGxbOnsPcfeTwgC8B6HDFcQO138S_Kzn2nTZzI7R1WyOL9SVyx8PSVo2zqEWbtgmC_WGoy3HB3v6eOdiCHb6QDFhiS_di0sb9x10Usv299BiQkjx_WezWV_YZgKuzLBP-HHBeB_AN6sBdzunBs8mCRJgDzONJZb2CQKTNFKRC3vI7gsz-wotq_N9Q6SofT1JU0AZJYkulYUndQ_7sq1r3KvzffhhOVksYUGwFJuvJyaeFX3Y5eLJ_h-bX5-SGLPdllWcp7LzVIRXjq3ggJaFFGN0MPtyMv_aH1SVwcOKS0uK0Pf_ov32T2LTnD9Bj4MzgmceRE_RyHTP0KOEovI5-jHACa9bHOGEATc4gRNedBjghFM42c8HOGEHJzzACXs44QAn7OD0An37dHL-8XMWGnRkmnG5zWqqiCk0aWib06mmrDBE5TW4FHXLhFGcq0KB_zptWA2OuMlVywzVzBA9FbKt2Us07tadeYWwLkjDGDe81DnXTQkahPDWBuk1a4pcHaIi_m2VDuz1tonKqvq74A7Rh_6-S8_fcucdMkqlClaoty4rANwd976-97cdoYfDo_IGjbebnXmLHujr7eJq8y6g7RYYnrMr |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+producer+gas+composition+in+air+gasification+of+biomass+using+artificial+neural+network+model&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=George%2C+Joel&rft.au=Arun%2C+P.&rft.au=Muraleedharan%2C+C.&rft.date=2018-05-17&rft.issn=0360-3199&rft.volume=43&rft.issue=20&rft.spage=9558&rft.epage=9568&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.04.007&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2018_04_007 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |