Automatic Generation of Unit Tests for Correlated Variables in Parallel Programs

A notorious class of concurrency bugs are race condition related to correlated variables, which make up about 30 % of all non-deadlock concurrency bugs. A solution to prevent this problem is the automatic generation of parallel unit tests. This paper presents an approach to generate parallel unit te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of parallel programming Jg. 44; H. 3; S. 644 - 662
Hauptverfasser: Jannesari, Ali, Wolf, Felix
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.06.2016
Springer Nature B.V
Schlagworte:
ISSN:0885-7458, 1573-7640
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A notorious class of concurrency bugs are race condition related to correlated variables, which make up about 30 % of all non-deadlock concurrency bugs. A solution to prevent this problem is the automatic generation of parallel unit tests. This paper presents an approach to generate parallel unit tests for variable correlations in multithreaded code. We introduce a hybrid approach for identifying correlated variables. Furthermore, we estimate the number of potentially violated correlations for methods executed in parallel. In this way, we are capable of creating unit tests that are suited for race detectors considering correlated variables. We were able to identify more than 85 % of all race conditions on correlated variables in eight applications after applying our parallel unit tests. At the same time, we reduced the number of unnecessary generated unit tests. In comparison to a test generator unaware of variable correlations, redundant unit tests are reduced by up to 50 %, while maintaining the same precision and accuracy in terms of the number of detected races.
Bibliographie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0885-7458
1573-7640
DOI:10.1007/s10766-015-0363-8