Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning

In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits the higher order continuity of the DAEM and integrates a deep autoencoder and the minimum total potential principle in one framework yieldin...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids Vol. 87; p. 104225
Main Authors: Zhuang, Xiaoying, Guo, Hongwei, Alajlan, Naif, Zhu, Hehua, Rabczuk, Timon
Format: Journal Article
Language:English
Published: Berlin Elsevier Masson SAS 01.05.2021
Elsevier BV
Subjects:
ISSN:0997-7538, 1873-7285
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits the higher order continuity of the DAEM and integrates a deep autoencoder and the minimum total potential principle in one framework yielding an unsupervised feature learning method. The DAEM is a specific type of feedforward deep neural network (DNN) and can also serve as function approximator. With robust feature extraction capacity, the DAEM can more efficiently identify patterns behind the whole energy system, such as the field variables, natural frequency and critical buckling load factor studied in this paper. The objective function is to minimize the total potential energy. The DAEM performs unsupervised learning based on generated collocation points inside the physical domain so that the total potential energy is minimized at all points. For the vibration and buckling analysis, the loss function is constructed based on Rayleigh’s principle and the fundamental frequency and the critical buckling load is extracted. A scaled hyperbolic tangent activation function for the underlying mechanical model is presented which meets the continuity requirement and alleviates the gradient vanishing/explosive problems under bending. The DAEM is implemented using Pytorch and the LBFGS optimizer. To further improve the computational efficiency and enhance the generality of this machine learning method, we employ transfer learning. A comprehensive study of the DAEM configuration is performed for several numerical examples with various geometries, load conditions, and boundary conditions. •Deep autoencoder based energy method (DAEM) with tailored activation function.•Stable and accurate results without gradient vanishing/exploding problems.•Unsupervised DAEM applied to Kirchhoff plates.
AbstractList In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits the higher order continuity of the DAEM and integrates a deep autoencoder and the minimum total potential principle in one framework yielding an unsupervised feature learning method. The DAEM is a specific type of feedforward deep neural network (DNN) and can also serve as function approximator. With robust feature extraction capacity, the DAEM can more efficiently identify patterns behind the whole energy system, such as the field variables, natural frequency and critical buckling load factor studied in this paper. The objective function is to minimize the total potential energy. The DAEM performs unsupervised learning based on generated collocation points inside the physical domain so that the total potential energy is minimized at all points. For the vibration and buckling analysis, the loss function is constructed based on Rayleigh's principle and the fundamental frequency and the critical buckling load is extracted. A scaled hyperbolic tangent activation function for the underlying mechanical model is presented which meets the continuity requirement and alleviates the gradient vanishing/explosive problems under bending. The DAEM is implemented using Pytorch and the LBFGS optimizer. To further improve the computational efficiency and enhance the generality of this machine learning method, we employ transfer learning. A comprehensive study of the DAEM configuration is performed for several numerical examples with various geometries, load conditions, and boundary conditions.
In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits the higher order continuity of the DAEM and integrates a deep autoencoder and the minimum total potential principle in one framework yielding an unsupervised feature learning method. The DAEM is a specific type of feedforward deep neural network (DNN) and can also serve as function approximator. With robust feature extraction capacity, the DAEM can more efficiently identify patterns behind the whole energy system, such as the field variables, natural frequency and critical buckling load factor studied in this paper. The objective function is to minimize the total potential energy. The DAEM performs unsupervised learning based on generated collocation points inside the physical domain so that the total potential energy is minimized at all points. For the vibration and buckling analysis, the loss function is constructed based on Rayleigh’s principle and the fundamental frequency and the critical buckling load is extracted. A scaled hyperbolic tangent activation function for the underlying mechanical model is presented which meets the continuity requirement and alleviates the gradient vanishing/explosive problems under bending. The DAEM is implemented using Pytorch and the LBFGS optimizer. To further improve the computational efficiency and enhance the generality of this machine learning method, we employ transfer learning. A comprehensive study of the DAEM configuration is performed for several numerical examples with various geometries, load conditions, and boundary conditions. •Deep autoencoder based energy method (DAEM) with tailored activation function.•Stable and accurate results without gradient vanishing/exploding problems.•Unsupervised DAEM applied to Kirchhoff plates.
ArticleNumber 104225
Author Guo, Hongwei
Zhuang, Xiaoying
Alajlan, Naif
Rabczuk, Timon
Zhu, Hehua
Author_xml – sequence: 1
  givenname: Xiaoying
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  email: zhuang@hot.uni-hannover.de
  organization: Department of Geotechnical Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Hongwei
  surname: Guo
  fullname: Guo, Hongwei
  email: guo@hot.uni-hannover.de
  organization: Chair of Computational Science and Simulation Technology, Faculty of Mathematics and Physics, Leibniz Universität Hannover, Hannover, Germany
– sequence: 3
  givenname: Naif
  surname: Alajlan
  fullname: Alajlan, Naif
  email: najlan@ksu.edu.sa
  organization: ALISR Laboratory, College of Computer and Information Sciences, King Saud University, P.O. Box 51178, Riyadh 11543, Saudi Arabia
– sequence: 4
  givenname: Hehua
  surname: Zhu
  fullname: Zhu, Hehua
  email: zhuhehua@tongji.edu.cn
  organization: Department of Geotechnical Engineering, Tongji University, Shanghai, China
– sequence: 5
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  email: timon.rabczuk@uni-weimar.de
  organization: Institute of Structural Mechanics, Bauhaus University Weimar, Weimar, Germany
BookMark eNqNkUFvGyEQhVGVSHWS_geqXL0usOyuOVWVmzZVIuWSnBELgxdnDS6wiXzsPw-uc4hyymnE8N6b4eMMnfjgAaGvlCwooe23zQKmGLaghxTGBSOMlj5nrPmEZnTZ1VXHls0JmhEhuqpr6uVndJbShhBy0M7Qv58AO6ymHMDrYCDiXiUwGDzE9R5vIQ_BYBsizgPgHrxxfj3HT66PKrvg51h5g_tJP47lohzUuE8u4WDxjYt6GIK1eDeqDAk_uzzgHJVPtswZQUVfPBfo1KoxwZfXeo4efl3dr66r27vff1Y_bitdc5ErBZyzWvHadEwY3rWMaKtb2xrbi9b0tgGhNF3WxnJgDBolhKE9aNF2fQ28PkeXx9xdDH8nSFluwhTLvkmyhjQdo4I3RSWOKh1DShGs3EW3VXEvKZEH4nIj3xCXB4rySLx4v7_zapf_UyqPduOHElbHBCggnhxEmbQrHwPGRdBZmuA-kPICANCqlA
CitedBy_id crossref_primary_10_1108_IJSI_12_2024_0206
crossref_primary_10_1007_s10409_024_24370_x
crossref_primary_10_1007_s10999_025_09779_z
crossref_primary_10_1007_s11709_022_0891_4
crossref_primary_10_1016_j_advengsoft_2022_103240
crossref_primary_10_1080_15397734_2024_2348752
crossref_primary_10_1007_s11709_025_1152_0
crossref_primary_10_1016_j_euromechsol_2022_104675
crossref_primary_10_1080_15397734_2021_1878041
crossref_primary_10_1016_j_neucom_2024_129119
crossref_primary_10_1007_s11831_024_10132_4
crossref_primary_10_1007_s11709_022_0830_4
crossref_primary_10_1007_s11709_021_0774_0
crossref_primary_10_1080_15376494_2023_2184005
crossref_primary_10_1016_j_ijmecsci_2022_107841
crossref_primary_10_1007_s11709_021_0797_6
crossref_primary_10_1007_s11709_024_1118_7
crossref_primary_10_1093_jcde_qwad030
crossref_primary_10_1007_s10999_023_09686_1
crossref_primary_10_1002_nme_7228
crossref_primary_10_1007_s11665_023_08355_w
crossref_primary_10_1002_aenm_202403876
crossref_primary_10_1142_S3060932125500062
crossref_primary_10_1007_s10999_024_09725_5
crossref_primary_10_1016_j_ijmecsci_2024_109807
crossref_primary_10_1007_s00339_025_08496_w
crossref_primary_10_1007_s00366_021_01580_8
crossref_primary_10_1007_s43452_024_01092_4
crossref_primary_10_1016_j_compstruct_2022_115565
crossref_primary_10_1016_j_tws_2024_111746
crossref_primary_10_1080_15397734_2025_2480393
crossref_primary_10_1007_s00466_022_02252_0
crossref_primary_10_1016_j_ast_2024_109255
crossref_primary_10_1080_15397734_2023_2293759
crossref_primary_10_1007_s11709_025_1213_4
crossref_primary_10_1007_s11709_022_0829_x
crossref_primary_10_1080_15397734_2025_2563684
crossref_primary_10_1088_1402_4896_acdc63
crossref_primary_10_1177_1045389X221142088
crossref_primary_10_3390_math10091481
crossref_primary_10_1007_s00366_022_01607_8
crossref_primary_10_1016_j_engfailanal_2021_105714
crossref_primary_10_1016_j_undsp_2025_04_003
crossref_primary_10_1016_j_compstruct_2025_119608
crossref_primary_10_1016_j_solener_2025_113949
crossref_primary_10_1080_15397734_2025_2468734
crossref_primary_10_1016_j_matdes_2022_111192
crossref_primary_10_1007_s11709_022_0831_3
crossref_primary_10_1002_nme_7146
crossref_primary_10_1016_j_compgeo_2025_107452
crossref_primary_10_1080_15397734_2025_2542878
crossref_primary_10_1007_s11709_021_0798_5
crossref_primary_10_1016_j_powtec_2021_117088
crossref_primary_10_1007_s11709_021_0777_x
crossref_primary_10_1007_s11709_022_0842_0
crossref_primary_10_1007_s11709_022_0880_7
crossref_primary_10_1080_15397734_2024_2366531
crossref_primary_10_1080_15397734_2025_2512044
crossref_primary_10_1007_s10999_023_09662_9
crossref_primary_10_1515_jiip_2022_0081
crossref_primary_10_1080_15397734_2024_2357261
crossref_primary_10_1007_s41062_025_01953_8
crossref_primary_10_1016_j_compgeo_2025_107329
crossref_primary_10_1016_j_euromechsol_2022_104649
crossref_primary_10_1016_j_euromechsol_2022_104648
crossref_primary_10_1140_epjp_s13360_023_04365_8
crossref_primary_10_1016_j_compstruc_2022_106825
crossref_primary_10_1007_s00366_022_01633_6
crossref_primary_10_1016_j_cirp_2024_04_102
crossref_primary_10_1007_s00339_024_07577_6
crossref_primary_10_1016_j_cma_2025_117787
crossref_primary_10_1016_j_enganabound_2025_106433
crossref_primary_10_1016_j_compstruct_2025_119035
crossref_primary_10_1016_j_cma_2023_116290
crossref_primary_10_1007_s10999_025_09757_5
crossref_primary_10_1016_j_tws_2022_109622
crossref_primary_10_1007_s11709_022_0878_1
crossref_primary_10_1016_j_euromechsol_2025_105844
crossref_primary_10_1007_s10409_023_22438_x
crossref_primary_10_1016_j_euromechsol_2024_105322
crossref_primary_10_1007_s10999_023_09695_0
crossref_primary_10_1016_j_enganabound_2022_10_017
crossref_primary_10_1016_j_tws_2025_112923
crossref_primary_10_2514_1_J063326
crossref_primary_10_1007_s10999_022_09624_7
crossref_primary_10_1016_j_compgeo_2022_105211
crossref_primary_10_1007_s11709_025_1131_5
crossref_primary_10_1007_s11709_025_1177_4
crossref_primary_10_1016_j_advengsoft_2022_103206
crossref_primary_10_1007_s00366_021_01413_8
crossref_primary_10_1007_s00521_022_08071_x
crossref_primary_10_3390_mca30040072
crossref_primary_10_1007_s00366_022_01680_z
crossref_primary_10_1007_s40314_022_01889_0
crossref_primary_10_1007_s10999_023_09705_1
crossref_primary_10_1016_j_advengsoft_2022_103211
crossref_primary_10_1007_s11709_024_1052_8
crossref_primary_10_1007_s00366_023_01871_2
crossref_primary_10_1007_s10999_024_09720_w
crossref_primary_10_1016_j_euromechsol_2022_104584
crossref_primary_10_1007_s11709_022_0866_5
crossref_primary_10_1016_j_euromechsol_2023_105059
crossref_primary_10_1007_s00366_021_01451_2
crossref_primary_10_1007_s11709_022_0855_8
crossref_primary_10_1007_s42401_025_00395_5
crossref_primary_10_2514_1_C038325
crossref_primary_10_1007_s42417_022_00452_9
crossref_primary_10_1002_nme_7312
crossref_primary_10_1007_s00707_024_04131_6
crossref_primary_10_1007_s11709_024_1124_9
crossref_primary_10_1016_j_enganabound_2023_02_024
crossref_primary_10_1002_pc_27685
crossref_primary_10_1016_j_ymssp_2025_112674
crossref_primary_10_1002_msd2_12141
crossref_primary_10_1007_s11709_024_1090_2
crossref_primary_10_1016_j_mechmat_2023_104642
crossref_primary_10_1007_s11029_023_10129_3
crossref_primary_10_1007_s11709_021_0767_z
crossref_primary_10_1140_epjp_s13360_024_05255_3
crossref_primary_10_1007_s10999_023_09679_0
crossref_primary_10_1016_j_enganabound_2025_106413
crossref_primary_10_1080_15397734_2023_2300054
crossref_primary_10_1080_15397734_2025_2462669
crossref_primary_10_1017_dce_2024_33
crossref_primary_10_1080_15397734_2023_2227886
crossref_primary_10_1007_s00707_022_03224_4
crossref_primary_10_1016_j_compstruct_2022_116538
crossref_primary_10_1007_s10999_025_09797_x
crossref_primary_10_1016_j_enganabound_2022_04_009
crossref_primary_10_1016_j_ijsolstr_2021_111320
crossref_primary_10_1016_j_tws_2025_113679
crossref_primary_10_1080_15397734_2023_2197035
crossref_primary_10_1007_s11709_025_1178_3
crossref_primary_10_1080_15397734_2022_2094407
crossref_primary_10_1016_j_compstruc_2024_107342
crossref_primary_10_1080_15397734_2024_2371903
crossref_primary_10_1080_15397734_2025_2462674
crossref_primary_10_1080_15397734_2024_2371900
crossref_primary_10_1007_s11709_024_1077_z
crossref_primary_10_1016_j_jcsr_2022_107457
crossref_primary_10_1007_s11709_024_1015_0
crossref_primary_10_1007_s11709_022_0882_5
crossref_primary_10_1016_j_istruc_2025_109016
crossref_primary_10_1007_s00366_021_01559_5
crossref_primary_10_1007_s10999_025_09746_8
crossref_primary_10_1007_s11709_022_0860_y
crossref_primary_10_1016_j_compstruct_2025_119489
crossref_primary_10_1016_j_compstruct_2023_117815
crossref_primary_10_1016_j_ijmecsci_2025_110075
crossref_primary_10_1080_15397734_2025_2527206
crossref_primary_10_1016_j_tws_2024_112611
crossref_primary_10_1016_j_enganabound_2023_12_012
crossref_primary_10_1007_s11709_024_1125_8
crossref_primary_10_1016_j_ast_2024_109176
crossref_primary_10_1007_s11709_024_1076_0
crossref_primary_10_1080_15397734_2024_2318615
crossref_primary_10_1080_15397734_2024_2337913
crossref_primary_10_1007_s00521_022_07685_5
crossref_primary_10_1186_s40537_023_00727_2
crossref_primary_10_1007_s00339_023_06615_z
crossref_primary_10_1080_15397734_2025_2501755
crossref_primary_10_1016_j_ast_2023_108266
crossref_primary_10_1080_15397734_2025_2498086
crossref_primary_10_1007_s11709_023_0951_4
crossref_primary_10_1016_j_compstruct_2024_118548
crossref_primary_10_2514_1_J064064
crossref_primary_10_1007_s00366_022_01649_y
crossref_primary_10_1007_s10999_025_09798_w
crossref_primary_10_1007_s11709_022_0846_9
crossref_primary_10_1080_15397734_2023_2272681
crossref_primary_10_1016_j_compstruc_2023_107121
crossref_primary_10_1007_s00339_024_07356_3
crossref_primary_10_1007_s42417_024_01452_7
crossref_primary_10_1016_j_ast_2023_108270
crossref_primary_10_1007_s11709_024_1078_y
crossref_primary_10_1016_j_enganabound_2022_11_014
crossref_primary_10_3390_s21237772
crossref_primary_10_1016_j_cma_2022_114740
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1016_j_compstruct_2024_118314
crossref_primary_10_1016_j_mtcomm_2022_104547
crossref_primary_10_1080_15397734_2025_2474567
crossref_primary_10_1007_s11709_024_1039_5
crossref_primary_10_1016_j_ijsolstr_2025_113315
crossref_primary_10_1177_14644207241266898
crossref_primary_10_1016_j_euromechsol_2021_104327
crossref_primary_10_1007_s42417_024_01749_7
crossref_primary_10_1016_j_mtcomm_2023_106544
crossref_primary_10_1007_s13198_024_02451_3
crossref_primary_10_1016_j_cma_2022_115148
crossref_primary_10_1080_15397734_2023_2202228
crossref_primary_10_1007_s00366_022_01636_3
crossref_primary_10_1007_s11709_024_1126_7
crossref_primary_10_1007_s42417_023_01008_1
crossref_primary_10_1007_s11709_021_0744_6
crossref_primary_10_1007_s11709_024_1031_0
crossref_primary_10_1007_s11709_024_1092_0
crossref_primary_10_1016_j_probengmech_2023_103525
crossref_primary_10_1016_j_enganabound_2025_106332
crossref_primary_10_1016_j_jcsr_2023_107946
crossref_primary_10_1016_j_ast_2024_109652
crossref_primary_10_1134_S0025654425600710
crossref_primary_10_1007_s11709_022_0801_9
crossref_primary_10_1002_msd2_70007
crossref_primary_10_1016_j_apm_2022_02_036
crossref_primary_10_1016_j_jmps_2023_105398
crossref_primary_10_1080_15397734_2025_2493888
crossref_primary_10_1016_j_istruc_2024_107554
crossref_primary_10_1080_15376494_2025_2502850
crossref_primary_10_1080_15397734_2024_2341819
crossref_primary_10_1007_s42417_022_00709_3
crossref_primary_10_1080_15397734_2023_2297840
crossref_primary_10_1016_j_apm_2023_12_003
crossref_primary_10_1080_15397734_2024_2434928
crossref_primary_10_1080_15397734_2024_2316867
crossref_primary_10_1080_15376494_2022_2150916
crossref_primary_10_1080_15397734_2022_2107539
crossref_primary_10_1080_15397734_2025_2482748
crossref_primary_10_1080_15397734_2025_2507098
crossref_primary_10_1080_15397734_2025_2560564
crossref_primary_10_1007_s13349_025_00977_z
crossref_primary_10_1007_s11709_023_0021_y
crossref_primary_10_1007_s00542_023_05541_7
crossref_primary_10_1007_s11709_025_1183_6
crossref_primary_10_1007_s42417_025_01936_0
crossref_primary_10_1016_j_rineng_2022_100817
crossref_primary_10_1080_15397734_2024_2378474
crossref_primary_10_1080_15376494_2023_2218845
crossref_primary_10_1016_j_istruc_2024_106337
crossref_primary_10_1177_16878132241288327
crossref_primary_10_1080_15397734_2023_2209633
crossref_primary_10_1016_j_tws_2023_111423
crossref_primary_10_1080_15397734_2025_2552268
crossref_primary_10_1016_j_compstruc_2024_107551
crossref_primary_10_1080_15397734_2023_2201359
crossref_primary_10_1080_15397734_2024_2389112
crossref_primary_10_1177_09544062221132186
crossref_primary_10_1007_s11709_021_0784_y
crossref_primary_10_1007_s42417_023_01022_3
crossref_primary_10_1007_s00366_022_01695_6
crossref_primary_10_1007_s42417_025_01984_6
crossref_primary_10_1007_s10999_023_09676_3
crossref_primary_10_1016_j_ast_2024_109430
crossref_primary_10_1080_15397734_2024_2361138
crossref_primary_10_1007_s11709_024_1083_1
crossref_primary_10_1080_15397734_2022_2149553
crossref_primary_10_1007_s00707_024_04090_y
crossref_primary_10_1007_s11709_025_1135_1
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_ijsolstr_2024_113084
crossref_primary_10_1016_j_istruc_2024_107051
crossref_primary_10_1080_10255842_2024_2329966
crossref_primary_10_1093_jcde_qwad072
crossref_primary_10_1007_s00366_023_01891_y
crossref_primary_10_1016_j_oceaneng_2021_110142
crossref_primary_10_1080_15397734_2023_2215852
crossref_primary_10_1080_15397734_2025_2508324
crossref_primary_10_1007_s11709_025_1184_5
crossref_primary_10_1016_j_apm_2023_11_006
crossref_primary_10_1007_s00366_024_01971_7
crossref_primary_10_1080_15376494_2024_2329461
crossref_primary_10_1007_s10999_025_09775_3
crossref_primary_10_1093_comjnl_bxad078
crossref_primary_10_1007_s00366_021_01560_y
crossref_primary_10_1002_msd2_70017
crossref_primary_10_1016_j_enganabound_2024_105879
crossref_primary_10_1080_15397734_2023_2165098
crossref_primary_10_1080_15397734_2024_2364894
crossref_primary_10_1007_s00366_022_01634_5
crossref_primary_10_32604_cmes_2022_022088
crossref_primary_10_1016_j_tws_2023_111044
crossref_primary_10_1080_15397734_2025_2531081
crossref_primary_10_1016_j_tws_2025_113063
crossref_primary_10_1007_s11709_021_0785_x
crossref_primary_10_1080_15397734_2022_2081976
crossref_primary_10_1080_15397734_2024_2362919
crossref_primary_10_1016_j_engstruct_2023_117235
crossref_primary_10_1016_j_mtcomm_2022_103745
crossref_primary_10_3390_s21227518
crossref_primary_10_1016_j_istruc_2025_108212
crossref_primary_10_1007_s00366_023_01799_7
crossref_primary_10_1007_s11709_024_1085_z
crossref_primary_10_1016_j_finel_2024_104248
crossref_primary_10_1080_15397734_2025_2505969
crossref_primary_10_2514_1_C037620
crossref_primary_10_1007_s11709_022_0888_z
crossref_primary_10_1080_15397734_2024_2404608
crossref_primary_10_1016_j_compstruct_2023_117795
crossref_primary_10_1080_17499518_2024_2315301
crossref_primary_10_1007_s11709_024_1061_7
crossref_primary_10_1016_j_enganabound_2023_08_025
crossref_primary_10_1002_pc_27993
crossref_primary_10_1007_s11709_022_0901_6
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1061_JAEEEZ_ASENG_4771
crossref_primary_10_3390_buildings12101566
crossref_primary_10_1016_j_ijmecsci_2024_109069
crossref_primary_10_1007_s00366_022_01600_1
crossref_primary_10_1007_s11668_023_01744_2
crossref_primary_10_1080_15397734_2023_2298738
crossref_primary_10_1080_15397734_2024_2373265
crossref_primary_10_1016_j_ijrmms_2022_105139
crossref_primary_10_1016_j_tws_2022_110227
crossref_primary_10_1007_s10409_024_23543_x
crossref_primary_10_1016_j_ijmecsci_2024_109628
crossref_primary_10_1016_j_tust_2022_104676
crossref_primary_10_1007_s00339_024_08097_z
crossref_primary_10_1061_JENMDT_EMENG_6643
crossref_primary_10_1016_j_finel_2025_104312
crossref_primary_10_1016_j_tws_2025_113606
crossref_primary_10_1016_j_compstruc_2022_106863
crossref_primary_10_1080_15397734_2025_2466645
crossref_primary_10_1016_j_istruc_2023_105263
crossref_primary_10_1080_15397734_2025_2496946
crossref_primary_10_1007_s00419_025_02816_5
crossref_primary_10_1007_s00707_023_03637_9
crossref_primary_10_1177_10812865241263531
crossref_primary_10_1007_s11709_022_0840_2
crossref_primary_10_1002_msd2_70031
crossref_primary_10_1007_s42417_023_01081_6
crossref_primary_10_1016_j_engstruct_2025_120788
crossref_primary_10_1016_j_apm_2022_10_045
crossref_primary_10_1080_15376494_2023_2286626
Cites_doi 10.1016/j.matcom.2015.05.008
10.1016/j.engappai.2004.08.011
10.1016/j.tws.2017.12.027
10.1109/72.870037
10.1016/0003-682X(89)90030-3
10.1007/s00332-018-9525-3
10.1016/j.cma.2019.112789
10.1007/s40304-018-0127-z
10.3390/ijgi7020065
10.1016/0893-6080(89)90003-8
10.1109/CVPR.2015.7298854
10.1109/TNN.2009.2020735
10.1109/TNNLS.2018.2876865
10.1016/j.compstruc.2010.11.006
10.1002/nme.4515
10.1016/j.apm.2018.10.006
10.1016/j.jcp.2019.109136
10.1016/j.matcom.2008.01.003
10.1016/j.jcp.2019.07.048
10.1016/j.ymssp.2017.03.034
10.1038/nature14539
10.1002/nme.5809
10.1016/S0020-7403(03)00109-7
10.1007/BF01589116
10.1016/j.apm.2016.02.020
10.1016/j.ejor.2017.11.054
10.1073/pnas.1718942115
10.1109/72.712178
10.1002/asmb.2209
10.1109/ACCESS.2019.2896880
10.4467/20838476SI.16.004.6185
10.1137/18M1229845
10.1007/s40304-017-0117-6
10.1142/S0219530516400042
10.1016/j.cell.2018.02.010
10.1162/neco.2006.18.7.1527
10.1016/j.jcp.2018.08.029
10.1007/BF02478259
10.1016/j.jsv.2018.06.029
10.1016/0893-6080(91)90009-T
10.1016/j.jprocont.2019.05.002
10.1098/rsif.2017.0387
10.1016/j.jcp.2018.10.045
10.1016/0893-6080(89)90020-8
ContentType Journal Article
Copyright 2021 Elsevier Masson SAS
Copyright Elsevier BV May/Jun 2021
Copyright_xml – notice: 2021 Elsevier Masson SAS
– notice: Copyright Elsevier BV May/Jun 2021
DBID AAYXX
CITATION
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1016/j.euromechsol.2021.104225
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1873-7285
ExternalDocumentID 10_1016_j_euromechsol_2021_104225
S099775382100019X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c349t-ae4423a43d729d47620cfc6f6dfb96dbf5e9ac183df4e22e5a99d1bec967b3e43
ISICitedReferencesCount 381
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647770000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0997-7538
IngestDate Sun Nov 30 05:09:53 EST 2025
Sat Nov 29 03:10:52 EST 2025
Tue Nov 18 19:37:07 EST 2025
Sat May 25 15:40:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Energy method
Vibration
Autoencoder
Activation function
Transfer learning
Kirchhoff plate
Buckling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-ae4423a43d729d47620cfc6f6dfb96dbf5e9ac183df4e22e5a99d1bec967b3e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2505721945
PQPubID 2045479
ParticipantIDs proquest_journals_2505721945
crossref_primary_10_1016_j_euromechsol_2021_104225
crossref_citationtrail_10_1016_j_euromechsol_2021_104225
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2021_104225
PublicationCentury 2000
PublicationDate May-June 2021
2021-05-00
20210501
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May-June 2021
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2021
Publisher Elsevier Masson SAS
Elsevier BV
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier BV
References Snoek, Adams, Larochelle (b54) 2012; 13
Hornik (b22) 1991; 4
Goodfellow, Bengio, Courville (b13) 2016
Weinan, Han, Jentzen (b58) 2017; 5
Sirignano, Spiliopoulos (b53) 2018; 375
McCulloch, Pitts (b37) 1943; 5
Bengio, Lamblin, Popovici, Larochelle (b6) 2007
Beck, E, Jentzen (b5) 2019
Raissi, Perdikaris, Karniadakis (b49) 2019; 378
Guo, Zhuang, Rabczuk (b16) 2019; 59
Yu, Zheng, Wang (b62) 2019; 79
Anitescu, Atroshchenko, Alajlan, Rabczuk (b2) 2019; 59
Ching, Himmelstein, Beaulieu-Jones, Kalinin, Do, Way, Ferrero, Agapow, Zietz, Hoffman (b9) 2018; 15
Dias, Antunes, Mota (b10) 2004; 17
Yang, Zhang, Karniadakis (b61) 2018
Bathe (b4) 2006
Guo, Zheng (b14) 2018; 124
Yue, Wang (b63) 2018
Hinton, Osindero, Teh (b21) 2006; 18
He, Li, Xu, Zheng (b19) 2018
Pang, Lu, Karniadakis (b46) 2019; 41
Lagaris, Likas, Fotiadis (b29) 1998; 9
Weinan, Yu (b59) 2018; 6
Brebbia, Walker (b7) 2016
Heaton, Polson, Witte (b20) 2017; 33
Hughes (b24) 2012
Katsikadelis (b27) 2016
Liu, Nocedal (b35) 1989; 45
Nguyen, Rabczuk, Bordas, Duflot (b42) 2008; 79
Nassif, Shahin, Attili, Azzeh, Shaalan (b40) 2019
Srinivasa, Suresh, Kumar (b55) 2012; 37
Zheng, Liu, Ge (b67) 2013; 95
Shao, Jiang, Zhao, Wang (b51) 2017; 95
Fischer, Krauss (b11) 2018; 270
Nielsen (b44) 2015
Yang, MacEachren, Mitra, Onorati (b60) 2018; 7
Haghighat, Raissi, Moure, Gomez, Juanes (b17) 2020
Zhao, Zheng, Xu, Wu (b66) 2019
Liu, Jeffers (b34) 2018; 115
Nguyen-Thanh, Zhuang, Rabczuk (b43) 2019
Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Li, H., Yang, S., Wang, Z., Loy, C.-C., et al., 2015. Deepid-net: Deformable deep convolutional neural networks for object detection, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412.
Funahashi (b12) 1989; 2
LeCun, Bengio, Hinton (b32) 2015; 521
Jagtap, Kawaguchi, Karniadakis (b25) 2020; 404
Patterson, Gibson (b47) 2017
McFall, Mahan (b38) 2009; 20
Mhaskar, Poggio (b39) 2016; 14
Timoshenko, Woinowsky-Krieger (b56) 1959
Guo, Zheng, Zhuang (b15) 2019; 66
Shufrin, Eisenberger (b52) 2016; 40
Hornik, Stinchcombe, White (b23) 1989; 2
Ventsel, Krauthammer (b57) 2001
Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan (b28) 2018; 172
Janocha, Czarnecki (b26) 2017; 1/2016
Bui, Nguyen (b8) 2011; 89
Zhang, Wang, Pedroso, Zhang (b65) 2018; 432
Ruder (b50) 2016
Liew, Kitipornchai, Leung, Lim (b33) 2003; 45
Zhang, Lu, Guo, Karniadakis (b64) 2019; 397
Amodei, Ananthanarayanan, Anubhai, Bai, Battenberg, Case, Casper, Catanzaro, Cheng, Chen (b1) 2016
Han, Jentzen, Weinan (b18) 2018; 115
Anwar, Hwang, Sung (b3) 2017; 13
Lam, Hung, Chow (b31) 1989; 28
Nguyen, Anitescu, Bordas, Rabczuk (b41) 2015; 117
Piegl, Tiller (b48) 2012
Lagaris, Likas, Papageorgiou (b30) 2000; 11
Mao, Jagtap, Karniadakis (b36) 2020; 360
Piegl (10.1016/j.euromechsol.2021.104225_b48) 2012
Ching (10.1016/j.euromechsol.2021.104225_b9) 2018; 15
Zhang (10.1016/j.euromechsol.2021.104225_b64) 2019; 397
Nguyen-Thanh (10.1016/j.euromechsol.2021.104225_b43) 2019
Han (10.1016/j.euromechsol.2021.104225_b18) 2018; 115
Jagtap (10.1016/j.euromechsol.2021.104225_b25) 2020; 404
Beck (10.1016/j.euromechsol.2021.104225_b5) 2019
Weinan (10.1016/j.euromechsol.2021.104225_b59) 2018; 6
Nguyen (10.1016/j.euromechsol.2021.104225_b42) 2008; 79
Ruder (10.1016/j.euromechsol.2021.104225_b50) 2016
Anitescu (10.1016/j.euromechsol.2021.104225_b2) 2019; 59
Timoshenko (10.1016/j.euromechsol.2021.104225_b56) 1959
Guo (10.1016/j.euromechsol.2021.104225_b14) 2018; 124
Hinton (10.1016/j.euromechsol.2021.104225_b21) 2006; 18
Ventsel (10.1016/j.euromechsol.2021.104225_b57) 2001
Bengio (10.1016/j.euromechsol.2021.104225_b6) 2007
Fischer (10.1016/j.euromechsol.2021.104225_b11) 2018; 270
LeCun (10.1016/j.euromechsol.2021.104225_b32) 2015; 521
Heaton (10.1016/j.euromechsol.2021.104225_b20) 2017; 33
Yang (10.1016/j.euromechsol.2021.104225_b60) 2018; 7
Bathe (10.1016/j.euromechsol.2021.104225_b4) 2006
Hughes (10.1016/j.euromechsol.2021.104225_b24) 2012
Anwar (10.1016/j.euromechsol.2021.104225_b3) 2017; 13
Haghighat (10.1016/j.euromechsol.2021.104225_b17) 2020
Yue (10.1016/j.euromechsol.2021.104225_b63) 2018
Srinivasa (10.1016/j.euromechsol.2021.104225_b55) 2012; 37
Weinan (10.1016/j.euromechsol.2021.104225_b58) 2017; 5
Katsikadelis (10.1016/j.euromechsol.2021.104225_b27) 2016
Lagaris (10.1016/j.euromechsol.2021.104225_b30) 2000; 11
Shao (10.1016/j.euromechsol.2021.104225_b51) 2017; 95
Yang (10.1016/j.euromechsol.2021.104225_b61) 2018
Hornik (10.1016/j.euromechsol.2021.104225_b23) 1989; 2
Zheng (10.1016/j.euromechsol.2021.104225_b67) 2013; 95
Nassif (10.1016/j.euromechsol.2021.104225_b40) 2019
Sirignano (10.1016/j.euromechsol.2021.104225_b53) 2018; 375
McFall (10.1016/j.euromechsol.2021.104225_b38) 2009; 20
Mhaskar (10.1016/j.euromechsol.2021.104225_b39) 2016; 14
Nguyen (10.1016/j.euromechsol.2021.104225_b41) 2015; 117
Zhang (10.1016/j.euromechsol.2021.104225_b65) 2018; 432
Brebbia (10.1016/j.euromechsol.2021.104225_b7) 2016
10.1016/j.euromechsol.2021.104225_b45
Goodfellow (10.1016/j.euromechsol.2021.104225_b13) 2016
Zhao (10.1016/j.euromechsol.2021.104225_b66) 2019
McCulloch (10.1016/j.euromechsol.2021.104225_b37) 1943; 5
Yu (10.1016/j.euromechsol.2021.104225_b62) 2019; 79
Kermany (10.1016/j.euromechsol.2021.104225_b28) 2018; 172
Lam (10.1016/j.euromechsol.2021.104225_b31) 1989; 28
Patterson (10.1016/j.euromechsol.2021.104225_b47) 2017
Mao (10.1016/j.euromechsol.2021.104225_b36) 2020; 360
Shufrin (10.1016/j.euromechsol.2021.104225_b52) 2016; 40
Dias (10.1016/j.euromechsol.2021.104225_b10) 2004; 17
Funahashi (10.1016/j.euromechsol.2021.104225_b12) 1989; 2
Hornik (10.1016/j.euromechsol.2021.104225_b22) 1991; 4
Bui (10.1016/j.euromechsol.2021.104225_b8) 2011; 89
Amodei (10.1016/j.euromechsol.2021.104225_b1) 2016
He (10.1016/j.euromechsol.2021.104225_b19) 2018
Liu (10.1016/j.euromechsol.2021.104225_b34) 2018; 115
Snoek (10.1016/j.euromechsol.2021.104225_b54) 2012; 13
Guo (10.1016/j.euromechsol.2021.104225_b15) 2019; 66
Guo (10.1016/j.euromechsol.2021.104225_b16) 2019; 59
Janocha (10.1016/j.euromechsol.2021.104225_b26) 2017; 1/2016
Raissi (10.1016/j.euromechsol.2021.104225_b49) 2019; 378
Liew (10.1016/j.euromechsol.2021.104225_b33) 2003; 45
Pang (10.1016/j.euromechsol.2021.104225_b46) 2019; 41
Lagaris (10.1016/j.euromechsol.2021.104225_b29) 1998; 9
Liu (10.1016/j.euromechsol.2021.104225_b35) 1989; 45
Nielsen (10.1016/j.euromechsol.2021.104225_b44) 2015
References_xml – start-page: 173
  year: 2016
  end-page: 182
  ident: b1
  article-title: Deep speech 2: End-to-end speech recognition in english and mandarin
  publication-title: International Conference on Machine Learning
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: b35
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Programm.
– volume: 95
  start-page: 721
  year: 2013
  end-page: 739
  ident: b67
  article-title: Numerical manifold space of hermitian form and application to kirchhoff’s thin plate problems
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 89
  start-page: 380
  year: 2011
  end-page: 394
  ident: b8
  article-title: A moving kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates
  publication-title: Comput. Struct.
– volume: 40
  start-page: 6983
  year: 2016
  end-page: 7000
  ident: b52
  article-title: Semi-analytical modeling of cutouts in rectangular plates with variable thickness – free vibration analysis
  publication-title: Appl. Math. Model.
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: b53
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 32
  year: 2017
  ident: b3
  article-title: Structured pruning of deep convolutional neural networks
  publication-title: ACM J. Emerg. Technol. Comput. Syst. (JETC)
– reference: Ouyang, W., Wang, X., Zeng, X., Qiu, S., Luo, P., Tian, Y., Li, H., Yang, S., Wang, Z., Loy, C.-C., et al., 2015. Deepid-net: Deformable deep convolutional neural networks for object detection, In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2403–2412.
– year: 2012
  ident: b48
  article-title: The NURBS book
– volume: 124
  start-page: 366
  year: 2018
  end-page: 383
  ident: b14
  article-title: The linear analysis of thin shell problems using the numerical manifold method
  publication-title: Thin-Walled Struct.
– volume: 397
  year: 2019
  ident: b64
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
– volume: 33
  start-page: 3
  year: 2017
  end-page: 12
  ident: b20
  article-title: Deep learning for finance: deep portfolios
  publication-title: Appl. Stoch. Models Bus. Ind.
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b49
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 17
  start-page: 945
  year: 2004
  end-page: 952
  ident: b10
  article-title: Artificial neural networks: a review of commercial hardware
  publication-title: Eng. Appl. Artif. Intell.
– year: 2019
  ident: b66
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 360
  year: 2020
  ident: b36
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 172
  start-page: 1122
  year: 2018
  end-page: 1131
  ident: b28
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
– year: 2018
  ident: b19
  article-title: Relu deep neural networks and linear finite elements
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: b22
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
– volume: 404
  year: 2020
  ident: b25
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
– volume: 5
  start-page: 115
  year: 1943
  end-page: 133
  ident: b37
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
– volume: 521
  start-page: 436
  year: 2015
  ident: b32
  article-title: Deep learning
  publication-title: nature
– volume: 66
  start-page: 695
  year: 2019
  end-page: 727
  ident: b15
  article-title: Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry
  publication-title: Appl. Math. Model.
– year: 2020
  ident: b17
  article-title: A deep learning framework for solution and discovery in solid mechanics
– year: 2015
  ident: b44
  article-title: Neural networks and deep learning, Vol. 25
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b59
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– volume: 432
  start-page: 65
  year: 2018
  end-page: 87
  ident: b65
  article-title: Extension of hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts
  publication-title: J. Sound Vib.
– year: 2006
  ident: b4
  article-title: Finite element procedures
– year: 2019
  ident: b5
  article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
  publication-title: J. Nonlinear Sci.
– volume: 59
  start-page: 345
  year: 2019
  end-page: 359
  ident: b2
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Contin.
– year: 2019
  ident: b40
  article-title: Speech recognition using deep neural networks: a systematic review
  publication-title: IEEE Access
– volume: 28
  start-page: 49
  year: 1989
  end-page: 60
  ident: b31
  article-title: Vibration analysis of plates with cutouts by the modified Rayleigh-ritz method
  publication-title: Appl. Acoust.
– year: 2018
  ident: b63
  article-title: Deep learning for genomics: A concise overview
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: b21
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 41
  start-page: A2603
  year: 2019
  end-page: A2626
  ident: b46
  article-title: Fpinns: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
– volume: 15
  year: 2018
  ident: b9
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J. R. Soc. Interface
– year: 2016
  ident: b27
  article-title: The boundary element method for engineers and scientists: theory and applications
– year: 2001
  ident: b57
  article-title: Thin plates and shells: theory: analysis, and applications
– year: 2012
  ident: b24
  article-title: The finite element method: linear static and dynamic finite element analysis
– volume: 115
  start-page: 395
  year: 2018
  end-page: 409
  ident: b34
  article-title: A geometrically exact isogeometric kirchhoff plate: Feature-preserving automatic meshing and c 1 rational triangular Bézier spline discretizations
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 5
  start-page: 349
  year: 2017
  end-page: 380
  ident: b58
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b29
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– volume: 79
  start-page: 763
  year: 2008
  end-page: 813
  ident: b42
  article-title: Meshless methods: A review and computer implementation aspects
  publication-title: Math. Comput. Simulation
– volume: 14
  start-page: 829
  year: 2016
  end-page: 848
  ident: b39
  article-title: Deep vs. shallow networks: An approximation theory perspective
  publication-title: Anal. Appl.
– year: 1959
  ident: b56
  article-title: Theory of plates and shells
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b18
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
– year: 2016
  ident: b13
  article-title: Deep Learning
– volume: 37
  start-page: 35
  year: 2012
  end-page: 47
  ident: b55
  article-title: Buckling studies on laminated composite skew plates
  publication-title: Int. J. Comput. Appl.
– year: 2018
  ident: b61
  article-title: Physics-informed generative adversarial networks for stochastic differential equations
– year: 2017
  ident: b47
  article-title: Deep learning: A practitioner’s approach
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b23
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– year: 2019
  ident: b43
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
– volume: 7
  start-page: 65
  year: 2018
  ident: b60
  article-title: Visually-enabled active deep learning for (geo) text and image classification: a review
  publication-title: ISPRS Int. J. Geo-Inf.
– volume: 59
  start-page: 433
  year: 2019
  end-page: 456
  ident: b16
  article-title: A deep collocation method for the bending analysis of kirchhoff plate
  publication-title: CMC-Comput. Mater. Contin.
– volume: 2
  start-page: 183
  year: 1989
  end-page: 192
  ident: b12
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
– volume: 13
  start-page: 2567
  year: 2012
  end-page: 2588
  ident: b54
  article-title: Nonparametric guidance of autoencoder representations using label information
  publication-title: J. Mach. Learn. Res.
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: b51
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 117
  start-page: 89
  year: 2015
  end-page: 116
  ident: b41
  article-title: Isogeometric analysis: an overview and computer implementation aspects
  publication-title: Math. Comput. Simulation
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b30
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– volume: 270
  start-page: 654
  year: 2018
  end-page: 669
  ident: b11
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
– volume: 1/2016
  year: 2017
  ident: b26
  article-title: On loss functions for deep neural networks in classification
  publication-title: Schedae Inform.
– start-page: 153
  year: 2007
  end-page: 160
  ident: b6
  article-title: Greedy layer-wise training of deep networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 20
  start-page: 1221
  year: 2009
  end-page: 1233
  ident: b38
  article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions
  publication-title: IEEE Trans. Neural Netw.
– year: 2016
  ident: b50
  article-title: An overview of gradient descent optimization algorithms
– volume: 79
  start-page: 1
  year: 2019
  end-page: 15
  ident: b62
  article-title: A deep autoencoder feature learning method for process pattern recognition
  publication-title: J. Process Control
– year: 2016
  ident: b7
  article-title: Boundary element techniques in engineering
– volume: 45
  start-page: 941
  year: 2003
  end-page: 959
  ident: b33
  article-title: Analysis of the free vibration of rectangular plates with central cut-outs using the discrete ritz method
  publication-title: Int. J. Mech. Sci.
– volume: 117
  start-page: 89
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104225_b41
  article-title: Isogeometric analysis: an overview and computer implementation aspects
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2015.05.008
– volume: 17
  start-page: 945
  issue: 8
  year: 2004
  ident: 10.1016/j.euromechsol.2021.104225_b10
  article-title: Artificial neural networks: a review of commercial hardware
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2004.08.011
– volume: 124
  start-page: 366
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b14
  article-title: The linear analysis of thin shell problems using the numerical manifold method
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2017.12.027
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10.1016/j.euromechsol.2021.104225_b30
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– year: 2006
  ident: 10.1016/j.euromechsol.2021.104225_b4
– year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b43
  article-title: A deep energy method for finite deformation hyperelasticity
  publication-title: Eur. J. Mech. A Solids
– year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b13
– volume: 28
  start-page: 49
  issue: 1
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104225_b31
  article-title: Vibration analysis of plates with cutouts by the modified Rayleigh-ritz method
  publication-title: Appl. Acoust.
  doi: 10.1016/0003-682X(89)90030-3
– volume: 37
  start-page: 35
  issue: 1
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104225_b55
  article-title: Buckling studies on laminated composite skew plates
  publication-title: Int. J. Comput. Appl.
– year: 2001
  ident: 10.1016/j.euromechsol.2021.104225_b57
– year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b5
  article-title: Machine learning approximation algorithms for high-dimensional fully nonlinear partial differential equations and second-order backward stochastic differential equations
  publication-title: J. Nonlinear Sci.
  doi: 10.1007/s00332-018-9525-3
– year: 2015
  ident: 10.1016/j.euromechsol.2021.104225_b44
– year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b63
– volume: 360
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104225_b36
  article-title: Physics-informed neural networks for high-speed flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112789
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b59
  article-title: The deep ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– volume: 7
  start-page: 65
  issue: 2
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b60
  article-title: Visually-enabled active deep learning for (geo) text and image classification: a review
  publication-title: ISPRS Int. J. Geo-Inf.
  doi: 10.3390/ijgi7020065
– year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b7
– volume: 2
  start-page: 183
  issue: 3
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104225_b12
  article-title: On the approximate realization of continuous mappings by neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90003-8
– ident: 10.1016/j.euromechsol.2021.104225_b45
  doi: 10.1109/CVPR.2015.7298854
– volume: 20
  start-page: 1221
  issue: 8
  year: 2009
  ident: 10.1016/j.euromechsol.2021.104225_b38
  article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2020735
– year: 1959
  ident: 10.1016/j.euromechsol.2021.104225_b56
– year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b66
  article-title: Object detection with deep learning: A review
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2876865
– volume: 89
  start-page: 380
  issue: 3–4
  year: 2011
  ident: 10.1016/j.euromechsol.2021.104225_b8
  article-title: A moving kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2010.11.006
– volume: 95
  start-page: 721
  issue: 9
  year: 2013
  ident: 10.1016/j.euromechsol.2021.104225_b67
  article-title: Numerical manifold space of hermitian form and application to kirchhoff’s thin plate problems
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4515
– start-page: 173
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b1
  article-title: Deep speech 2: End-to-end speech recognition in english and mandarin
– volume: 66
  start-page: 695
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b15
  article-title: Numerical manifold method for vibration analysis of Kirchhoff’s plates of arbitrary geometry
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2018.10.006
– year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b27
– volume: 404
  year: 2020
  ident: 10.1016/j.euromechsol.2021.104225_b25
  article-title: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109136
– year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b61
– volume: 79
  start-page: 763
  issue: 3
  year: 2008
  ident: 10.1016/j.euromechsol.2021.104225_b42
  article-title: Meshless methods: A review and computer implementation aspects
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2008.01.003
– volume: 397
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b64
  article-title: Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.07.048
– volume: 95
  start-page: 187
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b51
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.034
– year: 2012
  ident: 10.1016/j.euromechsol.2021.104225_b48
– volume: 59
  start-page: 433
  issue: 2
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b16
  article-title: A deep collocation method for the bending analysis of kirchhoff plate
  publication-title: CMC-Comput. Mater. Contin.
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.euromechsol.2021.104225_b32
  article-title: Deep learning
  publication-title: nature
  doi: 10.1038/nature14539
– start-page: 153
  year: 2007
  ident: 10.1016/j.euromechsol.2021.104225_b6
  article-title: Greedy layer-wise training of deep networks
– volume: 59
  start-page: 345
  issue: 1
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b2
  article-title: Artificial neural network methods for the solution of second order boundary value problems
  publication-title: Comput. Mater. Contin.
– volume: 115
  start-page: 395
  issue: 3
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b34
  article-title: A geometrically exact isogeometric kirchhoff plate: Feature-preserving automatic meshing and c 1 rational triangular Bézier spline discretizations
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.5809
– volume: 45
  start-page: 941
  issue: 5
  year: 2003
  ident: 10.1016/j.euromechsol.2021.104225_b33
  article-title: Analysis of the free vibration of rectangular plates with central cut-outs using the discrete ritz method
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/S0020-7403(03)00109-7
– year: 2012
  ident: 10.1016/j.euromechsol.2021.104225_b24
– volume: 45
  start-page: 503
  issue: 1–3
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104225_b35
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Programm.
  doi: 10.1007/BF01589116
– year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b47
– volume: 40
  start-page: 6983
  issue: 15
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b52
  article-title: Semi-analytical modeling of cutouts in rectangular plates with variable thickness – free vibration analysis
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2016.02.020
– volume: 270
  start-page: 654
  issue: 2
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b11
  article-title: Deep learning with long short-term memory networks for financial market predictions
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2017.11.054
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b18
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718942115
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.euromechsol.2021.104225_b29
  article-title: Artificial neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– volume: 33
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b20
  article-title: Deep learning for finance: deep portfolios
  publication-title: Appl. Stoch. Models Bus. Ind.
  doi: 10.1002/asmb.2209
– year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b40
  article-title: Speech recognition using deep neural networks: a systematic review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 1/2016
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b26
  article-title: On loss functions for deep neural networks in classification
  publication-title: Schedae Inform.
  doi: 10.4467/20838476SI.16.004.6185
– volume: 41
  start-page: A2603
  issue: 4
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b46
  article-title: Fpinns: Fractional physics-informed neural networks
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/18M1229845
– volume: 5
  start-page: 349
  issue: 4
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b58
  article-title: Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-017-0117-6
– volume: 14
  start-page: 829
  issue: 06
  year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b39
  article-title: Deep vs. shallow networks: An approximation theory perspective
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530516400042
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b28
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– year: 2016
  ident: 10.1016/j.euromechsol.2021.104225_b50
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.euromechsol.2021.104225_b21
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b53
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– volume: 5
  start-page: 115
  issue: 4
  year: 1943
  ident: 10.1016/j.euromechsol.2021.104225_b37
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 432
  start-page: 65
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b65
  article-title: Extension of hencky bar-net model for vibration analysis of rectangular plates with rectangular cutouts
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.06.029
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.euromechsol.2021.104225_b22
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b19
– volume: 13
  start-page: 2567
  issue: Sep
  year: 2012
  ident: 10.1016/j.euromechsol.2021.104225_b54
  article-title: Nonparametric guidance of autoencoder representations using label information
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 1
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b62
  article-title: A deep autoencoder feature learning method for process pattern recognition
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2019.05.002
– volume: 15
  issue: 141
  year: 2018
  ident: 10.1016/j.euromechsol.2021.104225_b9
  article-title: Opportunities and obstacles for deep learning in biology and medicine
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2017.0387
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.euromechsol.2021.104225_b49
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 13
  start-page: 32
  issue: 3
  year: 2017
  ident: 10.1016/j.euromechsol.2021.104225_b3
  article-title: Structured pruning of deep convolutional neural networks
  publication-title: ACM J. Emerg. Technol. Comput. Syst. (JETC)
– year: 2020
  ident: 10.1016/j.euromechsol.2021.104225_b17
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.euromechsol.2021.104225_b23
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
SSID ssj0002021
Score 2.688072
Snippet In this paper, we present a deep autoencoder based energy method (DAEM) for the bending, vibration and buckling analysis of Kirchhoff plates. The DAEM exploits...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104225
SubjectTerms Activation function
Artificial neural networks
Autoencoder
Bending
Boundary conditions
Buckling
Configuration management
Continuity (mathematics)
Deep learning
Energy method
Energy methods
Feature extraction
Hyperbolic functions
Kirchhoff plate
Machine learning
Plates
Potential energy
Resonant frequencies
Robustness (mathematics)
Transfer learning
Vibration
Vibration analysis
Title Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning
URI https://dx.doi.org/10.1016/j.euromechsol.2021.104225
https://www.proquest.com/docview/2505721945
Volume 87
WOSCitedRecordID wos000647770000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7285
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002021
  issn: 0997-7538
  databaseCode: AIEXJ
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB7qrogv3sXVVUbwbTdik8llwJeiK6tiEXaF4kuYzGU3pSZle3F99Gf57zxnLmlZKVTEl1ACcyad8-Xcci6EvACQpCJhMsrTKomYVFnEVVFFuckN2AucCynssIl8OCxGI_651_sVamGWk7xpistLPv2vrIZ7wGwsnf0LdndE4Qb8BqbDFdgO160Y_1br6YFYzFtsUYmdIlBRqQPtivzcxOguubDStqoFD3qJjrNN9fAJnRV-9nU1jKvGJR9rOK3z1tj50xizdYFca_7CXn4IxdnGgL83fr9prDj2SUoDG4JtJ7XqDPyv5wsfyB7Vov0RKGKi0MIGd4_b5uy7rju8TsR44mK5Q1GbNTJOtwK59fhG3F9lE7qgWyi8-QTOBIrQwcmaiMResuBwOQmunQgv8iTKYzcIKMh4p9T_UBcucjHGHpst_nHg_0t8BvzyHbuC7CvduE9wS9wx7lvzeHSN7MZ5ykEn7A7eH40-dGYA0rGNHv0j3iDPV8mFGzbcZBxdMROs7XN6h9zyTgsdOLDdJT3d3CO3vQNDvXqY3Sc_EXt0DXvUYo867FGHPQrYo4A96rF3SDvkHVLAHQ24owF3tDW0wx11uKOIOxpwRwPuHpAv745O3xxHfsZHJBPG55HQDAx6wRIFXp5ioJpfSSMzkylT8UxVJtUgLkDvKMN0HOtUcK76IHh4lleJZslDstO0jX5EqJZpmnEBLrdMmVCpEAVTsVRAn5msKvZIEQ63lL4BPs5hmZQh03FcrvGlRL6Uji97JO6WTl0XmG0WvQ4cLL0568zUEuC3zfL9wPXSv5-zEh2WHIwMlj7-N-pPyM3Vy7ZPduYXC_2UXJfLeT27eOax_BtsONwX
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+autoencoder+based+energy+method+for+the+bending%2C+vibration%2C+and+buckling+analysis+of+Kirchhoff+plates+with+transfer+learning&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Zhuang%2C+Xiaoying&rft.au=Guo%2C+Hongwei&rft.au=Alajlan%2C+Naif&rft.au=Zhu%2C+Hehua&rft.date=2021-05-01&rft.pub=Elsevier+Masson+SAS&rft.issn=0997-7538&rft.eissn=1873-7285&rft.volume=87&rft_id=info:doi/10.1016%2Fj.euromechsol.2021.104225&rft.externalDocID=S099775382100019X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon