The slow-scale stochastic simulation algorithm

Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow" ones. These firings will be interdependent if, as is usually the case, the fast and slow reactions involve some of the s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of chemical physics Ročník 122; číslo 1; s. 14116
Hlavní autori: Cao, Yang, Gillespie, Daniel T, Petzold, Linda R
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.01.2005
ISSN:0021-9606
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow" ones. These firings will be interdependent if, as is usually the case, the fast and slow reactions involve some of the same species. An exact stochastic simulation of such a system will necessarily spend most of its time simulating the more numerous fast reaction events. This is a frustratingly inefficient allocation of computational effort when dynamical stiffness is present, since in that case a fast reaction event will be of much less importance to the system's evolution than will a slow reaction event. For such situations, this paper develops a systematic approximate theory that allows one to stochastically advance the system in time by simulating the firings of only the slow reaction events. Developing an effective strategy to implement this theory poses some challenges, but as is illustrated here for two simple systems, when those challenges can be overcome, very substantial increases in simulation speed can be realized.
AbstractList Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow" ones. These firings will be interdependent if, as is usually the case, the fast and slow reactions involve some of the same species. An exact stochastic simulation of such a system will necessarily spend most of its time simulating the more numerous fast reaction events. This is a frustratingly inefficient allocation of computational effort when dynamical stiffness is present, since in that case a fast reaction event will be of much less importance to the system's evolution than will a slow reaction event. For such situations, this paper develops a systematic approximate theory that allows one to stochastically advance the system in time by simulating the firings of only the slow reaction events. Developing an effective strategy to implement this theory poses some challenges, but as is illustrated here for two simple systems, when those challenges can be overcome, very substantial increases in simulation speed can be realized.
Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow" ones. These firings will be interdependent if, as is usually the case, the fast and slow reactions involve some of the same species. An exact stochastic simulation of such a system will necessarily spend most of its time simulating the more numerous fast reaction events. This is a frustratingly inefficient allocation of computational effort when dynamical stiffness is present, since in that case a fast reaction event will be of much less importance to the system's evolution than will a slow reaction event. For such situations, this paper develops a systematic approximate theory that allows one to stochastically advance the system in time by simulating the firings of only the slow reaction events. Developing an effective strategy to implement this theory poses some challenges, but as is illustrated here for two simple systems, when those challenges can be overcome, very substantial increases in simulation speed can be realized.Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow" ones. These firings will be interdependent if, as is usually the case, the fast and slow reactions involve some of the same species. An exact stochastic simulation of such a system will necessarily spend most of its time simulating the more numerous fast reaction events. This is a frustratingly inefficient allocation of computational effort when dynamical stiffness is present, since in that case a fast reaction event will be of much less importance to the system's evolution than will a slow reaction event. For such situations, this paper develops a systematic approximate theory that allows one to stochastically advance the system in time by simulating the firings of only the slow reaction events. Developing an effective strategy to implement this theory poses some challenges, but as is illustrated here for two simple systems, when those challenges can be overcome, very substantial increases in simulation speed can be realized.
Author Petzold, Linda R
Cao, Yang
Gillespie, Daniel T
Author_xml – sequence: 1
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  email: ycao@engineering.ucsb.edu
  organization: Department of Computer Science, University of California-Santa Barbara, Santa Barbara, CA 93106, USA. ycao@engineering.ucsb.edu
– sequence: 2
  givenname: Daniel T
  surname: Gillespie
  fullname: Gillespie, Daniel T
– sequence: 3
  givenname: Linda R
  surname: Petzold
  fullname: Petzold, Linda R
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15638651$$D View this record in MEDLINE/PubMed
BookMark eNo1jztPwzAURj0U0QcM_AHUiS3B13b8GFHFS6rEUuboxrFJkBOX2BHi31OJMp1vOPqksyaLMY6OkBugJVDJ76EEzYShbEFWlDIojKRySdYpfVJKQTFxSZZQSa5lBStSHjq3TSF-F8liOM0cbYcp93ab-mEOmPs4bjF8xKnP3XBFLjyG5K7P3JD3p8fD7qXYvz2_7h72heXC5AKtMp46AUxYK9B6ZE61jadaYoUNr9AbxUBb7a3nrHWe-gYUWC2kcQ7Yhtz9_R6n-DW7lOuhT9aFgKOLc6ql4qJSSp_E27M4N4Nr6-PUDzj91P-F7BdcTlGq
CitedBy_id crossref_primary_10_1016_j_compbiolchem_2015_04_004
crossref_primary_10_1016_j_jtbi_2010_02_004
crossref_primary_10_1088_1478_3975_aabc31
crossref_primary_10_1007_s11538_021_00920_5
crossref_primary_10_1016_j_ic_2014_01_016
crossref_primary_10_1137_14100052X
crossref_primary_10_1007_s00285_006_0034_x
crossref_primary_10_1007_s10910_025_01739_4
crossref_primary_10_1007_s11538_018_0521_4
crossref_primary_10_1016_j_jcp_2017_01_040
crossref_primary_10_1109_TAC_2007_911361
crossref_primary_10_3389_fams_2023_1107441
crossref_primary_10_1088_1478_3975_13_3_035003
crossref_primary_10_1137_120878641
crossref_primary_10_1587_transinf_2019EDL8032
crossref_primary_10_1137_110825716
crossref_primary_10_1007_s11565_022_00416_7
crossref_primary_10_1587_transinf_2019EDL8030
crossref_primary_10_1038_s41467_022_31263_x
crossref_primary_10_1063_1_4950702
crossref_primary_10_1089_cmb_2014_0064
crossref_primary_10_1371_journal_pcbi_1000723
crossref_primary_10_3390_e24020141
crossref_primary_10_1093_bib_bbn050
crossref_primary_10_1137_15M101110X
crossref_primary_10_1016_j_jcp_2006_06_019
crossref_primary_10_1007_s11538_018_0443_1
crossref_primary_10_1186_1471_2105_9_356
crossref_primary_10_1007_s10515_023_00393_x
crossref_primary_10_1088_0034_4885_77_2_026601
crossref_primary_10_1186_s12918_017_0401_9
crossref_primary_10_1016_j_physrep_2016_12_003
crossref_primary_10_1137_16M1083086
crossref_primary_10_1186_s12918_015_0218_3
crossref_primary_10_1016_j_jcp_2014_10_026
crossref_primary_10_1137_17M1119445
crossref_primary_10_1137_18M1220340
crossref_primary_10_1007_s11538_009_9407_9
crossref_primary_10_1063_5_0131445
crossref_primary_10_1137_080733723
crossref_primary_10_3390_mca29060120
crossref_primary_10_1016_j_cpc_2012_02_018
crossref_primary_10_1016_j_mbs_2020_108327
crossref_primary_10_1016_j_jcp_2004_12_014
crossref_primary_10_1109_TMSCS_2015_2478442
crossref_primary_10_1109_TCBB_2009_23
crossref_primary_10_1049_iet_syb_20070017
crossref_primary_10_1137_070693473
crossref_primary_10_1007_s11538_018_0454_y
crossref_primary_10_1049_iet_syb_2016_0003
crossref_primary_10_1371_journal_pcbi_1009214
crossref_primary_10_1016_j_peva_2021_102207
crossref_primary_10_1016_j_physrep_2013_03_004
crossref_primary_10_1137_17M1151997
crossref_primary_10_1186_1471_2105_16_S9_S8
crossref_primary_10_1016_j_copbio_2014_05_002
crossref_primary_10_1137_060673345
crossref_primary_10_1109_ACCESS_2020_3038714
crossref_primary_10_1016_j_compbiolchem_2006_04_002
crossref_primary_10_1529_biophysj_108_129155
crossref_primary_10_1155_2015_567275
crossref_primary_10_1371_journal_pone_0136668
crossref_primary_10_1209_0295_5075_79_38003
crossref_primary_10_1137_090750202
crossref_primary_10_1007_s11390_010_9312_6
crossref_primary_10_1002_nla_2158
crossref_primary_10_1007_s00285_011_0468_7
crossref_primary_10_1016_j_compchemeng_2016_01_010
crossref_primary_10_1186_1752_0509_6_76
crossref_primary_10_1093_bioinformatics_btm490
crossref_primary_10_1109_TCBB_2012_27
crossref_primary_10_1016_j_physd_2014_09_006
crossref_primary_10_1063_1_3664126
crossref_primary_10_1016_j_jcp_2017_09_019
crossref_primary_10_1007_s10910_013_0150_y
crossref_primary_10_1016_j_jcp_2016_04_056
crossref_primary_10_1371_journal_pcbi_1010266
crossref_primary_10_1186_s12859_019_2839_9
crossref_primary_10_1214_12_AAP841
crossref_primary_10_1038_s41467_024_49177_1
crossref_primary_10_1111_2041_210X_14038
crossref_primary_10_1007_s00285_015_0876_1
crossref_primary_10_1186_s12859_019_2836_z
crossref_primary_10_1016_j_jcp_2015_07_065
crossref_primary_10_1007_s42967_022_00188_z
crossref_primary_10_1088_1478_3975_aa868a
crossref_primary_10_1146_annurev_physchem_58_032806_104637
crossref_primary_10_1049_iet_syb_20070082
crossref_primary_10_1002_rnc_1018
crossref_primary_10_1016_j_bpj_2019_08_021
crossref_primary_10_1529_biophysj_104_056754
crossref_primary_10_1016_j_jcp_2016_07_035
crossref_primary_10_1007_s10910_013_0200_5
crossref_primary_10_1016_j_jcp_2023_112482
crossref_primary_10_1016_j_biosystems_2015_01_008
crossref_primary_10_1016_j_csbj_2014_10_003
crossref_primary_10_1063_1_5012752
crossref_primary_10_1007_s11538_008_9346_x
crossref_primary_10_1073_pnas_1300752110
crossref_primary_10_1016_j_bpj_2014_06_012
crossref_primary_10_1016_j_tcs_2015_03_015
crossref_primary_10_1016_j_physa_2009_11_024
crossref_primary_10_1016_j_peva_2017_11_004
crossref_primary_10_1137_120871894
crossref_primary_10_1002_mren_201500020
crossref_primary_10_1049_iet_syb_2017_0070
crossref_primary_10_1529_biophysj_106_085084
crossref_primary_10_1186_1471_2105_8_175
crossref_primary_10_1371_journal_pone_0051174
crossref_primary_10_1016_j_pbiomolbio_2011_06_004
crossref_primary_10_1137_15M1017120
crossref_primary_10_1016_j_compbiolchem_2005_10_007
crossref_primary_10_1371_journal_pone_0133295
crossref_primary_10_1016_j_jcp_2007_07_020
crossref_primary_10_1007_s11538_019_00576_2
crossref_primary_10_1587_transinf_2017EDL8218
crossref_primary_10_1007_s11538_019_00633_w
crossref_primary_10_1007_s10910_009_9598_1
crossref_primary_10_1007_s11538_018_0461_z
crossref_primary_10_1016_j_jcp_2012_10_036
crossref_primary_10_1371_journal_pcbi_1008258
crossref_primary_10_1016_j_cam_2019_03_044
crossref_primary_10_1109_MSP_2007_273051
crossref_primary_10_1371_journal_pcbi_1006592
crossref_primary_10_1007_s11538_019_00613_0
crossref_primary_10_1016_j_camwa_2009_04_021
crossref_primary_10_1016_j_jtbi_2010_11_023
crossref_primary_10_1137_120898747
crossref_primary_10_1002_wnan_22
crossref_primary_10_1007_s11538_017_0346_6
crossref_primary_10_1137_060666457
crossref_primary_10_1137_140983471
crossref_primary_10_1016_j_jcp_2012_11_030
crossref_primary_10_1007_s00245_021_09787_3
crossref_primary_10_3390_e14020092
crossref_primary_10_1016_j_cma_2008_02_024
crossref_primary_10_1063_1_4936394
crossref_primary_10_1088_1361_6633_aaae2c
crossref_primary_10_1007_s11538_016_0220_y
crossref_primary_10_3390_e21020181
crossref_primary_10_1016_j_bpj_2021_10_038
crossref_primary_10_1098_rsos_160485
crossref_primary_10_1016_j_compbiolchem_2009_03_002
crossref_primary_10_1016_j_csbj_2025_01_004
crossref_primary_10_1109_TCBB_2014_2351823
crossref_primary_10_1109_TCBB_2006_2
crossref_primary_10_1145_2998499
crossref_primary_10_1016_j_jtbi_2008_09_044
crossref_primary_10_1063_1_2408422
crossref_primary_10_1016_j_jcp_2016_06_019
crossref_primary_10_1049_iet_syb_2009_0057
crossref_primary_10_1088_1751_8121_aa54d9
crossref_primary_10_1016_j_bpj_2017_09_012
crossref_primary_10_1088_0256_307X_24_9_013
crossref_primary_10_1007_s10910_012_0085_8
crossref_primary_10_1016_j_jcp_2022_111441
crossref_primary_10_1137_17M1134299
crossref_primary_10_1109_TSP_2008_2008252
crossref_primary_10_1007_s11538_018_0509_0
crossref_primary_10_1137_120877374
crossref_primary_10_1155_2015_864238
crossref_primary_10_1016_j_bbrc_2017_11_138
crossref_primary_10_1109_ACCESS_2021_3113377
crossref_primary_10_1186_1752_0509_6_39
crossref_primary_10_1016_j_compchemeng_2011_05_008
crossref_primary_10_1074_jbc_M113_497412
crossref_primary_10_1007_s00285_016_0980_x
crossref_primary_10_1016_j_ces_2010_10_024
crossref_primary_10_1016_j_tcs_2008_07_007
crossref_primary_10_1063_1_4901114
crossref_primary_10_1080_08927020701344740
crossref_primary_10_1016_j_biosystems_2017_10_011
crossref_primary_10_1016_j_jcat_2015_03_010
crossref_primary_10_1016_j_jcp_2008_01_056
crossref_primary_10_1371_journal_pcbi_1008952
crossref_primary_10_1007_s12012_007_9003_x
crossref_primary_10_1088_1478_3975_7_3_036002
crossref_primary_10_1016_j_jcp_2006_10_034
crossref_primary_10_1137_110849699
crossref_primary_10_1002_aic_14409
crossref_primary_10_1186_1471_2202_7_S1_S10
crossref_primary_10_1007_s10910_008_9517_x
crossref_primary_10_1016_j_entcs_2013_07_012
crossref_primary_10_1016_j_jtbi_2010_06_002
crossref_primary_10_1186_s12859_024_05966_5
ContentType Journal Article
Copyright (c) 2005 American Institute of Physics.
Copyright_xml – notice: (c) 2005 American Institute of Physics.
DBID NPM
7X8
DOI 10.1063/1.1824902
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
Physics
ExternalDocumentID 15638651
Genre Journal Article
GroupedDBID ---
-DZ
-ET
-~X
123
186
1UP
2-P
29K
4.4
53G
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJGX
ABPPZ
ABRJW
ABZEH
ACBRY
ACLYJ
ACNCT
ACZLF
ADCTM
ADMLS
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BDMKI
BPZLN
CS3
D-I
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPM
NPSNA
O-B
P0-
P2P
RIP
RNS
ROL
RQS
TN5
TWZ
UPT
UQL
VOH
VXZ
WH7
YQT
YZZ
~02
7X8
AAGWI
ABUFD
ADXHL
ID FETCH-LOGICAL-c349t-ac79f0e4124cc4acfa2e7dbf086a5ab35af97218c8fcf32def0fb171c8469ee12
IEDL.DBID 7X8
ISICitedReferencesCount 375
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000226698500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9606
IngestDate Tue Oct 21 13:41:38 EDT 2025
Wed Feb 19 01:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License (c) 2005 American Institute of Physics.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-ac79f0e4124cc4acfa2e7dbf086a5ab35af97218c8fcf32def0fb171c8469ee12
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15638651
PQID 67345778
PQPubID 23479
ParticipantIDs proquest_miscellaneous_67345778
pubmed_primary_15638651
PublicationCentury 2000
PublicationDate 2005-01-01
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – month: 01
  year: 2005
  text: 2005-01-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of chemical physics
PublicationTitleAlternate J Chem Phys
PublicationYear 2005
SSID ssj0001724
Score 2.3647978
Snippet Reactions in real chemical systems often take place on vastly different time scales, with "fast" reaction channels firing very much more frequently than "slow"...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 14116
Title The slow-scale stochastic simulation algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/15638651
https://www.proquest.com/docview/67345778
Volume 122
WOSCitedRecordID wos000226698500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4VCoKFR3mVZwZWt0nsxLGEhFBFxULVAaRukX2xoVLbFBLg72OniZgQA4uVxXJyvtjfnc_fB3CdRBn1M58TZIki1ikEsWFETBQTTKPhLFZ-JTbBR6NkMhHjFtw0d2FcWWWzJlYLdZajy5H3Y05ZxHlyu3wjTjPKna3WAhpr0KYWyLiCLj754Qq3W3PNwRwQh9MbXqGY9oOehdVMVLmUX3Bltb8Md__3ZnuwU-NK727lCPvQ0osObA0aObcObFa1nlgcQM-6hlfM8i9S2Amyj2WOr9LxNXvFdF7LeXly9mKHKV_nh_A8vH8aPJBaNoEgZaIkErkwvnay0ohMopGh5pkyNniRkVQ0ksZR9iSYGDQ0zLTxjQp4gBaKCK2D8AjWF_lCn4AXy0xnvokQFWdGJ8pQbkJlI9lYCIlRF64ak6T2c9xZg1zo_KNIG6N04Xhl1XS5Ys9IbcDodEaD0z_7nsF2RZRaJTzOoW3sD6kvYAM_y2nxflnNtm1H48dvbde1XA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+slow-scale+stochastic+simulation+algorithm&rft.jtitle=The+Journal+of+chemical+physics&rft.au=Cao%2C+Yang&rft.au=Gillespie%2C+Daniel+T&rft.au=Petzold%2C+Linda+R&rft.date=2005-01-01&rft.issn=0021-9606&rft.volume=122&rft.issue=1&rft.spage=14116&rft_id=info:doi/10.1063%2F1.1824902&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9606&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9606&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9606&client=summon