Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites
We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines...
Uložené v:
| Vydané v: | Composites science and technology Ročník 224; s. 109425 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Barking
Elsevier Ltd
16.06.2022
Elsevier BV |
| Predmet: | |
| ISSN: | 0266-3538, 1879-1050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management.
[Display omitted] |
|---|---|
| AbstractList | We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management.
[Display omitted] We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management. |
| ArticleNumber | 109425 |
| Author | Vu-Bac, Nam Zhuang, Xiaoying Liu, Bokai Rabczuk, Timon Fu, Xiaolong |
| Author_xml | – sequence: 1 givenname: Bokai surname: Liu fullname: Liu, Bokai organization: Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423, Weimar, Germany – sequence: 2 givenname: Nam surname: Vu-Bac fullname: Vu-Bac, Nam organization: Institute of Photonics, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany – sequence: 3 givenname: Xiaoying surname: Zhuang fullname: Zhuang, Xiaoying organization: Institute of Photonics, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany – sequence: 4 givenname: Xiaolong surname: Fu fullname: Fu, Xiaolong organization: Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China – sequence: 5 givenname: Timon surname: Rabczuk fullname: Rabczuk, Timon email: timon.rabczuk@uni-weimar.de organization: Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423, Weimar, Germany |
| BookMark | eNqNUU1r3DAUFCWBbtL8B5WevZFkW7ZPpSz9CAR6aHsWz8_PWS225EpyYP9Of2nlbg-lpxyE4GnejGbmhl0574ixt1LspZD6_rRHPy8RbSI87pVQKs-7StWv2E62TVdIUYsrthNK66Ksy_Y1u4nxJIRo6k7t2K9vyeMRYrLIrUv0FCDRwGfAo3XEJ4LgrHviPcRtvE7JRoSJOCxL8BnFRx94OhJfAg0Wk_WO-_HPJJ8ww8TRu2HNL882nbMIRwh9RjlwPq098UDWZRbMAoufzjOF_JnNlo_ZVnzDrkeYIt39vW_Zj08fvx--FI9fPz8cPjwWWFZdKqAXMFaEqKERfQlC9x3UzaBUo3Fsy3Fs-w6xVjh0imRd1aR7KUFIqnRDUN6ydxfebOznSjGZk1-Dy5JG6VYr2TVtlVHvLygMPsZAo8nZw2Y7BbCTkcJsxZiT-acYsxVjLsVkhu4_hiXYGcL5RbuHyy7lIJ4tBZNR5HJ0NhAmM3j7Apbfby24XQ |
| CitedBy_id | crossref_primary_10_1007_s00339_025_08359_4 crossref_primary_10_1007_s00339_025_08750_1 crossref_primary_10_1080_19942060_2025_2553337 crossref_primary_10_1007_s00339_025_08687_5 crossref_primary_10_1007_s11709_025_1152_0 crossref_primary_10_1007_s11709_025_1190_7 crossref_primary_10_1016_j_cpc_2023_108969 crossref_primary_10_1016_j_compstruct_2024_117974 crossref_primary_10_1016_j_techsoc_2023_102347 crossref_primary_10_1016_j_diamond_2022_109512 crossref_primary_10_1016_j_tsep_2024_102882 crossref_primary_10_1007_s00339_025_08536_5 crossref_primary_10_1080_15397734_2024_2400223 crossref_primary_10_1016_j_colsurfa_2024_133536 crossref_primary_10_1080_15397734_2025_2562325 crossref_primary_10_1007_s10999_023_09686_1 crossref_primary_10_1007_s00339_025_08822_2 crossref_primary_10_1016_j_ijmecsci_2023_108270 crossref_primary_10_1007_s11709_025_1200_9 crossref_primary_10_1016_j_undsp_2024_08_010 crossref_primary_10_1016_j_jmps_2024_105881 crossref_primary_10_3390_su17062660 crossref_primary_10_1016_j_compstruct_2023_117601 crossref_primary_10_1016_j_techsoc_2025_102848 crossref_primary_10_1016_j_undsp_2023_11_008 crossref_primary_10_1016_j_compscitech_2022_109820 crossref_primary_10_3390_su151411275 crossref_primary_10_1016_j_enggeo_2025_108362 crossref_primary_10_1016_j_enggeo_2024_107694 crossref_primary_10_1016_j_enggeo_2025_108126 crossref_primary_10_1109_ACCESS_2024_3494549 crossref_primary_10_1002_app_53417 crossref_primary_10_1007_s44163_025_00260_6 crossref_primary_10_1007_s11709_025_1191_6 crossref_primary_10_1007_s44379_025_00021_3 crossref_primary_10_1016_j_applthermaleng_2024_124410 crossref_primary_10_3390_chemosensors13070224 crossref_primary_10_1007_s10999_023_09647_8 crossref_primary_10_1016_j_cej_2024_156789 crossref_primary_10_1002_pc_27430 crossref_primary_10_1002_pc_29612 crossref_primary_10_1016_j_undsp_2025_04_008 crossref_primary_10_1002_msd2_70004 crossref_primary_10_1016_j_compstruct_2025_119292 crossref_primary_10_1016_j_icheatmasstransfer_2024_107296 crossref_primary_10_1002_mgea_70027 crossref_primary_10_1007_s00339_025_08388_z crossref_primary_10_1016_j_advengsoft_2022_103398 crossref_primary_10_1016_j_enganabound_2025_106204 crossref_primary_10_1007_s00339_025_08678_6 crossref_primary_10_1016_j_compositesa_2025_109027 crossref_primary_10_1080_15397734_2024_2378474 crossref_primary_10_1016_j_jmps_2023_105444 crossref_primary_10_1016_j_enggeo_2024_107874 crossref_primary_10_1016_j_conbuildmat_2023_132179 crossref_primary_10_3390_nano14211688 crossref_primary_10_3390_nano12172957 crossref_primary_10_32604_cmes_2023_029471 crossref_primary_10_1080_15397734_2025_2538094 crossref_primary_10_1016_j_ijmecsci_2024_109550 crossref_primary_10_1016_j_undsp_2025_02_004 crossref_primary_10_1016_j_compstruct_2025_119671 crossref_primary_10_1016_j_diamond_2025_112324 crossref_primary_10_1016_j_compstruct_2025_119395 crossref_primary_10_1016_j_compstruct_2025_119433 crossref_primary_10_1007_s41939_024_00588_z crossref_primary_10_1007_s00339_025_08560_5 crossref_primary_10_1016_j_rineng_2024_103599 crossref_primary_10_1007_s00339_022_05787_4 crossref_primary_10_1007_s11709_025_1219_y crossref_primary_10_1016_j_mtcomm_2023_105428 crossref_primary_10_1016_j_enganabound_2023_12_024 crossref_primary_10_1080_1536383X_2023_2292694 crossref_primary_10_1080_20550324_2024_2367181 crossref_primary_10_1016_j_carbon_2023_01_041 crossref_primary_10_1002_pc_28941 crossref_primary_10_1051_e3sconf_202342802013 crossref_primary_10_3390_su17062729 crossref_primary_10_1080_15397734_2025_2556241 crossref_primary_10_1016_j_mtcomm_2025_113863 crossref_primary_10_1016_j_biopsycho_2022_108464 crossref_primary_10_1016_j_compositesa_2025_109289 crossref_primary_10_1016_j_compositesa_2024_108053 crossref_primary_10_1016_j_enggeo_2025_107917 crossref_primary_10_1002_pol_20240522 crossref_primary_10_1016_j_mtcomm_2025_112097 crossref_primary_10_1007_s11831_025_10325_5 crossref_primary_10_1080_15397734_2024_2414771 crossref_primary_10_1149_2162_8777_adf3e5 crossref_primary_10_1016_j_enggeo_2025_107998 crossref_primary_10_1080_15376494_2023_2245816 crossref_primary_10_1002_msd2_70017 crossref_primary_10_1007_s11709_025_1162_y crossref_primary_10_1007_s42823_025_00952_0 crossref_primary_10_1016_j_renene_2023_119565 crossref_primary_10_1080_15397734_2024_2332642 crossref_primary_10_1080_15397734_2025_2556240 crossref_primary_10_1007_s11831_025_10313_9 crossref_primary_10_1007_s10999_023_09679_0 crossref_primary_10_1016_j_compscitech_2023_110414 crossref_primary_10_1016_j_compositesa_2025_108882 crossref_primary_10_1016_j_hybadv_2025_100385 crossref_primary_10_3390_en18123031 crossref_primary_10_1016_j_aei_2025_103875 crossref_primary_10_1007_s10999_022_09632_7 crossref_primary_10_1016_j_matpr_2023_09_115 crossref_primary_10_1007_s00339_025_08899_9 crossref_primary_10_1038_s41467_023_38508_3 crossref_primary_10_1039_D4MH01909A crossref_primary_10_1007_s10999_025_09815_y crossref_primary_10_1007_s00339_023_06437_z crossref_primary_10_1016_j_tsep_2025_103711 crossref_primary_10_1002_adma_202503140 crossref_primary_10_3846_aviation_2024_21472 crossref_primary_10_1007_s11709_024_1114_y crossref_primary_10_1016_j_asoc_2023_110812 crossref_primary_10_1007_s00339_024_08137_8 crossref_primary_10_2298_TSCI220311039J crossref_primary_10_1002_pc_26816 crossref_primary_10_1007_s44379_024_00001_z crossref_primary_10_1016_j_compositesb_2024_111744 crossref_primary_10_1002_app_55094 crossref_primary_10_1016_j_ast_2024_109726 crossref_primary_10_1002_msd2_70038 crossref_primary_10_1007_s11709_025_1166_7 crossref_primary_10_1080_15397734_2024_2438782 crossref_primary_10_1002_adem_202400782 crossref_primary_10_1002_adem_202401233 crossref_primary_10_1016_j_icheatmasstransfer_2025_108655 crossref_primary_10_1002_nme_7456 crossref_primary_10_1016_j_mtchem_2025_102616 crossref_primary_10_1007_s13726_025_01558_z |
| Cites_doi | 10.1016/j.compositesb.2012.05.015 10.1103/PhysRevB.39.4504 10.1016/j.mechrescom.2009.12.002 10.1021/ci025626i 10.1016/j.compstruct.2021.114328 10.1016/j.carbon.2013.07.017 10.1016/j.commatsci.2014.04.066 10.1016/j.carbon.2019.02.001 10.1016/j.engfracmech.2020.107085 10.1016/S0009-2614(02)00838-2 10.1016/j.carbon.2017.03.029 10.1016/j.commatsci.2017.04.023 10.1016/j.commatsci.2010.08.036 10.1016/j.mechmat.2013.07.021 10.1023/A:1010933404324 10.1007/s10853-018-2816-0 10.1016/j.compstruct.2016.06.025 10.1016/j.carbon.2016.03.007 10.1080/03610928008827996 10.1016/j.compositesb.2013.11.014 10.1016/j.mechmat.2019.103280 10.1016/0001-6160(73)90064-3 10.1016/j.compositesb.2019.107119 10.1002/pc.22859 10.1016/j.measurement.2020.108362 10.1016/j.compositesb.2014.09.008 10.1016/j.compstruct.2021.113917 10.1126/science.1060928 10.1016/j.compstruct.2021.114269 10.1016/j.ijengsci.2020.103376 10.1016/j.apenergy.2017.05.175 10.1016/j.commatsci.2012.11.035 10.1016/j.ijheatmasstransfer.2012.03.001 10.1016/j.tafmec.2020.102554 10.1002/pc.20981 10.1016/j.compscitech.2019.107861 10.1080/01621459.1993.10476299 10.1007/s11433-019-1457-2 10.1016/j.compscitech.2005.10.016 10.1007/s11831-020-09504-3 10.1109/4235.585893 10.1016/j.compstruct.2020.112497 10.1016/j.polymer.2003.10.100 10.1038/nmat2753 10.1016/S0266-3538(01)00094-X 10.1016/j.compstruct.2014.07.009 10.1023/A:1018054314350 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd Copyright Elsevier BV Jun 16, 2022 |
| Copyright_xml | – notice: 2022 Elsevier Ltd – notice: Copyright Elsevier BV Jun 16, 2022 |
| DBID | AAYXX CITATION 7SR 8FD JG9 |
| DOI | 10.1016/j.compscitech.2022.109425 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
| DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
| DatabaseTitleList | Materials Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1879-1050 |
| ExternalDocumentID | 10_1016_j_compscitech_2022_109425 S0266353822001671 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABXRA ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K XPP ZMT ~G- .-4 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET SEW SMS T9H VH1 WUQ ~HD 7SR 8FD AGCQF JG9 |
| ID | FETCH-LOGICAL-c349t-ab0af4ecc6a70b3a06b9a57d2276cf83ff8b9cc52cd92e1545e6b11a01e467ea3 |
| ISICitedReferencesCount | 142 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795644600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0266-3538 |
| IngestDate | Sun Sep 07 03:41:14 EDT 2025 Tue Nov 18 22:25:48 EST 2025 Sat Nov 29 07:17:37 EST 2025 Fri Feb 23 02:41:11 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Thermal properties Carbon nanotube reinforced polymeric composites (CNT-PCs) Multi-scale stochastic modeling Computational complexity Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c349t-ab0af4ecc6a70b3a06b9a57d2276cf83ff8b9cc52cd92e1545e6b11a01e467ea3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2686219784 |
| PQPubID | 2045270 |
| ParticipantIDs | proquest_journals_2686219784 crossref_citationtrail_10_1016_j_compscitech_2022_109425 crossref_primary_10_1016_j_compscitech_2022_109425 elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109425 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-16 |
| PublicationDateYYYYMMDD | 2022-06-16 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Barking |
| PublicationPlace_xml | – name: Barking |
| PublicationTitle | Composites science and technology |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd Elsevier BV |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
| References | Vu-Bac, Lahmer, Keitel, Zhao, Zhuang, Rabczuk (bib18) 2014; 68 Tran-Ngoc, Khatir, Le-Xuan, De Roeck, Bui-Tien, Wahab (bib30) 2020; 157 Friedman (bib54) 1991 Shokrieh, Rafiee (bib40) 2010; 37 Zhai, Zhang, Xian, Yuan, Yang (bib12) 2019; 54 Mortazavi, Baniassadi, Bardon, Ahzi (bib14) 2013; 45 Mortazavi, Fan, Pereira, Harju, Rabczuk (bib7) 2016; 103 Zenzen, Khatir, Belaidi, Le Thanh, Wahab (bib29) 2020; 248 Mori, Tanaka (bib10) 1973; 21 Alpaydin (bib22) 2020 He, Mortazavi, Zhuang, Rabczuk (bib38) 2016; 152 Breiman (bib56) 1996; 24 Breiman, Friedman, Stone, Olshen (bib55) 1984 Sen, Torquato (bib11) 1989; 39 Moisala, Li, Kinloch, Windle (bib44) 2006; 66 Fiamegkou, Athanasopoulos, Kostopoulos (bib36) 2014; 35 Wolpert, Macready (bib51) 1997; 1 Nguyen-Le, Tao, Nguyen, Abdel-Wahab, Nguyen-Xuan (bib27) 2020; 235 Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (bib43) 2010; 9 Baughman, Zakhidov, De Heer (bib1) 2002; 297 Yin, Liew (bib48) 2021; 273 Breiman (bib57) 2001; 45 R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Ijcai, volume vol. 14, Montreal, Canada, pp. 1137–1145. Sheng, Boyce, Parks, Rutledge, Abes, Cohen (bib13) 2004; 45 Bishop (bib23) 2006 Khatir, Boutchicha, Le Thanh, Tran-Ngoc, Nguyen, Abdel-Wahab (bib28) 2020; 107 Liu, Vu-Bac, Zhuang, Rabczuk (bib20) 2020; 142 Shokrieh, Rafiee (bib17) 2010; 50 Vu-Bac, Silani, Lahmer, Zhuang, Rabczuk (bib19) 2015; 96 Hawkins, Basak, Mills (bib47) 2003; 43 Liew, Pan, Zhang (bib2) 2020; 63 Mortazavi, Yang, Mohebbi, Cuniberti, Rabczuk (bib6) 2017; 202 Vu-Bac, Lahmer, Zhang, Zhuang, Rabczuk (bib9) 2014; 59 Vu-Bac, Rafiee, Zhuang, Lahmer, Rabczuk (bib8) 2015; 68 Yengejeh, Kazemi, Öchsner (bib16) 2017; 136 Matos, Pinho, Tagarielli (bib24) 2019; 146 Mortazavi (bib5) 2017; 118 Pinsky, Karlin (bib21) 2010 Liu, Vu-Bac, Zhuang, Fu, Rabczuk (bib53) 2022 Wang, Wang, Zhou, Liu, Dai, Du, Wahab (bib31) 2021; 169 Maruyama, Kojima, Miyauchi, Chiashi, Kohno (bib33) 2002; 360 Guo, Zhuang, Chen, Alajlan, Rabczuk (bib26) 2022 Thostenson, Ren, Chou (bib3) 2001; 61 Mortazavi, Bardon, Ahzi (bib39) 2013; 69 Rong, Wei, Huang, Bao (bib25) 2019; 184 Vavouliotis, Fiamegou, Karapappas, Psarras, Kostopoulos (bib35) 2010; 31 Silani, Talebi, Ziaei-Rad, Kerfriden, Bordas, Rabczuk (bib37) 2014; 118 Huang, Liew, Liew (bib32) 2021; 267 Liu, Vu-Bac, Rabczuk (bib52) 2021; 273 Mortazavi, Ahzi (bib4) 2013; 63 D. Novák, B. Teplỳ, Z. Keršner, The role of Latin hypercube sampling method in reliability engineering, in: Proc. Of ICOSSAR, volume vol. 97, pp. 403–409. Xu, Wang, Shou, Ngo, Sadick, Wang (bib45) 2021; 28 Shao (bib50) 1993; 88 Maghsoudlou, Isfahani, Saber-Samandari, Sadighi (bib15) 2019; 175 Harish, Ishikawa, Einarsson, Aikawa, Chiashi, Shiomi, Maruyama (bib34) 2012; 55 Iman, Conover (bib41) 1980; 9 Kuhn, Johnson (bib49) 2013; vol. 26 Kuhn (10.1016/j.compscitech.2022.109425_bib49) 2013; vol. 26 Alpaydin (10.1016/j.compscitech.2022.109425_bib22) 2020 Baughman (10.1016/j.compscitech.2022.109425_bib1) 2002; 297 Wolpert (10.1016/j.compscitech.2022.109425_bib51) 1997; 1 Maruyama (10.1016/j.compscitech.2022.109425_bib33) 2002; 360 Vu-Bac (10.1016/j.compscitech.2022.109425_bib18) 2014; 68 Liew (10.1016/j.compscitech.2022.109425_bib2) 2020; 63 Tran-Ngoc (10.1016/j.compscitech.2022.109425_bib30) 2020; 157 Vu-Bac (10.1016/j.compscitech.2022.109425_bib9) 2014; 59 Shokrieh (10.1016/j.compscitech.2022.109425_bib40) 2010; 37 Mori (10.1016/j.compscitech.2022.109425_bib10) 1973; 21 Mortazavi (10.1016/j.compscitech.2022.109425_bib6) 2017; 202 Sheng (10.1016/j.compscitech.2022.109425_bib13) 2004; 45 Mortazavi (10.1016/j.compscitech.2022.109425_bib4) 2013; 63 Yengejeh (10.1016/j.compscitech.2022.109425_bib16) 2017; 136 Guo (10.1016/j.compscitech.2022.109425_bib26) 2022 Ghosh (10.1016/j.compscitech.2022.109425_bib43) 2010; 9 Fiamegkou (10.1016/j.compscitech.2022.109425_bib36) 2014; 35 Vu-Bac (10.1016/j.compscitech.2022.109425_bib19) 2015; 96 He (10.1016/j.compscitech.2022.109425_bib38) 2016; 152 Matos (10.1016/j.compscitech.2022.109425_bib24) 2019; 146 Rong (10.1016/j.compscitech.2022.109425_bib25) 2019; 184 Mortazavi (10.1016/j.compscitech.2022.109425_bib7) 2016; 103 Mortazavi (10.1016/j.compscitech.2022.109425_bib14) 2013; 45 Zhai (10.1016/j.compscitech.2022.109425_bib12) 2019; 54 Huang (10.1016/j.compscitech.2022.109425_bib32) 2021; 267 Bishop (10.1016/j.compscitech.2022.109425_bib23) 2006 Shao (10.1016/j.compscitech.2022.109425_bib50) 1993; 88 10.1016/j.compscitech.2022.109425_bib42 Breiman (10.1016/j.compscitech.2022.109425_bib56) 1996; 24 Moisala (10.1016/j.compscitech.2022.109425_bib44) 2006; 66 10.1016/j.compscitech.2022.109425_bib46 Breiman (10.1016/j.compscitech.2022.109425_bib57) 2001; 45 Friedman (10.1016/j.compscitech.2022.109425_bib54) 1991 Breiman (10.1016/j.compscitech.2022.109425_bib55) 1984 Liu (10.1016/j.compscitech.2022.109425_bib20) 2020; 142 Zenzen (10.1016/j.compscitech.2022.109425_bib29) 2020; 248 Pinsky (10.1016/j.compscitech.2022.109425_bib21) 2010 Xu (10.1016/j.compscitech.2022.109425_bib45) 2021; 28 Khatir (10.1016/j.compscitech.2022.109425_bib28) 2020; 107 Yin (10.1016/j.compscitech.2022.109425_bib48) 2021; 273 Silani (10.1016/j.compscitech.2022.109425_bib37) 2014; 118 Sen (10.1016/j.compscitech.2022.109425_bib11) 1989; 39 Vu-Bac (10.1016/j.compscitech.2022.109425_bib8) 2015; 68 Liu (10.1016/j.compscitech.2022.109425_bib53) 2022 Mortazavi (10.1016/j.compscitech.2022.109425_bib5) 2017; 118 Vavouliotis (10.1016/j.compscitech.2022.109425_bib35) 2010; 31 Liu (10.1016/j.compscitech.2022.109425_bib52) 2021; 273 Shokrieh (10.1016/j.compscitech.2022.109425_bib17) 2010; 50 Iman (10.1016/j.compscitech.2022.109425_bib41) 1980; 9 Mortazavi (10.1016/j.compscitech.2022.109425_bib39) 2013; 69 Hawkins (10.1016/j.compscitech.2022.109425_bib47) 2003; 43 Thostenson (10.1016/j.compscitech.2022.109425_bib3) 2001; 61 Harish (10.1016/j.compscitech.2022.109425_bib34) 2012; 55 Maghsoudlou (10.1016/j.compscitech.2022.109425_bib15) 2019; 175 Nguyen-Le (10.1016/j.compscitech.2022.109425_bib27) 2020; 235 Wang (10.1016/j.compscitech.2022.109425_bib31) 2021; 169 |
| References_xml | – volume: 360 start-page: 229 year: 2002 end-page: 234 ident: bib33 article-title: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol publication-title: Chem. Phys. Lett. – volume: 175 year: 2019 ident: bib15 article-title: Effect of interphase, curvature and agglomeration of swcnts on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations publication-title: Compos. B Eng. – volume: 248 year: 2020 ident: bib29 article-title: A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures publication-title: Compos. Struct. – year: 2010 ident: bib21 article-title: An Introduction to Stochastic Modeling – volume: 45 start-page: 487 year: 2004 end-page: 506 ident: bib13 article-title: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle publication-title: Polymer – start-page: 1 year: 1991 end-page: 67 ident: bib54 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 136 start-page: 85 year: 2017 end-page: 101 ident: bib16 article-title: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches publication-title: Comput. Mater. Sci. – volume: 88 start-page: 486 year: 1993 end-page: 494 ident: bib50 article-title: Linear model selection by cross-validation publication-title: J. Am. Stat. Assoc. – volume: 45 start-page: 1117 year: 2013 end-page: 1125 ident: bib14 article-title: Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods publication-title: Compos. B Eng. – volume: 169 year: 2021 ident: bib31 article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching publication-title: Measurement – volume: 63 start-page: 460 year: 2013 end-page: 470 ident: bib4 article-title: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study publication-title: Carbon – volume: 39 start-page: 4504 year: 1989 ident: bib11 article-title: Effective conductivity of anisotropic two-phase composite media publication-title: Phys. Rev. B – volume: 28 start-page: 3383 year: 2021 end-page: 3397 ident: bib45 article-title: Computer vision techniques in construction: a critical review publication-title: Arch. Comput. Methods Eng. – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: bib51 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – volume: 59 start-page: 80 year: 2014 end-page: 95 ident: bib9 article-title: Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs) publication-title: Compos. B Eng. – volume: 235 year: 2020 ident: bib27 article-title: A data-driven approach based on long short-term memory and hidden markov model for crack propagation prediction publication-title: Eng. Fract. Mech. – volume: 297 start-page: 787 year: 2002 end-page: 792 ident: bib1 article-title: Carbon nanotubes–the route toward applications publication-title: Science – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: bib56 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 273 year: 2021 ident: bib48 article-title: Machine learning and materials informatics approaches for evaluating the interfacial properties of fiber-reinforced composites publication-title: Compos. Struct. – volume: 21 start-page: 571 year: 1973 end-page: 574 ident: bib10 article-title: Average stress in matrix and average elastic energy of materials with misfitting inclusions publication-title: Acta Metall. – year: 2020 ident: bib22 article-title: Introduction to Machine Learning – volume: 107 year: 2020 ident: bib28 article-title: Improved ann technique combined with jaya algorithm for crack identification in plates using xiga and experimental analysis publication-title: Theor. Appl. Fract. Mech. – volume: 103 start-page: 318 year: 2016 end-page: 326 ident: bib7 article-title: Amorphized graphene: a stiff material with low thermal conductivity publication-title: Carbon – volume: 66 start-page: 1285 year: 2006 end-page: 1288 ident: bib44 article-title: Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites publication-title: Compos. Sci. Technol. – year: 2006 ident: bib23 article-title: Pattern Recognition and Machine Learning – volume: 96 start-page: 520 year: 2015 end-page: 535 ident: bib19 article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites publication-title: Comput. Mater. Sci. – volume: 184 year: 2019 ident: bib25 article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods publication-title: Compos. Sci. Technol. – volume: 118 start-page: 25 year: 2017 end-page: 34 ident: bib5 article-title: Ultra high stiffness and thermal conductivity of graphene like c3n publication-title: Carbon – volume: 54 start-page: 356 year: 2019 end-page: 369 ident: bib12 article-title: Modelling and analysis of effective thermal conductivity for polymer composites with sheet-like nanoparticles publication-title: J. Mater. Sci. – volume: 152 start-page: 939 year: 2016 end-page: 946 ident: bib38 article-title: Modeling kapitza resistance of two-phase composite material publication-title: Compos. Struct. – volume: 267 year: 2021 ident: bib32 article-title: Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites publication-title: Compos. Struct. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib57 article-title: Random forests publication-title: Mach. Learn. – volume: 61 start-page: 1899 year: 2001 end-page: 1912 ident: bib3 article-title: Advances in the science and technology of carbon nanotubes and their composites: a review publication-title: Compos. Sci. Technol. – volume: 9 start-page: 1749 year: 1980 end-page: 1842 ident: bib41 article-title: Small sample sensitivity analysis techniques for computer models. with an application to risk assessment publication-title: Commun. Stat. Theor. Methods – volume: 202 start-page: 323 year: 2017 end-page: 334 ident: bib6 article-title: Graphene or h-bn paraffin composite structures for the thermal management of li-ion batteries: a multiscale investigation publication-title: Appl. Energy – volume: 142 year: 2020 ident: bib20 article-title: Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites publication-title: Mech. Mater. – volume: vol. 26 year: 2013 ident: bib49 publication-title: Applied Predictive Modeling – volume: 63 start-page: 1 year: 2020 end-page: 17 ident: bib2 article-title: The recent progress of functionally graded cnt reinforced composites and structures publication-title: Sci. China Phys. Mech. Astron. – volume: 118 start-page: 241 year: 2014 end-page: 249 ident: bib37 article-title: Stochastic modelling of clay/epoxy nanocomposites publication-title: Compos. Struct. – volume: 273 year: 2021 ident: bib52 article-title: A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms publication-title: Compos. Struct. – year: 2022 ident: bib53 article-title: Stochastic full-range multiscale modeling of thermal conductivity of polymeric carbon nanotubes composites: a machine learning approach publication-title: Compos. Struct. – volume: 68 start-page: 446 year: 2015 end-page: 464 ident: bib8 article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters publication-title: Compos. B Eng. – volume: 35 start-page: 1997 year: 2014 end-page: 2009 ident: bib36 article-title: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems publication-title: Polym. Compos. – volume: 146 year: 2019 ident: bib24 article-title: Application of machine learning to predict the multiaxial strain-sensing response of cnt-polymer composites publication-title: Carbon – volume: 55 start-page: 3885 year: 2012 end-page: 3890 ident: bib34 article-title: Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions publication-title: Int. J. Heat Mass Tran. – start-page: 1 year: 2022 end-page: 26 ident: bib26 article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media publication-title: Eng. Comput. – volume: 9 start-page: 555 year: 2010 ident: bib43 article-title: Dimensional crossover of thermal transport in few-layer graphene publication-title: Nat. Mater. – volume: 50 start-page: 437 year: 2010 end-page: 446 ident: bib17 article-title: Stochastic multi-scale modeling of cnt/polymer composites publication-title: Comput. Mater. Sci. – year: 1984 ident: bib55 article-title: Classification and Regression Trees – volume: 31 start-page: 1874 year: 2010 end-page: 1880 ident: bib35 article-title: Dc and ac conductivity in epoxy resin/multiwall carbon nanotubes percolative system publication-title: Polym. Compos. – reference: D. Novák, B. Teplỳ, Z. Keršner, The role of Latin hypercube sampling method in reliability engineering, in: Proc. Of ICOSSAR, volume vol. 97, pp. 403–409. – volume: 69 start-page: 100 year: 2013 end-page: 106 ident: bib39 article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study publication-title: Comput. Mater. Sci. – volume: 157 year: 2020 ident: bib30 article-title: A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures publication-title: Int. J. Eng. Sci. – volume: 37 start-page: 235 year: 2010 end-page: 240 ident: bib40 article-title: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber publication-title: Mech. Res. Commun. – volume: 43 start-page: 579 year: 2003 end-page: 586 ident: bib47 article-title: Assessing model fit by cross-validation publication-title: J. Chem. Inf. Comput. Sci. – reference: R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Ijcai, volume vol. 14, Montreal, Canada, pp. 1137–1145. – volume: 68 start-page: 70 year: 2014 end-page: 84 ident: bib18 article-title: Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations publication-title: Mech. Mater. – volume: 45 start-page: 1117 year: 2013 ident: 10.1016/j.compscitech.2022.109425_bib14 article-title: Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2012.05.015 – volume: 39 start-page: 4504 year: 1989 ident: 10.1016/j.compscitech.2022.109425_bib11 article-title: Effective conductivity of anisotropic two-phase composite media publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.4504 – volume: 37 start-page: 235 year: 2010 ident: 10.1016/j.compscitech.2022.109425_bib40 article-title: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2009.12.002 – volume: 43 start-page: 579 year: 2003 ident: 10.1016/j.compscitech.2022.109425_bib47 article-title: Assessing model fit by cross-validation publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci025626i – volume: 273 year: 2021 ident: 10.1016/j.compscitech.2022.109425_bib48 article-title: Machine learning and materials informatics approaches for evaluating the interfacial properties of fiber-reinforced composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114328 – volume: 63 start-page: 460 year: 2013 ident: 10.1016/j.compscitech.2022.109425_bib4 article-title: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study publication-title: Carbon doi: 10.1016/j.carbon.2013.07.017 – volume: 96 start-page: 520 year: 2015 ident: 10.1016/j.compscitech.2022.109425_bib19 article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2014.04.066 – volume: 146 year: 2019 ident: 10.1016/j.compscitech.2022.109425_bib24 article-title: Application of machine learning to predict the multiaxial strain-sensing response of cnt-polymer composites publication-title: Carbon doi: 10.1016/j.carbon.2019.02.001 – volume: 235 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib27 article-title: A data-driven approach based on long short-term memory and hidden markov model for crack propagation prediction publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107085 – volume: 360 start-page: 229 year: 2002 ident: 10.1016/j.compscitech.2022.109425_bib33 article-title: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(02)00838-2 – volume: 118 start-page: 25 year: 2017 ident: 10.1016/j.compscitech.2022.109425_bib5 article-title: Ultra high stiffness and thermal conductivity of graphene like c3n publication-title: Carbon doi: 10.1016/j.carbon.2017.03.029 – volume: 136 start-page: 85 year: 2017 ident: 10.1016/j.compscitech.2022.109425_bib16 article-title: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2017.04.023 – volume: 50 start-page: 437 year: 2010 ident: 10.1016/j.compscitech.2022.109425_bib17 article-title: Stochastic multi-scale modeling of cnt/polymer composites publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2010.08.036 – volume: 68 start-page: 70 year: 2014 ident: 10.1016/j.compscitech.2022.109425_bib18 article-title: Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2013.07.021 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.compscitech.2022.109425_bib57 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – start-page: 1 year: 1991 ident: 10.1016/j.compscitech.2022.109425_bib54 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. – volume: 54 start-page: 356 year: 2019 ident: 10.1016/j.compscitech.2022.109425_bib12 article-title: Modelling and analysis of effective thermal conductivity for polymer composites with sheet-like nanoparticles publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2816-0 – year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib22 – volume: 152 start-page: 939 year: 2016 ident: 10.1016/j.compscitech.2022.109425_bib38 article-title: Modeling kapitza resistance of two-phase composite material publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.06.025 – volume: 103 start-page: 318 year: 2016 ident: 10.1016/j.compscitech.2022.109425_bib7 article-title: Amorphized graphene: a stiff material with low thermal conductivity publication-title: Carbon doi: 10.1016/j.carbon.2016.03.007 – volume: 9 start-page: 1749 year: 1980 ident: 10.1016/j.compscitech.2022.109425_bib41 article-title: Small sample sensitivity analysis techniques for computer models. with an application to risk assessment publication-title: Commun. Stat. Theor. Methods doi: 10.1080/03610928008827996 – volume: 59 start-page: 80 year: 2014 ident: 10.1016/j.compscitech.2022.109425_bib9 article-title: Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs) publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2013.11.014 – volume: 142 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib20 article-title: Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites publication-title: Mech. Mater. doi: 10.1016/j.mechmat.2019.103280 – volume: 21 start-page: 571 year: 1973 ident: 10.1016/j.compscitech.2022.109425_bib10 article-title: Average stress in matrix and average elastic energy of materials with misfitting inclusions publication-title: Acta Metall. doi: 10.1016/0001-6160(73)90064-3 – volume: 175 year: 2019 ident: 10.1016/j.compscitech.2022.109425_bib15 article-title: Effect of interphase, curvature and agglomeration of swcnts on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2019.107119 – year: 2010 ident: 10.1016/j.compscitech.2022.109425_bib21 – volume: 35 start-page: 1997 year: 2014 ident: 10.1016/j.compscitech.2022.109425_bib36 article-title: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems publication-title: Polym. Compos. doi: 10.1002/pc.22859 – volume: 169 year: 2021 ident: 10.1016/j.compscitech.2022.109425_bib31 article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching publication-title: Measurement doi: 10.1016/j.measurement.2020.108362 – volume: 68 start-page: 446 year: 2015 ident: 10.1016/j.compscitech.2022.109425_bib8 article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters publication-title: Compos. B Eng. doi: 10.1016/j.compositesb.2014.09.008 – volume: 267 year: 2021 ident: 10.1016/j.compscitech.2022.109425_bib32 article-title: Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.113917 – year: 1984 ident: 10.1016/j.compscitech.2022.109425_bib55 – volume: 297 start-page: 787 year: 2002 ident: 10.1016/j.compscitech.2022.109425_bib1 article-title: Carbon nanotubes–the route toward applications publication-title: Science doi: 10.1126/science.1060928 – ident: 10.1016/j.compscitech.2022.109425_bib46 – volume: 273 year: 2021 ident: 10.1016/j.compscitech.2022.109425_bib52 article-title: A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2021.114269 – ident: 10.1016/j.compscitech.2022.109425_bib42 – start-page: 1 year: 2022 ident: 10.1016/j.compscitech.2022.109425_bib26 article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media publication-title: Eng. Comput. – volume: 157 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib30 article-title: A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2020.103376 – volume: 202 start-page: 323 year: 2017 ident: 10.1016/j.compscitech.2022.109425_bib6 article-title: Graphene or h-bn paraffin composite structures for the thermal management of li-ion batteries: a multiscale investigation publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.05.175 – volume: 69 start-page: 100 year: 2013 ident: 10.1016/j.compscitech.2022.109425_bib39 article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.11.035 – volume: 55 start-page: 3885 year: 2012 ident: 10.1016/j.compscitech.2022.109425_bib34 article-title: Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2012.03.001 – volume: vol. 26 year: 2013 ident: 10.1016/j.compscitech.2022.109425_bib49 – volume: 107 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib28 article-title: Improved ann technique combined with jaya algorithm for crack identification in plates using xiga and experimental analysis publication-title: Theor. Appl. Fract. Mech. doi: 10.1016/j.tafmec.2020.102554 – volume: 31 start-page: 1874 year: 2010 ident: 10.1016/j.compscitech.2022.109425_bib35 article-title: Dc and ac conductivity in epoxy resin/multiwall carbon nanotubes percolative system publication-title: Polym. Compos. doi: 10.1002/pc.20981 – volume: 184 year: 2019 ident: 10.1016/j.compscitech.2022.109425_bib25 article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.107861 – volume: 88 start-page: 486 year: 1993 ident: 10.1016/j.compscitech.2022.109425_bib50 article-title: Linear model selection by cross-validation publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10476299 – year: 2022 ident: 10.1016/j.compscitech.2022.109425_bib53 article-title: Stochastic full-range multiscale modeling of thermal conductivity of polymeric carbon nanotubes composites: a machine learning approach publication-title: Compos. Struct. – volume: 63 start-page: 1 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib2 article-title: The recent progress of functionally graded cnt reinforced composites and structures publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-019-1457-2 – volume: 66 start-page: 1285 year: 2006 ident: 10.1016/j.compscitech.2022.109425_bib44 article-title: Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2005.10.016 – volume: 28 start-page: 3383 year: 2021 ident: 10.1016/j.compscitech.2022.109425_bib45 article-title: Computer vision techniques in construction: a critical review publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-020-09504-3 – volume: 1 start-page: 67 year: 1997 ident: 10.1016/j.compscitech.2022.109425_bib51 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – year: 2006 ident: 10.1016/j.compscitech.2022.109425_bib23 – volume: 248 year: 2020 ident: 10.1016/j.compscitech.2022.109425_bib29 article-title: A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2020.112497 – volume: 45 start-page: 487 year: 2004 ident: 10.1016/j.compscitech.2022.109425_bib13 article-title: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle publication-title: Polymer doi: 10.1016/j.polymer.2003.10.100 – volume: 9 start-page: 555 year: 2010 ident: 10.1016/j.compscitech.2022.109425_bib43 article-title: Dimensional crossover of thermal transport in few-layer graphene publication-title: Nat. Mater. doi: 10.1038/nmat2753 – volume: 61 start-page: 1899 year: 2001 ident: 10.1016/j.compscitech.2022.109425_bib3 article-title: Advances in the science and technology of carbon nanotubes and their composites: a review publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(01)00094-X – volume: 118 start-page: 241 year: 2014 ident: 10.1016/j.compscitech.2022.109425_bib37 article-title: Stochastic modelling of clay/epoxy nanocomposites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2014.07.009 – volume: 24 start-page: 123 year: 1996 ident: 10.1016/j.compscitech.2022.109425_bib56 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1023/A:1018054314350 |
| SSID | ssj0007592 |
| Score | 2.6668527 |
| Snippet | We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 109425 |
| SubjectTerms | Carbon Carbon nanotube reinforced polymeric composites (CNT-PCs) Carbon nanotubes Composite materials Computational complexity Computing costs Cost analysis Heat conductivity Heat transfer Machine learning Multi-scale stochastic modeling Multiscale analysis Nanotubes Particle swarm optimization Regression analysis Stochastic models Support vector machines Thermal conductivity Thermal management Thermal properties |
| Title | Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites |
| URI | https://dx.doi.org/10.1016/j.compscitech.2022.109425 https://www.proquest.com/docview/2686219784 |
| Volume | 224 |
| WOSCitedRecordID | wos000795644600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-1050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007592 issn: 0266-3538 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FFvE4ICggCgUtEuISuUr8iNcSl4JSAYoKEmmV22q9XpeUxDZJXLV_h7_Fn2HGu-sNj6Jw4GJF4_iV-TwzO5n5hpAX4CJZmMXCC5WKvFDgmJe4J70MlmI5xN9S5VkzbCI-OmKTSfKx0_lue2HOZ3FRsIuLpPqvqgYZKBtbZ_9B3e1JQQCfQemwBbXDdiPFf1qV8rNA-mXHBZF1503RpLJTIk676L4yXU-4BD2pll28LTysFvgnjo0oUYLB4rwhFCmQJlbPncBCdrFI4VuFKMpVneIgloaPFUsLqnJ2qcv1sXgdK8RM0aJlR2ilXdth1NR0_pbxH03rBovlFzG1spPaey2kdhJzlwKvTQ58MhXlpXXNiNHaSmelkZp8ByyVcVDQwCXh2kackzVTCWGGF0SaJ2ZfaVPO4gScjKa1tbbe98M1a93_ow_R6YwzhEAFT44PvI83gsxboe7S_pm3--gDPzwejfh4OBm_rL56ONIMfzgz3-Ua2fbjKAGTu33wbjh53wYKIPR1ClDf_A3y3JUfXnH1q8KnXwKJJjoa3yV3zLKGHmg43iMdVeyQm7brfblDbq8RX94n3xxIqQMpNSClFqS0ASl1IKUWpBTgRQGO1IGUlnkjMSCl6yCFi1ANUmpBSh1IaQtS6kD6gBwfDsdv3npmWogngzBZeSLtiTwEizQQcS8NRG-QJiKKM9-PBzJnQZ6zNJEy8mWW-ApXDmqQ9vui11cQLCgRPCRbRVmoR4QmEtacgQLfBt5KIYEvi1nIskixHM7OdgmzSuDSUOnjRJcZtzWTZ3xNfxz1x7X-donfHlppPplNDnplNc3Nu6gDXg6Y3eTwPYsObgzVkvvYGtZP4Lke_333E3LLvYZ7ZGu1qNVTcl2eg-YXzwymfwBks_G4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+integrated+machine+learning+based+multiscale+approach+for+the+prediction+of+the+thermal+conductivity+in+carbon+nanotube+reinforced+polymeric+composites&rft.jtitle=Composites+science+and+technology&rft.au=Liu%2C+Bokai&rft.au=Vu-Bac%2C+Nam&rft.au=Zhuang%2C+Xiaoying&rft.au=Fu%2C+Xiaolong&rft.date=2022-06-16&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109425&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon |