Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites

We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology Jg. 224; S. 109425
Hauptverfasser: Liu, Bokai, Vu-Bac, Nam, Zhuang, Xiaoying, Fu, Xiaolong, Rabczuk, Timon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Barking Elsevier Ltd 16.06.2022
Elsevier BV
Schlagworte:
ISSN:0266-3538, 1879-1050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management. [Display omitted]
AbstractList We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management. [Display omitted]
We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube reinforced polymeric composites (CNT-PCs). Seven types of machine learning models are exploited, namely Multivariate Adaptive Regression Splines (MARS), Support Vector Machine (SVM), Regression Tree (RT), Bagging Tree (Bag), Random Forest (RF), Gradient Boosting Machine (GBM) and Cubist. They are used as components of stochastic modeling constructing the relationship between all uncertain inputs variables and the output of interest, the macroscopic thermal conductivity of the composite. Particle Swarm Optimization (PSO) is used for hyper-parameter tuning to find the global optimal values leading to a significant reduction in the computational cost. We also analyze the advantages and disadvantages of various methods in terms of computational expense and model complexity. We believe that the presented stochastic integrated machine learning approach accounting for uncertainties is a valuable step towards computational design of new composites for application related to thermal management.
ArticleNumber 109425
Author Vu-Bac, Nam
Zhuang, Xiaoying
Liu, Bokai
Rabczuk, Timon
Fu, Xiaolong
Author_xml – sequence: 1
  givenname: Bokai
  surname: Liu
  fullname: Liu, Bokai
  organization: Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423, Weimar, Germany
– sequence: 2
  givenname: Nam
  surname: Vu-Bac
  fullname: Vu-Bac, Nam
  organization: Institute of Photonics, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
– sequence: 3
  givenname: Xiaoying
  surname: Zhuang
  fullname: Zhuang, Xiaoying
  organization: Institute of Photonics, Gottfried Wilhelm Leibniz Universität Hannover, 30167, Hannover, Germany
– sequence: 4
  givenname: Xiaolong
  surname: Fu
  fullname: Fu, Xiaolong
  organization: Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China
– sequence: 5
  givenname: Timon
  surname: Rabczuk
  fullname: Rabczuk, Timon
  email: timon.rabczuk@uni-weimar.de
  organization: Institute of Structural Mechanics, Bauhaus-Universität Weimar, Marienstr. 15, D-99423, Weimar, Germany
BookMark eNqNUU1r3DAUFCWBbtL8B5WevZFkW7ZPpSz9CAR6aHsWz8_PWS225EpyYP9Of2nlbg-lpxyE4GnejGbmhl0574ixt1LspZD6_rRHPy8RbSI87pVQKs-7StWv2E62TVdIUYsrthNK66Ksy_Y1u4nxJIRo6k7t2K9vyeMRYrLIrUv0FCDRwGfAo3XEJ4LgrHviPcRtvE7JRoSJOCxL8BnFRx94OhJfAg0Wk_WO-_HPJJ8ww8TRu2HNL882nbMIRwh9RjlwPq098UDWZRbMAoufzjOF_JnNlo_ZVnzDrkeYIt39vW_Zj08fvx--FI9fPz8cPjwWWFZdKqAXMFaEqKERfQlC9x3UzaBUo3Fsy3Fs-w6xVjh0imRd1aR7KUFIqnRDUN6ydxfebOznSjGZk1-Dy5JG6VYr2TVtlVHvLygMPsZAo8nZw2Y7BbCTkcJsxZiT-acYsxVjLsVkhu4_hiXYGcL5RbuHyy7lIJ4tBZNR5HJ0NhAmM3j7Apbfby24XQ
CitedBy_id crossref_primary_10_1007_s00339_025_08359_4
crossref_primary_10_1007_s00339_025_08750_1
crossref_primary_10_1080_19942060_2025_2553337
crossref_primary_10_1007_s00339_025_08687_5
crossref_primary_10_1007_s11709_025_1152_0
crossref_primary_10_1007_s11709_025_1190_7
crossref_primary_10_1016_j_cpc_2023_108969
crossref_primary_10_1016_j_compstruct_2024_117974
crossref_primary_10_1016_j_techsoc_2023_102347
crossref_primary_10_1016_j_diamond_2022_109512
crossref_primary_10_1016_j_tsep_2024_102882
crossref_primary_10_1007_s00339_025_08536_5
crossref_primary_10_1080_15397734_2024_2400223
crossref_primary_10_1016_j_colsurfa_2024_133536
crossref_primary_10_1080_15397734_2025_2562325
crossref_primary_10_1007_s10999_023_09686_1
crossref_primary_10_1007_s00339_025_08822_2
crossref_primary_10_1016_j_ijmecsci_2023_108270
crossref_primary_10_1007_s11709_025_1200_9
crossref_primary_10_1016_j_undsp_2024_08_010
crossref_primary_10_1016_j_jmps_2024_105881
crossref_primary_10_3390_su17062660
crossref_primary_10_1016_j_compstruct_2023_117601
crossref_primary_10_1016_j_techsoc_2025_102848
crossref_primary_10_1016_j_undsp_2023_11_008
crossref_primary_10_1016_j_compscitech_2022_109820
crossref_primary_10_3390_su151411275
crossref_primary_10_1016_j_enggeo_2025_108362
crossref_primary_10_1016_j_enggeo_2024_107694
crossref_primary_10_1016_j_enggeo_2025_108126
crossref_primary_10_1109_ACCESS_2024_3494549
crossref_primary_10_1002_app_53417
crossref_primary_10_1007_s44163_025_00260_6
crossref_primary_10_1007_s11709_025_1191_6
crossref_primary_10_1007_s44379_025_00021_3
crossref_primary_10_1016_j_applthermaleng_2024_124410
crossref_primary_10_3390_chemosensors13070224
crossref_primary_10_1007_s10999_023_09647_8
crossref_primary_10_1016_j_cej_2024_156789
crossref_primary_10_1002_pc_27430
crossref_primary_10_1002_pc_29612
crossref_primary_10_1016_j_undsp_2025_04_008
crossref_primary_10_1002_msd2_70004
crossref_primary_10_1016_j_compstruct_2025_119292
crossref_primary_10_1016_j_icheatmasstransfer_2024_107296
crossref_primary_10_1002_mgea_70027
crossref_primary_10_1007_s00339_025_08388_z
crossref_primary_10_1016_j_advengsoft_2022_103398
crossref_primary_10_1016_j_enganabound_2025_106204
crossref_primary_10_1007_s00339_025_08678_6
crossref_primary_10_1016_j_compositesa_2025_109027
crossref_primary_10_1080_15397734_2024_2378474
crossref_primary_10_1016_j_jmps_2023_105444
crossref_primary_10_1016_j_enggeo_2024_107874
crossref_primary_10_1016_j_conbuildmat_2023_132179
crossref_primary_10_3390_nano14211688
crossref_primary_10_3390_nano12172957
crossref_primary_10_32604_cmes_2023_029471
crossref_primary_10_1080_15397734_2025_2538094
crossref_primary_10_1016_j_ijmecsci_2024_109550
crossref_primary_10_1016_j_undsp_2025_02_004
crossref_primary_10_1016_j_compstruct_2025_119671
crossref_primary_10_1016_j_diamond_2025_112324
crossref_primary_10_1016_j_compstruct_2025_119395
crossref_primary_10_1016_j_compstruct_2025_119433
crossref_primary_10_1007_s41939_024_00588_z
crossref_primary_10_1007_s00339_025_08560_5
crossref_primary_10_1016_j_rineng_2024_103599
crossref_primary_10_1007_s00339_022_05787_4
crossref_primary_10_1007_s11709_025_1219_y
crossref_primary_10_1016_j_mtcomm_2023_105428
crossref_primary_10_1016_j_enganabound_2023_12_024
crossref_primary_10_1080_1536383X_2023_2292694
crossref_primary_10_1080_20550324_2024_2367181
crossref_primary_10_1016_j_carbon_2023_01_041
crossref_primary_10_1002_pc_28941
crossref_primary_10_1051_e3sconf_202342802013
crossref_primary_10_3390_su17062729
crossref_primary_10_1080_15397734_2025_2556241
crossref_primary_10_1016_j_mtcomm_2025_113863
crossref_primary_10_1016_j_biopsycho_2022_108464
crossref_primary_10_1016_j_compositesa_2025_109289
crossref_primary_10_1016_j_compositesa_2024_108053
crossref_primary_10_1016_j_enggeo_2025_107917
crossref_primary_10_1002_pol_20240522
crossref_primary_10_1016_j_mtcomm_2025_112097
crossref_primary_10_1007_s11831_025_10325_5
crossref_primary_10_1080_15397734_2024_2414771
crossref_primary_10_1149_2162_8777_adf3e5
crossref_primary_10_1016_j_enggeo_2025_107998
crossref_primary_10_1080_15376494_2023_2245816
crossref_primary_10_1002_msd2_70017
crossref_primary_10_1007_s11709_025_1162_y
crossref_primary_10_1007_s42823_025_00952_0
crossref_primary_10_1016_j_renene_2023_119565
crossref_primary_10_1080_15397734_2024_2332642
crossref_primary_10_1080_15397734_2025_2556240
crossref_primary_10_1007_s11831_025_10313_9
crossref_primary_10_1007_s10999_023_09679_0
crossref_primary_10_1016_j_compscitech_2023_110414
crossref_primary_10_1016_j_compositesa_2025_108882
crossref_primary_10_1016_j_hybadv_2025_100385
crossref_primary_10_3390_en18123031
crossref_primary_10_1016_j_aei_2025_103875
crossref_primary_10_1007_s10999_022_09632_7
crossref_primary_10_1016_j_matpr_2023_09_115
crossref_primary_10_1007_s00339_025_08899_9
crossref_primary_10_1038_s41467_023_38508_3
crossref_primary_10_1039_D4MH01909A
crossref_primary_10_1007_s10999_025_09815_y
crossref_primary_10_1007_s00339_023_06437_z
crossref_primary_10_1016_j_tsep_2025_103711
crossref_primary_10_1002_adma_202503140
crossref_primary_10_3846_aviation_2024_21472
crossref_primary_10_1007_s11709_024_1114_y
crossref_primary_10_1016_j_asoc_2023_110812
crossref_primary_10_1007_s00339_024_08137_8
crossref_primary_10_2298_TSCI220311039J
crossref_primary_10_1002_pc_26816
crossref_primary_10_1007_s44379_024_00001_z
crossref_primary_10_1016_j_compositesb_2024_111744
crossref_primary_10_1002_app_55094
crossref_primary_10_1016_j_ast_2024_109726
crossref_primary_10_1002_msd2_70038
crossref_primary_10_1007_s11709_025_1166_7
crossref_primary_10_1080_15397734_2024_2438782
crossref_primary_10_1002_adem_202400782
crossref_primary_10_1002_adem_202401233
crossref_primary_10_1016_j_icheatmasstransfer_2025_108655
crossref_primary_10_1002_nme_7456
crossref_primary_10_1016_j_mtchem_2025_102616
crossref_primary_10_1007_s13726_025_01558_z
Cites_doi 10.1016/j.compositesb.2012.05.015
10.1103/PhysRevB.39.4504
10.1016/j.mechrescom.2009.12.002
10.1021/ci025626i
10.1016/j.compstruct.2021.114328
10.1016/j.carbon.2013.07.017
10.1016/j.commatsci.2014.04.066
10.1016/j.carbon.2019.02.001
10.1016/j.engfracmech.2020.107085
10.1016/S0009-2614(02)00838-2
10.1016/j.carbon.2017.03.029
10.1016/j.commatsci.2017.04.023
10.1016/j.commatsci.2010.08.036
10.1016/j.mechmat.2013.07.021
10.1023/A:1010933404324
10.1007/s10853-018-2816-0
10.1016/j.compstruct.2016.06.025
10.1016/j.carbon.2016.03.007
10.1080/03610928008827996
10.1016/j.compositesb.2013.11.014
10.1016/j.mechmat.2019.103280
10.1016/0001-6160(73)90064-3
10.1016/j.compositesb.2019.107119
10.1002/pc.22859
10.1016/j.measurement.2020.108362
10.1016/j.compositesb.2014.09.008
10.1016/j.compstruct.2021.113917
10.1126/science.1060928
10.1016/j.compstruct.2021.114269
10.1016/j.ijengsci.2020.103376
10.1016/j.apenergy.2017.05.175
10.1016/j.commatsci.2012.11.035
10.1016/j.ijheatmasstransfer.2012.03.001
10.1016/j.tafmec.2020.102554
10.1002/pc.20981
10.1016/j.compscitech.2019.107861
10.1080/01621459.1993.10476299
10.1007/s11433-019-1457-2
10.1016/j.compscitech.2005.10.016
10.1007/s11831-020-09504-3
10.1109/4235.585893
10.1016/j.compstruct.2020.112497
10.1016/j.polymer.2003.10.100
10.1038/nmat2753
10.1016/S0266-3538(01)00094-X
10.1016/j.compstruct.2014.07.009
10.1023/A:1018054314350
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jun 16, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jun 16, 2022
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1016/j.compscitech.2022.109425
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-1050
ExternalDocumentID 10_1016_j_compscitech_2022_109425
S0266353822001671
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
XPP
ZMT
~G-
.-4
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
SMS
T9H
VH1
WUQ
~HD
7SR
8FD
AGCQF
JG9
ID FETCH-LOGICAL-c349t-ab0af4ecc6a70b3a06b9a57d2276cf83ff8b9cc52cd92e1545e6b11a01e467ea3
ISICitedReferencesCount 142
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000795644600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-3538
IngestDate Sun Sep 07 03:41:14 EDT 2025
Tue Nov 18 22:25:48 EST 2025
Sat Nov 29 07:17:37 EST 2025
Fri Feb 23 02:41:11 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Thermal properties
Carbon nanotube reinforced polymeric composites (CNT-PCs)
Multi-scale stochastic modeling
Computational complexity
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-ab0af4ecc6a70b3a06b9a57d2276cf83ff8b9cc52cd92e1545e6b11a01e467ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2686219784
PQPubID 2045270
ParticipantIDs proquest_journals_2686219784
crossref_citationtrail_10_1016_j_compscitech_2022_109425
crossref_primary_10_1016_j_compscitech_2022_109425
elsevier_sciencedirect_doi_10_1016_j_compscitech_2022_109425
PublicationCentury 2000
PublicationDate 2022-06-16
PublicationDateYYYYMMDD 2022-06-16
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-16
  day: 16
PublicationDecade 2020
PublicationPlace Barking
PublicationPlace_xml – name: Barking
PublicationTitle Composites science and technology
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Vu-Bac, Lahmer, Keitel, Zhao, Zhuang, Rabczuk (bib18) 2014; 68
Tran-Ngoc, Khatir, Le-Xuan, De Roeck, Bui-Tien, Wahab (bib30) 2020; 157
Friedman (bib54) 1991
Shokrieh, Rafiee (bib40) 2010; 37
Zhai, Zhang, Xian, Yuan, Yang (bib12) 2019; 54
Mortazavi, Baniassadi, Bardon, Ahzi (bib14) 2013; 45
Mortazavi, Fan, Pereira, Harju, Rabczuk (bib7) 2016; 103
Zenzen, Khatir, Belaidi, Le Thanh, Wahab (bib29) 2020; 248
Mori, Tanaka (bib10) 1973; 21
Alpaydin (bib22) 2020
He, Mortazavi, Zhuang, Rabczuk (bib38) 2016; 152
Breiman (bib56) 1996; 24
Breiman, Friedman, Stone, Olshen (bib55) 1984
Sen, Torquato (bib11) 1989; 39
Moisala, Li, Kinloch, Windle (bib44) 2006; 66
Fiamegkou, Athanasopoulos, Kostopoulos (bib36) 2014; 35
Wolpert, Macready (bib51) 1997; 1
Nguyen-Le, Tao, Nguyen, Abdel-Wahab, Nguyen-Xuan (bib27) 2020; 235
Ghosh, Bao, Nika, Subrina, Pokatilov, Lau, Balandin (bib43) 2010; 9
Baughman, Zakhidov, De Heer (bib1) 2002; 297
Yin, Liew (bib48) 2021; 273
Breiman (bib57) 2001; 45
R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Ijcai, volume vol. 14, Montreal, Canada, pp. 1137–1145.
Sheng, Boyce, Parks, Rutledge, Abes, Cohen (bib13) 2004; 45
Bishop (bib23) 2006
Khatir, Boutchicha, Le Thanh, Tran-Ngoc, Nguyen, Abdel-Wahab (bib28) 2020; 107
Liu, Vu-Bac, Zhuang, Rabczuk (bib20) 2020; 142
Shokrieh, Rafiee (bib17) 2010; 50
Vu-Bac, Silani, Lahmer, Zhuang, Rabczuk (bib19) 2015; 96
Hawkins, Basak, Mills (bib47) 2003; 43
Liew, Pan, Zhang (bib2) 2020; 63
Mortazavi, Yang, Mohebbi, Cuniberti, Rabczuk (bib6) 2017; 202
Vu-Bac, Lahmer, Zhang, Zhuang, Rabczuk (bib9) 2014; 59
Vu-Bac, Rafiee, Zhuang, Lahmer, Rabczuk (bib8) 2015; 68
Yengejeh, Kazemi, Öchsner (bib16) 2017; 136
Matos, Pinho, Tagarielli (bib24) 2019; 146
Mortazavi (bib5) 2017; 118
Pinsky, Karlin (bib21) 2010
Liu, Vu-Bac, Zhuang, Fu, Rabczuk (bib53) 2022
Wang, Wang, Zhou, Liu, Dai, Du, Wahab (bib31) 2021; 169
Maruyama, Kojima, Miyauchi, Chiashi, Kohno (bib33) 2002; 360
Guo, Zhuang, Chen, Alajlan, Rabczuk (bib26) 2022
Thostenson, Ren, Chou (bib3) 2001; 61
Mortazavi, Bardon, Ahzi (bib39) 2013; 69
Rong, Wei, Huang, Bao (bib25) 2019; 184
Vavouliotis, Fiamegou, Karapappas, Psarras, Kostopoulos (bib35) 2010; 31
Silani, Talebi, Ziaei-Rad, Kerfriden, Bordas, Rabczuk (bib37) 2014; 118
Huang, Liew, Liew (bib32) 2021; 267
Liu, Vu-Bac, Rabczuk (bib52) 2021; 273
Mortazavi, Ahzi (bib4) 2013; 63
D. Novák, B. Teplỳ, Z. Keršner, The role of Latin hypercube sampling method in reliability engineering, in: Proc. Of ICOSSAR, volume vol. 97, pp. 403–409.
Xu, Wang, Shou, Ngo, Sadick, Wang (bib45) 2021; 28
Shao (bib50) 1993; 88
Maghsoudlou, Isfahani, Saber-Samandari, Sadighi (bib15) 2019; 175
Harish, Ishikawa, Einarsson, Aikawa, Chiashi, Shiomi, Maruyama (bib34) 2012; 55
Iman, Conover (bib41) 1980; 9
Kuhn, Johnson (bib49) 2013; vol. 26
Kuhn (10.1016/j.compscitech.2022.109425_bib49) 2013; vol. 26
Alpaydin (10.1016/j.compscitech.2022.109425_bib22) 2020
Baughman (10.1016/j.compscitech.2022.109425_bib1) 2002; 297
Wolpert (10.1016/j.compscitech.2022.109425_bib51) 1997; 1
Maruyama (10.1016/j.compscitech.2022.109425_bib33) 2002; 360
Vu-Bac (10.1016/j.compscitech.2022.109425_bib18) 2014; 68
Liew (10.1016/j.compscitech.2022.109425_bib2) 2020; 63
Tran-Ngoc (10.1016/j.compscitech.2022.109425_bib30) 2020; 157
Vu-Bac (10.1016/j.compscitech.2022.109425_bib9) 2014; 59
Shokrieh (10.1016/j.compscitech.2022.109425_bib40) 2010; 37
Mori (10.1016/j.compscitech.2022.109425_bib10) 1973; 21
Mortazavi (10.1016/j.compscitech.2022.109425_bib6) 2017; 202
Sheng (10.1016/j.compscitech.2022.109425_bib13) 2004; 45
Mortazavi (10.1016/j.compscitech.2022.109425_bib4) 2013; 63
Yengejeh (10.1016/j.compscitech.2022.109425_bib16) 2017; 136
Guo (10.1016/j.compscitech.2022.109425_bib26) 2022
Ghosh (10.1016/j.compscitech.2022.109425_bib43) 2010; 9
Fiamegkou (10.1016/j.compscitech.2022.109425_bib36) 2014; 35
Vu-Bac (10.1016/j.compscitech.2022.109425_bib19) 2015; 96
He (10.1016/j.compscitech.2022.109425_bib38) 2016; 152
Matos (10.1016/j.compscitech.2022.109425_bib24) 2019; 146
Rong (10.1016/j.compscitech.2022.109425_bib25) 2019; 184
Mortazavi (10.1016/j.compscitech.2022.109425_bib7) 2016; 103
Mortazavi (10.1016/j.compscitech.2022.109425_bib14) 2013; 45
Zhai (10.1016/j.compscitech.2022.109425_bib12) 2019; 54
Huang (10.1016/j.compscitech.2022.109425_bib32) 2021; 267
Bishop (10.1016/j.compscitech.2022.109425_bib23) 2006
Shao (10.1016/j.compscitech.2022.109425_bib50) 1993; 88
10.1016/j.compscitech.2022.109425_bib42
Breiman (10.1016/j.compscitech.2022.109425_bib56) 1996; 24
Moisala (10.1016/j.compscitech.2022.109425_bib44) 2006; 66
10.1016/j.compscitech.2022.109425_bib46
Breiman (10.1016/j.compscitech.2022.109425_bib57) 2001; 45
Friedman (10.1016/j.compscitech.2022.109425_bib54) 1991
Breiman (10.1016/j.compscitech.2022.109425_bib55) 1984
Liu (10.1016/j.compscitech.2022.109425_bib20) 2020; 142
Zenzen (10.1016/j.compscitech.2022.109425_bib29) 2020; 248
Pinsky (10.1016/j.compscitech.2022.109425_bib21) 2010
Xu (10.1016/j.compscitech.2022.109425_bib45) 2021; 28
Khatir (10.1016/j.compscitech.2022.109425_bib28) 2020; 107
Yin (10.1016/j.compscitech.2022.109425_bib48) 2021; 273
Silani (10.1016/j.compscitech.2022.109425_bib37) 2014; 118
Sen (10.1016/j.compscitech.2022.109425_bib11) 1989; 39
Vu-Bac (10.1016/j.compscitech.2022.109425_bib8) 2015; 68
Liu (10.1016/j.compscitech.2022.109425_bib53) 2022
Mortazavi (10.1016/j.compscitech.2022.109425_bib5) 2017; 118
Vavouliotis (10.1016/j.compscitech.2022.109425_bib35) 2010; 31
Liu (10.1016/j.compscitech.2022.109425_bib52) 2021; 273
Shokrieh (10.1016/j.compscitech.2022.109425_bib17) 2010; 50
Iman (10.1016/j.compscitech.2022.109425_bib41) 1980; 9
Mortazavi (10.1016/j.compscitech.2022.109425_bib39) 2013; 69
Hawkins (10.1016/j.compscitech.2022.109425_bib47) 2003; 43
Thostenson (10.1016/j.compscitech.2022.109425_bib3) 2001; 61
Harish (10.1016/j.compscitech.2022.109425_bib34) 2012; 55
Maghsoudlou (10.1016/j.compscitech.2022.109425_bib15) 2019; 175
Nguyen-Le (10.1016/j.compscitech.2022.109425_bib27) 2020; 235
Wang (10.1016/j.compscitech.2022.109425_bib31) 2021; 169
References_xml – volume: 360
  start-page: 229
  year: 2002
  end-page: 234
  ident: bib33
  article-title: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol
  publication-title: Chem. Phys. Lett.
– volume: 175
  year: 2019
  ident: bib15
  article-title: Effect of interphase, curvature and agglomeration of swcnts on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations
  publication-title: Compos. B Eng.
– volume: 248
  year: 2020
  ident: bib29
  article-title: A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures
  publication-title: Compos. Struct.
– year: 2010
  ident: bib21
  article-title: An Introduction to Stochastic Modeling
– volume: 45
  start-page: 487
  year: 2004
  end-page: 506
  ident: bib13
  article-title: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle
  publication-title: Polymer
– start-page: 1
  year: 1991
  end-page: 67
  ident: bib54
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 136
  start-page: 85
  year: 2017
  end-page: 101
  ident: bib16
  article-title: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches
  publication-title: Comput. Mater. Sci.
– volume: 88
  start-page: 486
  year: 1993
  end-page: 494
  ident: bib50
  article-title: Linear model selection by cross-validation
  publication-title: J. Am. Stat. Assoc.
– volume: 45
  start-page: 1117
  year: 2013
  end-page: 1125
  ident: bib14
  article-title: Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods
  publication-title: Compos. B Eng.
– volume: 169
  year: 2021
  ident: bib31
  article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching
  publication-title: Measurement
– volume: 63
  start-page: 460
  year: 2013
  end-page: 470
  ident: bib4
  article-title: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study
  publication-title: Carbon
– volume: 39
  start-page: 4504
  year: 1989
  ident: bib11
  article-title: Effective conductivity of anisotropic two-phase composite media
  publication-title: Phys. Rev. B
– volume: 28
  start-page: 3383
  year: 2021
  end-page: 3397
  ident: bib45
  article-title: Computer vision techniques in construction: a critical review
  publication-title: Arch. Comput. Methods Eng.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: bib51
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 59
  start-page: 80
  year: 2014
  end-page: 95
  ident: bib9
  article-title: Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs)
  publication-title: Compos. B Eng.
– volume: 235
  year: 2020
  ident: bib27
  article-title: A data-driven approach based on long short-term memory and hidden markov model for crack propagation prediction
  publication-title: Eng. Fract. Mech.
– volume: 297
  start-page: 787
  year: 2002
  end-page: 792
  ident: bib1
  article-title: Carbon nanotubes–the route toward applications
  publication-title: Science
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: bib56
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 273
  year: 2021
  ident: bib48
  article-title: Machine learning and materials informatics approaches for evaluating the interfacial properties of fiber-reinforced composites
  publication-title: Compos. Struct.
– volume: 21
  start-page: 571
  year: 1973
  end-page: 574
  ident: bib10
  article-title: Average stress in matrix and average elastic energy of materials with misfitting inclusions
  publication-title: Acta Metall.
– year: 2020
  ident: bib22
  article-title: Introduction to Machine Learning
– volume: 107
  year: 2020
  ident: bib28
  article-title: Improved ann technique combined with jaya algorithm for crack identification in plates using xiga and experimental analysis
  publication-title: Theor. Appl. Fract. Mech.
– volume: 103
  start-page: 318
  year: 2016
  end-page: 326
  ident: bib7
  article-title: Amorphized graphene: a stiff material with low thermal conductivity
  publication-title: Carbon
– volume: 66
  start-page: 1285
  year: 2006
  end-page: 1288
  ident: bib44
  article-title: Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites
  publication-title: Compos. Sci. Technol.
– year: 2006
  ident: bib23
  article-title: Pattern Recognition and Machine Learning
– volume: 96
  start-page: 520
  year: 2015
  end-page: 535
  ident: bib19
  article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites
  publication-title: Comput. Mater. Sci.
– volume: 184
  year: 2019
  ident: bib25
  article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods
  publication-title: Compos. Sci. Technol.
– volume: 118
  start-page: 25
  year: 2017
  end-page: 34
  ident: bib5
  article-title: Ultra high stiffness and thermal conductivity of graphene like c3n
  publication-title: Carbon
– volume: 54
  start-page: 356
  year: 2019
  end-page: 369
  ident: bib12
  article-title: Modelling and analysis of effective thermal conductivity for polymer composites with sheet-like nanoparticles
  publication-title: J. Mater. Sci.
– volume: 152
  start-page: 939
  year: 2016
  end-page: 946
  ident: bib38
  article-title: Modeling kapitza resistance of two-phase composite material
  publication-title: Compos. Struct.
– volume: 267
  year: 2021
  ident: bib32
  article-title: Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites
  publication-title: Compos. Struct.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib57
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 61
  start-page: 1899
  year: 2001
  end-page: 1912
  ident: bib3
  article-title: Advances in the science and technology of carbon nanotubes and their composites: a review
  publication-title: Compos. Sci. Technol.
– volume: 9
  start-page: 1749
  year: 1980
  end-page: 1842
  ident: bib41
  article-title: Small sample sensitivity analysis techniques for computer models. with an application to risk assessment
  publication-title: Commun. Stat. Theor. Methods
– volume: 202
  start-page: 323
  year: 2017
  end-page: 334
  ident: bib6
  article-title: Graphene or h-bn paraffin composite structures for the thermal management of li-ion batteries: a multiscale investigation
  publication-title: Appl. Energy
– volume: 142
  year: 2020
  ident: bib20
  article-title: Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites
  publication-title: Mech. Mater.
– volume: vol. 26
  year: 2013
  ident: bib49
  publication-title: Applied Predictive Modeling
– volume: 63
  start-page: 1
  year: 2020
  end-page: 17
  ident: bib2
  article-title: The recent progress of functionally graded cnt reinforced composites and structures
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 118
  start-page: 241
  year: 2014
  end-page: 249
  ident: bib37
  article-title: Stochastic modelling of clay/epoxy nanocomposites
  publication-title: Compos. Struct.
– volume: 273
  year: 2021
  ident: bib52
  article-title: A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms
  publication-title: Compos. Struct.
– year: 2022
  ident: bib53
  article-title: Stochastic full-range multiscale modeling of thermal conductivity of polymeric carbon nanotubes composites: a machine learning approach
  publication-title: Compos. Struct.
– volume: 68
  start-page: 446
  year: 2015
  end-page: 464
  ident: bib8
  article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
  publication-title: Compos. B Eng.
– volume: 35
  start-page: 1997
  year: 2014
  end-page: 2009
  ident: bib36
  article-title: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems
  publication-title: Polym. Compos.
– volume: 146
  year: 2019
  ident: bib24
  article-title: Application of machine learning to predict the multiaxial strain-sensing response of cnt-polymer composites
  publication-title: Carbon
– volume: 55
  start-page: 3885
  year: 2012
  end-page: 3890
  ident: bib34
  article-title: Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions
  publication-title: Int. J. Heat Mass Tran.
– start-page: 1
  year: 2022
  end-page: 26
  ident: bib26
  article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media
  publication-title: Eng. Comput.
– volume: 9
  start-page: 555
  year: 2010
  ident: bib43
  article-title: Dimensional crossover of thermal transport in few-layer graphene
  publication-title: Nat. Mater.
– volume: 50
  start-page: 437
  year: 2010
  end-page: 446
  ident: bib17
  article-title: Stochastic multi-scale modeling of cnt/polymer composites
  publication-title: Comput. Mater. Sci.
– year: 1984
  ident: bib55
  article-title: Classification and Regression Trees
– volume: 31
  start-page: 1874
  year: 2010
  end-page: 1880
  ident: bib35
  article-title: Dc and ac conductivity in epoxy resin/multiwall carbon nanotubes percolative system
  publication-title: Polym. Compos.
– reference: D. Novák, B. Teplỳ, Z. Keršner, The role of Latin hypercube sampling method in reliability engineering, in: Proc. Of ICOSSAR, volume vol. 97, pp. 403–409.
– volume: 69
  start-page: 100
  year: 2013
  end-page: 106
  ident: bib39
  article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study
  publication-title: Comput. Mater. Sci.
– volume: 157
  year: 2020
  ident: bib30
  article-title: A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures
  publication-title: Int. J. Eng. Sci.
– volume: 37
  start-page: 235
  year: 2010
  end-page: 240
  ident: bib40
  article-title: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber
  publication-title: Mech. Res. Commun.
– volume: 43
  start-page: 579
  year: 2003
  end-page: 586
  ident: bib47
  article-title: Assessing model fit by cross-validation
  publication-title: J. Chem. Inf. Comput. Sci.
– reference: R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy estimation and model selection, in: Ijcai, volume vol. 14, Montreal, Canada, pp. 1137–1145.
– volume: 68
  start-page: 70
  year: 2014
  end-page: 84
  ident: bib18
  article-title: Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations
  publication-title: Mech. Mater.
– volume: 45
  start-page: 1117
  year: 2013
  ident: 10.1016/j.compscitech.2022.109425_bib14
  article-title: Modeling of two-phase random composite materials by finite element, mori–tanaka and strong contrast methods
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2012.05.015
– volume: 39
  start-page: 4504
  year: 1989
  ident: 10.1016/j.compscitech.2022.109425_bib11
  article-title: Effective conductivity of anisotropic two-phase composite media
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.39.4504
– volume: 37
  start-page: 235
  year: 2010
  ident: 10.1016/j.compscitech.2022.109425_bib40
  article-title: Prediction of mechanical properties of an embedded carbon nanotube in polymer matrix based on developing an equivalent long fiber
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2009.12.002
– volume: 43
  start-page: 579
  year: 2003
  ident: 10.1016/j.compscitech.2022.109425_bib47
  article-title: Assessing model fit by cross-validation
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci025626i
– volume: 273
  year: 2021
  ident: 10.1016/j.compscitech.2022.109425_bib48
  article-title: Machine learning and materials informatics approaches for evaluating the interfacial properties of fiber-reinforced composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114328
– volume: 63
  start-page: 460
  year: 2013
  ident: 10.1016/j.compscitech.2022.109425_bib4
  article-title: Thermal conductivity and tensile response of defective graphene: a molecular dynamics study
  publication-title: Carbon
  doi: 10.1016/j.carbon.2013.07.017
– volume: 96
  start-page: 520
  year: 2015
  ident: 10.1016/j.compscitech.2022.109425_bib19
  article-title: A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2014.04.066
– volume: 146
  year: 2019
  ident: 10.1016/j.compscitech.2022.109425_bib24
  article-title: Application of machine learning to predict the multiaxial strain-sensing response of cnt-polymer composites
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.02.001
– volume: 235
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib27
  article-title: A data-driven approach based on long short-term memory and hidden markov model for crack propagation prediction
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107085
– volume: 360
  start-page: 229
  year: 2002
  ident: 10.1016/j.compscitech.2022.109425_bib33
  article-title: Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(02)00838-2
– volume: 118
  start-page: 25
  year: 2017
  ident: 10.1016/j.compscitech.2022.109425_bib5
  article-title: Ultra high stiffness and thermal conductivity of graphene like c3n
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.03.029
– volume: 136
  start-page: 85
  year: 2017
  ident: 10.1016/j.compscitech.2022.109425_bib16
  article-title: Carbon nanotubes as reinforcement in composites: a review of the analytical, numerical and experimental approaches
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2017.04.023
– volume: 50
  start-page: 437
  year: 2010
  ident: 10.1016/j.compscitech.2022.109425_bib17
  article-title: Stochastic multi-scale modeling of cnt/polymer composites
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2010.08.036
– volume: 68
  start-page: 70
  year: 2014
  ident: 10.1016/j.compscitech.2022.109425_bib18
  article-title: Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2013.07.021
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.compscitech.2022.109425_bib57
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– start-page: 1
  year: 1991
  ident: 10.1016/j.compscitech.2022.109425_bib54
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
– volume: 54
  start-page: 356
  year: 2019
  ident: 10.1016/j.compscitech.2022.109425_bib12
  article-title: Modelling and analysis of effective thermal conductivity for polymer composites with sheet-like nanoparticles
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2816-0
– year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib22
– volume: 152
  start-page: 939
  year: 2016
  ident: 10.1016/j.compscitech.2022.109425_bib38
  article-title: Modeling kapitza resistance of two-phase composite material
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.06.025
– volume: 103
  start-page: 318
  year: 2016
  ident: 10.1016/j.compscitech.2022.109425_bib7
  article-title: Amorphized graphene: a stiff material with low thermal conductivity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.03.007
– volume: 9
  start-page: 1749
  year: 1980
  ident: 10.1016/j.compscitech.2022.109425_bib41
  article-title: Small sample sensitivity analysis techniques for computer models. with an application to risk assessment
  publication-title: Commun. Stat. Theor. Methods
  doi: 10.1080/03610928008827996
– volume: 59
  start-page: 80
  year: 2014
  ident: 10.1016/j.compscitech.2022.109425_bib9
  article-title: Stochastic predictions of interfacial characteristic of polymeric nanocomposites (pncs)
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2013.11.014
– volume: 142
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib20
  article-title: Stochastic multiscale modeling of heat conductivity of polymeric clay nanocomposites
  publication-title: Mech. Mater.
  doi: 10.1016/j.mechmat.2019.103280
– volume: 21
  start-page: 571
  year: 1973
  ident: 10.1016/j.compscitech.2022.109425_bib10
  article-title: Average stress in matrix and average elastic energy of materials with misfitting inclusions
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(73)90064-3
– volume: 175
  year: 2019
  ident: 10.1016/j.compscitech.2022.109425_bib15
  article-title: Effect of interphase, curvature and agglomeration of swcnts on mechanical properties of polymer-based nanocomposites: experimental and numerical investigations
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2019.107119
– year: 2010
  ident: 10.1016/j.compscitech.2022.109425_bib21
– volume: 35
  start-page: 1997
  year: 2014
  ident: 10.1016/j.compscitech.2022.109425_bib36
  article-title: Prediction of the effective thermal conductivity of carbon nanotube-reinforced polymer systems
  publication-title: Polym. Compos.
  doi: 10.1002/pc.22859
– volume: 169
  year: 2021
  ident: 10.1016/j.compscitech.2022.109425_bib31
  article-title: Automatic laser profile recognition and fast tracking for structured light measurement using deep learning and template matching
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108362
– volume: 68
  start-page: 446
  year: 2015
  ident: 10.1016/j.compscitech.2022.109425_bib8
  article-title: Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters
  publication-title: Compos. B Eng.
  doi: 10.1016/j.compositesb.2014.09.008
– volume: 267
  year: 2021
  ident: 10.1016/j.compscitech.2022.109425_bib32
  article-title: Data-driven machine learning approach for exploring and assessing mechanical properties of carbon nanotube-reinforced cement composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.113917
– year: 1984
  ident: 10.1016/j.compscitech.2022.109425_bib55
– volume: 297
  start-page: 787
  year: 2002
  ident: 10.1016/j.compscitech.2022.109425_bib1
  article-title: Carbon nanotubes–the route toward applications
  publication-title: Science
  doi: 10.1126/science.1060928
– ident: 10.1016/j.compscitech.2022.109425_bib46
– volume: 273
  year: 2021
  ident: 10.1016/j.compscitech.2022.109425_bib52
  article-title: A stochastic multiscale method for the prediction of the thermal conductivity of polymer nanocomposites through hybrid machine learning algorithms
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114269
– ident: 10.1016/j.compscitech.2022.109425_bib42
– start-page: 1
  year: 2022
  ident: 10.1016/j.compscitech.2022.109425_bib26
  article-title: Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media
  publication-title: Eng. Comput.
– volume: 157
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib30
  article-title: A novel machine-learning based on the global search techniques using vectorized data for damage detection in structures
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2020.103376
– volume: 202
  start-page: 323
  year: 2017
  ident: 10.1016/j.compscitech.2022.109425_bib6
  article-title: Graphene or h-bn paraffin composite structures for the thermal management of li-ion batteries: a multiscale investigation
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.05.175
– volume: 69
  start-page: 100
  year: 2013
  ident: 10.1016/j.compscitech.2022.109425_bib39
  article-title: Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3d finite element study
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.11.035
– volume: 55
  start-page: 3885
  year: 2012
  ident: 10.1016/j.compscitech.2022.109425_bib34
  article-title: Enhanced thermal conductivity of ethylene glycol with single-walled carbon nanotube inclusions
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2012.03.001
– volume: vol. 26
  year: 2013
  ident: 10.1016/j.compscitech.2022.109425_bib49
– volume: 107
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib28
  article-title: Improved ann technique combined with jaya algorithm for crack identification in plates using xiga and experimental analysis
  publication-title: Theor. Appl. Fract. Mech.
  doi: 10.1016/j.tafmec.2020.102554
– volume: 31
  start-page: 1874
  year: 2010
  ident: 10.1016/j.compscitech.2022.109425_bib35
  article-title: Dc and ac conductivity in epoxy resin/multiwall carbon nanotubes percolative system
  publication-title: Polym. Compos.
  doi: 10.1002/pc.20981
– volume: 184
  year: 2019
  ident: 10.1016/j.compscitech.2022.109425_bib25
  article-title: Predicting the effective thermal conductivity of composites from cross sections images using deep learning methods
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2019.107861
– volume: 88
  start-page: 486
  year: 1993
  ident: 10.1016/j.compscitech.2022.109425_bib50
  article-title: Linear model selection by cross-validation
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10476299
– year: 2022
  ident: 10.1016/j.compscitech.2022.109425_bib53
  article-title: Stochastic full-range multiscale modeling of thermal conductivity of polymeric carbon nanotubes composites: a machine learning approach
  publication-title: Compos. Struct.
– volume: 63
  start-page: 1
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib2
  article-title: The recent progress of functionally graded cnt reinforced composites and structures
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-019-1457-2
– volume: 66
  start-page: 1285
  year: 2006
  ident: 10.1016/j.compscitech.2022.109425_bib44
  article-title: Thermal and electrical conductivity of single-and multi-walled carbon nanotube-epoxy composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2005.10.016
– volume: 28
  start-page: 3383
  year: 2021
  ident: 10.1016/j.compscitech.2022.109425_bib45
  article-title: Computer vision techniques in construction: a critical review
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-020-09504-3
– volume: 1
  start-page: 67
  year: 1997
  ident: 10.1016/j.compscitech.2022.109425_bib51
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– year: 2006
  ident: 10.1016/j.compscitech.2022.109425_bib23
– volume: 248
  year: 2020
  ident: 10.1016/j.compscitech.2022.109425_bib29
  article-title: A modified transmissibility indicator and artificial neural network for damage identification and quantification in laminated composite structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2020.112497
– volume: 45
  start-page: 487
  year: 2004
  ident: 10.1016/j.compscitech.2022.109425_bib13
  article-title: Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle
  publication-title: Polymer
  doi: 10.1016/j.polymer.2003.10.100
– volume: 9
  start-page: 555
  year: 2010
  ident: 10.1016/j.compscitech.2022.109425_bib43
  article-title: Dimensional crossover of thermal transport in few-layer graphene
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2753
– volume: 61
  start-page: 1899
  year: 2001
  ident: 10.1016/j.compscitech.2022.109425_bib3
  article-title: Advances in the science and technology of carbon nanotubes and their composites: a review
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(01)00094-X
– volume: 118
  start-page: 241
  year: 2014
  ident: 10.1016/j.compscitech.2022.109425_bib37
  article-title: Stochastic modelling of clay/epoxy nanocomposites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2014.07.009
– volume: 24
  start-page: 123
  year: 1996
  ident: 10.1016/j.compscitech.2022.109425_bib56
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1023/A:1018054314350
SSID ssj0007592
Score 2.6668527
Snippet We present a stochastic integrated machine learning based multiscale approach for the prediction of the macroscopic thermal conductivity in carbon nanotube...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109425
SubjectTerms Carbon
Carbon nanotube reinforced polymeric composites (CNT-PCs)
Carbon nanotubes
Composite materials
Computational complexity
Computing costs
Cost analysis
Heat conductivity
Heat transfer
Machine learning
Multi-scale stochastic modeling
Multiscale analysis
Nanotubes
Particle swarm optimization
Regression analysis
Stochastic models
Support vector machines
Thermal conductivity
Thermal management
Thermal properties
Title Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites
URI https://dx.doi.org/10.1016/j.compscitech.2022.109425
https://www.proquest.com/docview/2686219784
Volume 224
WOSCitedRecordID wos000795644600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007592
  issn: 0266-3538
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2FFnF5QFBAFApaJMRL5CpeX1fipaBUgKKCRFrlzdq11yUlsU0SV-3v8Fv8DDPeXTtcisIDL1Y0jm85x7Ozk9kzhLzwZCZ9JiInY1ygqHboiCCLndzjoSsYi4OsQXoUHR3Fkwn_2Ot9t2thzmdRUcQXF7z6r1CDDcDGpbP_AHd7UjDAZwAdtgA7bDcC_tOqTD8LlF_utCCy_rwpmlS2S8RpH4evTNcTLgEn1aqLt4WH1QL_xLERJVowWJw3giIFysTqvhNYyC4WEr5ViKJc1RIbsTR6rFhaUJWzS12uj8XrWCFmihatOkJr7dsVRk1N528Z_9G0brhYfhFTazupndci1YPEvEuB1yYHPpmK8tIOzcjR2lpnpbGafAdMlbFRUNgl4dqFOCdrrhLCDMcLtE7MvtKuPI44DDJa1tb6esb8NW_t_nEM0emMM6RABU-OD7yPN4LKW75epf2zbvfRh-TweDRKxsPJ-GX11cGWZvjDmf4u18g2iwIOLnf74N1w8r4NFMDIdApQ3_wN8rwrP7zi6leFT78EEk10NL5L7phpDT3QdLxHeqrYITftqvflDrm9Jnx5n3zrSEo7klJDUmpJShuS0o6k1JKUAr0o0JF2JKVl3lgMSek6SeEiVJOUWpLSjqS0JSntSPqAHB8Ox2_eOqZbiJN6Pl85Qg5E7oNHCkU0kJ4YhJKLIMoYi8I0j708jyVP04ClGWcKZw4qlK4rBq6CYEEJ7yHZKspCPSKUcT8X0lVeyIWfuUwGELZnMBNSgfTgDLsktiAkqZHSx44us8TWTJ4la_gliF-i8dslrD200noymxz0yiKdmHdRB7wJcHaTw_csOxLjqJYJw6VhLo9i__Hfdz8ht7rXcI9srRa1ekqup-eA_OKZ4fQP6dnx2g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+integrated+machine+learning+based+multiscale+approach+for+the+prediction+of+the+thermal+conductivity+in+carbon+nanotube+reinforced+polymeric+composites&rft.jtitle=Composites+science+and+technology&rft.au=Liu%2C+Bokai&rft.au=Vu-Bac%2C+Nam&rft.au=Zhuang%2C+Xiaoying&rft.au=Fu%2C+Xiaolong&rft.date=2022-06-16&rft.pub=Elsevier+BV&rft.issn=0266-3538&rft.eissn=1879-1050&rft.volume=224&rft.spage=1&rft_id=info:doi/10.1016%2Fj.compscitech.2022.109425&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-3538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-3538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-3538&client=summon