Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey
Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication...
Uloženo v:
| Vydáno v: | IEEE reviews in biomedical engineering Ročník 15; s. 85 - 102 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 1937-3333, 1941-1189, 1941-1189 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces. |
|---|---|
| AbstractList | Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces. Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces.Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces. |
| Author | Kang, Peiqi Shull, Peter Jiang, Shuo Song, Xinyu Lo, Benny |
| Author_xml | – sequence: 1 givenname: Shuo orcidid: 0000-0003-3645-6301 surname: Jiang fullname: Jiang, Shuo email: jiangshuo@tongji.edu.cn organization: College of Electronics and Information Engineering, Tongji University, Shanghai, China – sequence: 2 givenname: Peiqi orcidid: 0000-0003-2499-1251 surname: Kang fullname: Kang, Peiqi email: pekkykang@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Xinyu orcidid: 0000-0002-6396-7038 surname: Song fullname: Song, Xinyu email: songxinyu@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Benny orcidid: 0000-0002-5080-108X surname: Lo fullname: Lo, Benny email: benny.lo@imperial.ac.uk organization: Department of Surgery and Cancer, Imperial College London, London, U.K – sequence: 5 givenname: Peter orcidid: 0000-0001-8931-5743 surname: Shull fullname: Shull, Peter email: pshull@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33961564$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFr3DAQhUVJadI0P6AUiiCXXrzRSFrJ6m0btkkgJbBt6VFo5fFWwbZSyQ7k31dmNz3k0LnMIL43vNF7S46GOCAh74EtAJi52Hz5tl5wxmEhmK7BsFfkBIyECqA2R_MsdCVKHZOznO9ZqaXUULM35FgIo2Cp5AnZrHtMuzDs6C90yW07pDfDiKl1HjN1Q0NX3S6mMP7uM21jotfz2xXmcUpIN-jjbghjiMNnuqLfp_SIT-_I69Z1Gc8O_ZT8_Lr-cXld3d5d3VyubisvpBkrp5Gp1hvBdb3lmhuOculRtI1qHQNA1TjplZfbxjjWCgnAee2YZMwwg1Kckk_7vQ8p_pmKI9uH7LHr3IBxypYvuRSKGaULev4CvY9TGoo7yxUHbQTjplAfD9S07bGxDyn0Lj3Z598qgN4DPsWcE7bWh9HN14_Jhc4Cs3M0do7GztHYQzRFCS-Uz8v_p_mw1wRE_McbyYsTIf4Co8-Whg |
| CODEN | IRBECO |
| CitedBy_id | crossref_primary_10_3390_bioengineering10070866 crossref_primary_10_1109_ACCESS_2025_3569932 crossref_primary_10_1109_JBHI_2021_3100099 crossref_primary_10_1109_ACCESS_2023_3316509 crossref_primary_10_2478_cait_2024_0031 crossref_primary_10_3390_s25072188 crossref_primary_10_1002_admt_202401716 crossref_primary_10_1109_TOH_2025_3544134 crossref_primary_10_1109_TBCAS_2022_3211424 crossref_primary_10_1109_TNSRE_2024_3447669 crossref_primary_10_1109_TCPMT_2025_3539978 crossref_primary_10_1109_JBHI_2023_3330289 crossref_primary_10_1109_JSEN_2023_3264620 crossref_primary_10_1109_TNSRE_2025_3543649 crossref_primary_10_34133_cbsystems_0219 crossref_primary_10_3390_s23125462 crossref_primary_10_3390_s25061687 crossref_primary_10_1109_JSEN_2022_3222801 crossref_primary_10_1016_j_mee_2023_112102 crossref_primary_10_3390_s24134378 crossref_primary_10_1109_JIOT_2025_3581380 crossref_primary_10_1109_JSEN_2024_3444808 crossref_primary_10_3390_s23208570 crossref_primary_10_3390_s24186157 crossref_primary_10_1021_acs_nanolett_5c02030 crossref_primary_10_1364_OE_572413 crossref_primary_10_1109_TNSRE_2022_3228018 crossref_primary_10_1016_j_nanoen_2024_109639 crossref_primary_10_25300_MISQ_2025_18314 crossref_primary_10_1109_JSEN_2024_3374344 crossref_primary_10_1016_j_compbiomed_2022_106060 crossref_primary_10_1109_TCYB_2024_3504840 crossref_primary_10_1007_s10845_023_02150_z crossref_primary_10_1016_j_rcim_2025_103110 crossref_primary_10_1109_TIM_2023_3271722 crossref_primary_10_1109_JSEN_2023_3289232 crossref_primary_10_1002_aisy_202300207 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_1109_ACCESS_2025_3556920 crossref_primary_10_1109_TNSRE_2023_3303316 crossref_primary_10_1109_JBHI_2024_3417236 crossref_primary_10_1038_s41598_024_81369_z crossref_primary_10_1109_JSEN_2023_3241126 crossref_primary_10_1109_TCCN_2023_3345869 crossref_primary_10_1109_TIM_2024_3420372 crossref_primary_10_1109_TNSRE_2023_3335101 crossref_primary_10_1109_JBHI_2025_3533736 crossref_primary_10_1016_j_device_2024_100686 crossref_primary_10_3390_jsan11010017 crossref_primary_10_3390_electronics10222767 crossref_primary_10_1016_j_rineng_2025_105648 crossref_primary_10_3390_electronics12030613 crossref_primary_10_1002_admt_202400857 crossref_primary_10_1016_j_eswa_2024_125929 crossref_primary_10_1002_inf2_12642 crossref_primary_10_1109_ACCESS_2025_3555426 crossref_primary_10_3390_app13095544 crossref_primary_10_1109_TMECH_2023_3344181 crossref_primary_10_1016_j_eswa_2025_127040 crossref_primary_10_1016_j_neucom_2025_129963 crossref_primary_10_1109_JBHI_2022_3194017 crossref_primary_10_3390_mi14051085 crossref_primary_10_3390_s25154602 crossref_primary_10_3390_bios15070414 crossref_primary_10_1002_advs_202303403 crossref_primary_10_1007_s13369_024_09396_6 crossref_primary_10_1371_journal_pone_0322580 crossref_primary_10_1016_j_bspc_2023_105445 crossref_primary_10_1109_JOE_2023_3265634 crossref_primary_10_1016_j_neunet_2023_04_043 crossref_primary_10_1109_TIM_2024_3497179 crossref_primary_10_1109_JBHI_2024_3524398 crossref_primary_10_1109_TNSRE_2024_3414136 crossref_primary_10_1016_j_bspc_2023_105030 crossref_primary_10_1109_LRA_2022_3184792 crossref_primary_10_1109_JSEN_2023_3314104 crossref_primary_10_1016_j_engappai_2023_106179 crossref_primary_10_1109_TCYB_2024_3489438 crossref_primary_10_1109_TIM_2023_3325522 crossref_primary_10_1109_TRO_2025_3567547 crossref_primary_10_1002_adsr_202200054 crossref_primary_10_1109_JSEN_2025_3527918 crossref_primary_10_1080_10447318_2023_2212232 crossref_primary_10_1002_aisy_202300210 crossref_primary_10_3390_app15116045 crossref_primary_10_1109_TNSRE_2024_3521583 crossref_primary_10_1016_j_matdes_2024_113029 crossref_primary_10_1109_JSEN_2022_3221181 crossref_primary_10_1109_TIM_2025_3562991 crossref_primary_10_1016_j_cmpb_2022_106999 crossref_primary_10_3390_s22197512 crossref_primary_10_1109_JSEN_2024_3445128 crossref_primary_10_1007_s41315_023_00282_2 crossref_primary_10_1109_TIM_2024_3440381 crossref_primary_10_1016_j_asoc_2024_112235 crossref_primary_10_1016_j_engappai_2024_109225 crossref_primary_10_1080_10447318_2025_2560516 crossref_primary_10_1016_j_nanoen_2025_110805 crossref_primary_10_1016_j_pmcj_2024_101976 crossref_primary_10_1016_j_pmcj_2025_102029 crossref_primary_10_1016_j_ins_2022_05_085 crossref_primary_10_1016_j_robot_2023_104567 crossref_primary_10_3389_fncom_2025_1543643 crossref_primary_10_1016_j_bspc_2025_107591 crossref_primary_10_1016_j_nanoen_2025_110821 crossref_primary_10_3390_nano14141173 crossref_primary_10_1109_TFUZZ_2024_3438805 crossref_primary_10_1016_j_cviu_2024_104095 crossref_primary_10_1089_soro_2021_0209 crossref_primary_10_1109_TMRB_2025_3550646 crossref_primary_10_1109_TIM_2022_3232159 crossref_primary_10_1109_TII_2024_3375376 crossref_primary_10_1109_TVCG_2022_3148007 crossref_primary_10_3390_s24061800 crossref_primary_10_1016_j_cej_2025_161142 |
| Cites_doi | 10.1007/s40846-016-0151-y 10.1109/ICHMS49158.2020.9209381 10.1109/ICMECH.2015.7083969 10.1109/TBME.2012.2190734 10.1109/JBHI.2016.2560907 10.1088/1741-2552/ab8682 10.1145/3175684.3175697 10.1109/RBME.2019.2950897 10.3390/s20041201 10.1109/TII.2017.2779814 10.1310/9KFM-KF81-P9A4-5WW0 10.1145/2702123.2702501 10.1038/nature14539 10.1080/01691864.2018.1490666 10.1109/JBHI.2017.2766249 10.3390/app9183751 10.3390/s16040556 10.1109/JBHI.2019.2941535 10.1109/IEMCON51383.2020.9284893 10.1038/s41467-020-15990-7 10.1162/105474698565686 10.1109/TOH.2015.2417570 10.1186/s12984-016-0168-z 10.1145/3301275.3302296 10.1177/0300060516656689 10.1109/JBHI.2014.2329841 10.1186/1743-0003-11-2 10.1109/TNSRE.2012.2207916 10.1109/TII.2020.3001612 10.1310/tsr1803-277 10.1145/3145690.3145731 10.1145/2858036.2858466 10.1109/ICRA.2017.7989337 10.1007/s11370-018-0250-4 10.1109/JERM.2019.2949456 10.1109/ICSENS.2018.8589574 10.1109/TCSII.2020.3006430 10.1371/journal.pone.0206049 10.1038/s41928-018-0120-2 10.3389/fnbot.2020.00011 10.1109/ICMRA.2018.8490559 10.1109/SII.2017.8279239 10.1145/3287080 10.1016/j.siny.2005.10.010 10.1109/JSEN.2019.2927325 10.1016/j.patrec.2018.02.010 10.1145/2968219.2971403 10.1002/adfm.201602733 10.1016/j.sna.2019.111738 10.3390/s17030458 10.1109/TNSRE.2019.2907200 10.1109/TBME.2019.2899927 10.1145/3432199 10.1109/JSEN.2014.2339843 10.1109/TBME.2019.2962499 10.1109/JBHI.2018.2867539 10.1109/RBME.2018.2848518 10.1038/s41586-019-1687-0 10.3389/frobt.2019.00124 10.1109/JBHI.2018.2860780 10.1109/TIE.2019.2914621 10.1145/3025453.3025807 10.1109/ICPR.2014.477 10.1109/TNSRE.2018.2829913 10.1109/TNSRE.2015.2492619 10.1145/2735711.2735830 10.1109/TNSRE.2010.2079334 10.1145/2735711.2735801 10.1145/2897824.2925953 10.3389/fnbot.2018.00047 10.3390/bdcc2030021 10.1109/JSEN.2017.2776262 10.1109/ISCAS.2018.8351727 10.1177/0142331216672918 10.1016/j.eswa.2010.09.068 10.1109/TIE.2019.2898614 10.1109/JSEN.2018.2877978 10.1109/IROS.2018.8593448 10.1145/2807442.2807480 10.1145/2380296.2380336 10.1038/srep25727 10.1109/JTEHM.2018.2829208 10.1186/s12984-019-0612-y 10.3390/s19030710 10.1109/THMS.2019.2925191 10.1109/ISWC.2001.962092 10.1016/j.medengphy.2014.09.003 10.1016/j.medengphy.2013.04.011 10.1145/2807442.2807462 10.1109/CYBER.2017.8446436 10.1145/3191788 10.1109/ISUVR.2017.16 10.1109/MSP.2012.2205597 10.1109/TCYB.2020.3007173 10.1109/ICRA.2014.6906601 10.1109/ISCAS.2018.8351296 10.1088/1741-2552/aaf4c3 10.1038/s41928-020-0428-6 10.1007/978-3-319-56148-6_22 10.1109/JSEN.2020.2965580 10.1109/EMBC.2017.8037842 10.1109/TBME.2019.2900415 10.1109/BSN.2018.8329688 10.1109/IECBES.2018.8626719 10.1145/3150974 10.1109/TBME.2008.2007967 10.1145/2642918.2647396 10.1145/2815585.2815732 10.1109/BIGCOM.2018.00018 10.1109/RBME.2020.3019769 10.1007/s41315-019-00115-1 10.1126/science.1206157 10.1109/TNSRE.2014.2318431 10.1109/TII.2019.2909877 10.1109/JSEN.2015.2459067 10.1109/TNSRE.2016.2626800 10.1088/1742-6596/1019/1/012017 10.1201/9781420034462 10.1145/2512349.2512821 10.1145/3065386 10.1109/HOLM.1998.722422 10.1145/3274783.3274854 10.1109/TKDE.2009.191 10.1109/TSMCA.2011.2116004 10.1682/JRRD.2015.03.0041 10.1089/soro.2018.0116 10.1109/MSP.2012.2203480 10.1109/JSEN.2020.3014276 10.1109/EMBC.2012.6345896 10.1109/TNSRE.2019.2939587 10.1016/j.bspc.2019.101774 10.1109/TMC.2019.2962760 10.3389/fbioe.2020.00058 10.1016/j.jelekin.2011.09.004 10.1109/EMBC.2017.8036844 10.1177/1179597220912825 10.1007/s10055-016-0301-0 10.1016/j.bspc.2019.101737 10.1016/j.compeleceng.2019.08.006 10.1007/s12541-013-0073-3 10.1016/j.displa.2018.08.001 10.1007/s00521-019-04427-y 10.1109/TBME.2020.2989311 10.1109/ICMLC48188.2019.8949209 10.1109/ICIT.2018.8352399 10.1109/TNSRE.2019.2896269 10.1145/3122986.3123015 10.1109/TNSRE.2019.2939202 10.1109/CBS.2018.8612211 10.1109/JSEN.2017.2779466 10.1109/JBHI.2019.2945593 10.1145/3126594.3126604 10.1109/TNSRE.2016.2562180 10.1109/TNSRE.2016.2644264 10.1038/s41565-018-0226-8 10.3390/s20102972 10.1109/TBME.2018.2872593 10.1109/JBHI.2014.2380454 10.1109/IROS.2014.6943125 10.1109/EMBC.2012.6346923 10.1109/TASE.2020.3030852 10.1145/1613858.1613878 10.1109/JBHI.2016.2633287 10.1109/RAEE.2019.8886931 10.1109/TII.2015.2405413 10.1109/JSEN.2015.2450211 10.1016/j.eswa.2019.01.080 10.3390/s18072208 10.1109/TBME.2019.2899222 10.7717/peerj-cs.218 10.1145/2858036.2858093 10.3390/s19183827 10.1038/s41928-020-0422-z 10.1038/s41928-020-00510-8 10.1016/j.bspc.2020.101981 10.1109/TBCAS.2019.2940030 10.1016/j.medengphy.2011.12.007 10.1109/CBMS.2014.43 10.1109/TOH.2019.2943154 10.1038/sdata.2014.53 10.1145/2030112.2030154 10.1109/TNSRE.2018.2878439 10.1109/MPRV.2018.022511241 10.1145/3338286.3340147 10.1109/JSEN.2020.3023742 10.1109/10.661262 10.1109/LED.2017.2649497 10.1109/INFOCOM.2018.8486006 10.1109/ENBENG.2015.7088817 10.1109/THMS.2015.2470657 10.1109/TNSRE.2019.2946625 10.1109/JBHI.2016.2598302 10.23919/SICE.2017.8105457 10.1109/JSEN.2018.2865623 10.1109/TNSRE.2019.2905658 10.1371/journal.pone.0227039 10.1109/TNSRE.2016.2560906 10.1002/aisy.201970072 10.1109/JSEN.2013.2263797 10.1109/TNSRE.2012.2196711 10.1038/srep36571 10.1016/j.nanoen.2020.105017 10.1145/2984511.2984574 10.1016/j.mejo.2018.01.014 10.1109/TBME.2011.2113182 10.1145/3268866.3268890 10.1109/JSEN.2017.2679806 10.1109/ICRA.2015.7139544 10.1016/j.patrec.2017.12.005 10.1007/s40846-017-0303-8 10.1145/3173574.3174011 10.1016/j.ijhcs.2019.03.011 10.3390/informatics5020028 10.1126/scirobotics.abb0467 10.1109/JBHI.2018.2805760 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| DOI | 10.1109/RBME.2021.3078190 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1941-1189 |
| EndPage | 102 |
| ExternalDocumentID | 33961564 10_1109_RBME_2021_3078190 9426433 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Review |
| GrantInformation_xml | – fundername: China Scholarship Council; Chinese Scholarship Council funderid: 10.13039/501100004543 – fundername: National Natural Science Foundation of China grantid: 51950410602 funderid: 10.13039/501100001809 |
| GroupedDBID | --- 0R~ 23N 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACPRK AETIX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD F5P HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
| ID | FETCH-LOGICAL-c349t-a7e06fc93278b27292e45ce3fd6fa011e6da4c6c4bd9a0f3411228a0400909e43 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745516700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1937-3333 1941-1189 |
| IngestDate | Thu Oct 02 16:51:59 EDT 2025 Mon Jun 30 10:21:13 EDT 2025 Thu Jan 02 22:55:24 EST 2025 Tue Nov 18 22:43:11 EST 2025 Sat Nov 29 02:05:54 EST 2025 Wed Aug 27 03:02:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-a7e06fc93278b27292e45ce3fd6fa011e6da4c6c4bd9a0f3411228a0400909e43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0002-5080-108X 0000-0002-6396-7038 0000-0003-3645-6301 0000-0003-2499-1251 0000-0001-8931-5743 |
| PMID | 33961564 |
| PQID | 2621793029 |
| PQPubID | 85512 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2621793029 proquest_miscellaneous_2524360967 pubmed_primary_33961564 crossref_primary_10_1109_RBME_2021_3078190 crossref_citationtrail_10_1109_RBME_2021_3078190 ieee_primary_9426433 |
| PublicationCentury | 2000 |
| PublicationDate | 20220000 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 20220000 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE reviews in biomedical engineering |
| PublicationTitleAbbrev | RBME |
| PublicationTitleAlternate | IEEE Rev Biomed Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref207 ref56 ref208 ref59 ref205 ref58 ref53 ref203 orizio (ref161) 1993; 21 ref204 ref55 ref201 ref54 ref202 ref209 ref210 ref211 ref51 gao (ref52) 0 ref50 holder (ref150) 2004 ref46 ref218 ref45 ref219 ref48 ref216 ref47 ref217 ref42 ref41 ref44 ref212 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref221 ref101 ref222 ref40 ref220 pfister (ref169) 2016 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 (ref170) 2020 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref200 fan (ref68) 0 ref128 ref97 ref126 ref96 ref127 ref99 ref124 ref98 ref125 ref93 ref133 ref92 ref134 ref95 ref131 ref132 ref130 ref91 ref90 ref89 ref139 ref86 ref137 ref85 ref138 ref88 ref135 ref87 ref136 muhammed (ref140) 2015; 10 lecun (ref15) 2015; 521 ref82 ref144 ref81 ref84 ref142 ref143 ref141 ref80 ref79 ref229 ref108 ref78 ref109 ref227 ref106 ref228 ref107 ref75 ref225 ref104 ref74 ref226 ref105 ref77 ref223 ref102 ref76 ref224 ref103 ref71 ref232 ref111 ref70 ref233 ref112 ref73 ref230 ref72 chegani (ref94) 2018; 17 ref231 ref110 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref234 ref113 ref65 ref114 cornelius (ref83) 0 booth (ref129) 2016; 39 ref60 ref122 ref123 ref62 ref120 ref61 guo (ref206) 0 ref121 ref168 ref178 ref175 ref176 ref173 tzeng (ref213) 2014 ref174 ref171 ref172 ref179 ref180 ref181 ref188 ref189 ref186 ref187 ref184 ref185 ref182 ref183 ref148 ref149 ref146 ref147 ref156 ref153 ref154 ref151 ref152 ref159 ref157 ref158 (ref145) 0 ref166 ref167 ref164 ref165 ref162 ref163 ref160 ref13 ref12 ref14 ref11 ref10 ref17 ref16 ref19 han (ref155) 0 ref18 plettenburg (ref24) 0 jiménez (ref177) 0 ref2 ref1 rehman (ref193) 2018; 18 ref191 yosinski (ref215) 0 ref192 ref190 ref199 ref197 ref198 ref195 ref196 ref194 long (ref214) 0 |
| References_xml | – ident: ref173 doi: 10.1007/s40846-016-0151-y – start-page: 365 year: 0 ident: ref155 article-title: Wearable handwriting input device using magnetic field publication-title: Proc SICE Annu Conf – ident: ref50 doi: 10.1109/ICHMS49158.2020.9209381 – ident: ref143 doi: 10.1109/ICMECH.2015.7083969 – ident: ref61 doi: 10.1109/TBME.2012.2190734 – ident: ref54 doi: 10.1109/JBHI.2016.2560907 – ident: ref222 doi: 10.1088/1741-2552/ab8682 – ident: ref175 doi: 10.1145/3175684.3175697 – ident: ref14 doi: 10.1109/RBME.2019.2950897 – ident: ref194 doi: 10.3390/s20041201 – ident: ref10 doi: 10.1109/TII.2017.2779814 – ident: ref27 doi: 10.1310/9KFM-KF81-P9A4-5WW0 – ident: ref42 doi: 10.1145/2702123.2702501 – volume: 521 start-page: 436 year: 2015 ident: ref15 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref111 doi: 10.1080/01691864.2018.1490666 – ident: ref125 doi: 10.1109/JBHI.2017.2766249 – ident: ref51 doi: 10.3390/app9183751 – ident: ref62 doi: 10.3390/s16040556 – ident: ref201 doi: 10.1109/JBHI.2019.2941535 – ident: ref188 doi: 10.1109/IEMCON51383.2020.9284893 – ident: ref203 doi: 10.1038/s41467-020-15990-7 – ident: ref28 doi: 10.1162/105474698565686 – ident: ref34 doi: 10.1109/TOH.2015.2417570 – ident: ref25 doi: 10.1186/s12984-016-0168-z – ident: ref58 doi: 10.1145/3301275.3302296 – ident: ref38 doi: 10.1177/0300060516656689 – ident: ref103 doi: 10.1109/JBHI.2014.2329841 – ident: ref152 doi: 10.1186/1743-0003-11-2 – ident: ref122 doi: 10.1109/TNSRE.2012.2207916 – ident: ref74 doi: 10.1109/TII.2020.3001612 – ident: ref26 doi: 10.1310/tsr1803-277 – ident: ref81 doi: 10.1145/3145690.3145731 – volume: 21 start-page: 201 year: 1993 ident: ref161 article-title: Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies publication-title: Crit Rev Biomed Eng – ident: ref105 doi: 10.1145/2858036.2858466 – ident: ref49 doi: 10.1109/ICRA.2017.7989337 – ident: ref47 doi: 10.1007/s11370-018-0250-4 – start-page: 233 year: 0 ident: ref177 article-title: Gesture recognition and machine learning applied to sign language translation publication-title: Proc 7th Latin Amer Congr Biomed Eng CLAIB 2016 – ident: ref191 doi: 10.1109/JERM.2019.2949456 – ident: ref117 doi: 10.1109/ICSENS.2018.8589574 – ident: ref76 doi: 10.1109/TCSII.2020.3006430 – ident: ref197 doi: 10.1371/journal.pone.0206049 – ident: ref226 doi: 10.1038/s41928-018-0120-2 – ident: ref102 doi: 10.3389/fnbot.2020.00011 – ident: ref115 doi: 10.1109/ICMRA.2018.8490559 – ident: ref156 doi: 10.1109/SII.2017.8279239 – ident: ref55 doi: 10.1145/3287080 – ident: ref23 doi: 10.1016/j.siny.2005.10.010 – ident: ref221 doi: 10.1109/JSEN.2019.2927325 – ident: ref187 doi: 10.1016/j.patrec.2018.02.010 – start-page: 196 year: 0 ident: ref206 article-title: Towards zero training for myoelectric control based on a wearable wireless semg armband publication-title: Proc IEEE Int Conf Adv Intell Mechatronics – ident: ref71 doi: 10.1145/2968219.2971403 – ident: ref110 doi: 10.1002/adfm.201602733 – ident: ref78 doi: 10.1016/j.sna.2019.111738 – volume: 39 year: 2016 ident: ref129 article-title: Validation of a piezoelectric sensor array for a wrist-worn muscle-computer interface publication-title: CMBES Proc – ident: ref207 doi: 10.3390/s17030458 – ident: ref210 doi: 10.1109/TNSRE.2019.2907200 – ident: ref30 doi: 10.1109/TBME.2019.2899927 – ident: ref218 doi: 10.1145/3432199 – ident: ref174 doi: 10.1109/JSEN.2014.2339843 – ident: ref159 doi: 10.1109/TBME.2019.2962499 – ident: ref124 doi: 10.1109/JBHI.2018.2867539 – ident: ref39 doi: 10.1109/RBME.2018.2848518 – ident: ref228 doi: 10.1038/s41586-019-1687-0 – ident: ref101 doi: 10.3389/frobt.2019.00124 – ident: ref73 doi: 10.1109/JBHI.2018.2860780 – ident: ref65 doi: 10.1109/TIE.2019.2914621 – ident: ref123 doi: 10.1145/3025453.3025807 – ident: ref211 doi: 10.1109/ICPR.2014.477 – ident: ref119 doi: 10.1109/TNSRE.2018.2829913 – ident: ref209 doi: 10.1109/TNSRE.2015.2492619 – ident: ref139 doi: 10.1145/2735711.2735830 – ident: ref37 doi: 10.1109/TNSRE.2010.2079334 – ident: ref134 doi: 10.1145/2735711.2735801 – ident: ref11 doi: 10.1145/2897824.2925953 – ident: ref91 doi: 10.3389/fnbot.2018.00047 – ident: ref44 doi: 10.3390/bdcc2030021 – ident: ref106 doi: 10.1109/JSEN.2017.2776262 – ident: ref229 doi: 10.1109/ISCAS.2018.8351727 – ident: ref231 doi: 10.1177/0142331216672918 – ident: ref147 doi: 10.1016/j.eswa.2010.09.068 – ident: ref121 doi: 10.1109/TIE.2019.2898614 – ident: ref60 doi: 10.1109/JSEN.2018.2877978 – ident: ref219 doi: 10.1109/IROS.2018.8593448 – ident: ref82 doi: 10.1145/2807442.2807480 – start-page: 553 year: 0 ident: ref52 article-title: Transition movement models for large vocabulary continuous sign language recognition publication-title: Proc 6th IEEE Int Conf Autom Face Gesture Recognit – start-page: 539 year: 0 ident: ref68 article-title: Double hand-gesture interaction for walk-through in VR environment publication-title: Proc IEEE/ACIS 16th Int Conf Comput Inf Sci – ident: ref127 doi: 10.1145/2380296.2380336 – ident: ref232 doi: 10.1038/srep25727 – ident: ref31 doi: 10.1109/JTEHM.2018.2829208 – start-page: 3320 year: 0 ident: ref215 article-title: How transferable are features in deep neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref1 doi: 10.1186/s12984-019-0612-y – ident: ref190 doi: 10.3390/s19030710 – ident: ref179 doi: 10.1109/THMS.2019.2925191 – ident: ref88 doi: 10.1109/ISWC.2001.962092 – ident: ref163 doi: 10.1016/j.medengphy.2014.09.003 – ident: ref168 doi: 10.1016/j.medengphy.2013.04.011 – ident: ref112 doi: 10.1145/2807442.2807462 – ident: ref46 doi: 10.1109/CYBER.2017.8446436 – ident: ref136 doi: 10.1145/3191788 – ident: ref67 doi: 10.1109/ISUVR.2017.16 – year: 2016 ident: ref169 article-title: Gest: work with your hands – ident: ref182 doi: 10.1109/MSP.2012.2205597 – ident: ref200 doi: 10.1109/TCYB.2020.3007173 – ident: ref21 doi: 10.1109/ICRA.2014.6906601 – ident: ref86 doi: 10.1109/ISCAS.2018.8351296 – ident: ref202 doi: 10.1088/1741-2552/aaf4c3 – ident: ref53 doi: 10.1038/s41928-020-0428-6 – ident: ref93 doi: 10.1007/978-3-319-56148-6_22 – ident: ref108 doi: 10.1109/JSEN.2020.2965580 – ident: ref70 doi: 10.1109/EMBC.2017.8037842 – ident: ref153 doi: 10.1109/TBME.2019.2900415 – ident: ref95 doi: 10.1109/BSN.2018.8329688 – ident: ref22 doi: 10.1109/IECBES.2018.8626719 – ident: ref59 doi: 10.1145/3150974 – ident: ref178 doi: 10.1109/TBME.2008.2007967 – ident: ref92 doi: 10.1145/2642918.2647396 – ident: ref133 doi: 10.1145/2815585.2815732 – ident: ref185 doi: 10.1109/BIGCOM.2018.00018 – ident: ref64 doi: 10.1109/RBME.2020.3019769 – ident: ref141 doi: 10.1007/s41315-019-00115-1 – ident: ref230 doi: 10.1126/science.1206157 – ident: ref7 doi: 10.1109/TNSRE.2014.2318431 – ident: ref18 doi: 10.1109/TII.2019.2909877 – ident: ref6 doi: 10.1109/JSEN.2015.2459067 – ident: ref87 doi: 10.1109/TNSRE.2016.2626800 – ident: ref165 doi: 10.1145/2380296.2380336 – ident: ref116 doi: 10.1088/1742-6596/1019/1/012017 – year: 2004 ident: ref150 publication-title: Electrical Impedance Tomography Methods History and Applications doi: 10.1201/9781420034462 – ident: ref131 doi: 10.1145/2512349.2512821 – ident: ref181 doi: 10.1145/3065386 – ident: ref151 doi: 10.1109/HOLM.1998.722422 – ident: ref89 doi: 10.1145/3274783.3274854 – year: 2014 ident: ref213 article-title: Deep domain confusion: Maximizing for domain invariance publication-title: arXiv 1412 3474 – ident: ref17 doi: 10.1109/TKDE.2009.191 – ident: ref9 doi: 10.1109/TSMCA.2011.2116004 – ident: ref99 doi: 10.1682/JRRD.2015.03.0041 – ident: ref114 doi: 10.1089/soro.2018.0116 – ident: ref204 doi: 10.1109/MSP.2012.2203480 – ident: ref189 doi: 10.1109/JSEN.2020.3014276 – ident: ref154 doi: 10.1109/EMBC.2012.6345896 – ident: ref3 doi: 10.1109/TNSRE.2019.2939587 – ident: ref184 doi: 10.1016/j.bspc.2019.101774 – ident: ref137 doi: 10.1109/TMC.2019.2962760 – ident: ref75 doi: 10.3389/fbioe.2020.00058 – ident: ref167 doi: 10.1016/j.jelekin.2011.09.004 – ident: ref171 doi: 10.1109/EMBC.2017.8036844 – ident: ref144 doi: 10.1177/1179597220912825 – ident: ref12 doi: 10.1007/s10055-016-0301-0 – ident: ref36 doi: 10.1016/j.bspc.2019.101737 – ident: ref57 doi: 10.1016/j.compeleceng.2019.08.006 – ident: ref32 doi: 10.1007/s12541-013-0073-3 – volume: 17 start-page: 1 year: 2018 ident: ref94 article-title: Regressing grasping using force myography: An exploratory study publication-title: Biomed Eng Online – ident: ref186 doi: 10.1016/j.displa.2018.08.001 – ident: ref217 doi: 10.1007/s00521-019-04427-y – ident: ref80 doi: 10.1109/TBME.2020.2989311 – ident: ref120 doi: 10.1109/ICMLC48188.2019.8949209 – ident: ref205 doi: 10.1109/ICIT.2018.8352399 – ident: ref216 doi: 10.1109/TNSRE.2019.2896269 – ident: ref13 doi: 10.1145/3122986.3123015 – ident: ref4 doi: 10.1109/TNSRE.2019.2939202 – ident: ref35 doi: 10.1109/CBS.2018.8612211 – ident: ref66 doi: 10.1109/JSEN.2017.2779466 – ident: ref85 doi: 10.1109/JBHI.2019.2945593 – ident: ref135 doi: 10.1145/3126594.3126604 – ident: ref212 doi: 10.1109/TNSRE.2016.2562180 – ident: ref79 doi: 10.1109/TNSRE.2016.2644264 – ident: ref225 doi: 10.1038/s41565-018-0226-8 – ident: ref180 doi: 10.3390/s20102972 – year: 2020 ident: ref170 article-title: Myo gesture control – ident: ref160 doi: 10.1109/TBME.2018.2872593 – ident: ref208 doi: 10.1109/JBHI.2014.2380454 – ident: ref113 doi: 10.1109/IROS.2014.6943125 – ident: ref224 doi: 10.1109/EMBC.2012.6346923 – ident: ref90 doi: 10.1109/TASE.2020.3030852 – ident: ref77 doi: 10.1145/1613858.1613878 – ident: ref183 doi: 10.1109/JBHI.2016.2633287 – start-page: 97 year: 0 ident: ref214 article-title: Learning transferable features with deep adaptation networks publication-title: Proc Int Conf Mach Learn – ident: ref118 doi: 10.1109/RAEE.2019.8886931 – ident: ref98 doi: 10.1109/TII.2015.2405413 – ident: ref158 doi: 10.1109/JSEN.2015.2450211 – ident: ref72 doi: 10.1016/j.eswa.2019.01.080 – ident: ref8 doi: 10.3390/s18072208 – ident: ref196 doi: 10.1109/TBME.2019.2899222 – ident: ref19 doi: 10.7717/peerj-cs.218 – ident: ref100 doi: 10.1145/2858036.2858093 – ident: ref176 doi: 10.3390/s19183827 – ident: ref56 doi: 10.1038/s41928-020-0422-z – year: 0 ident: ref83 publication-title: Proc USENIX Workshop Health Secur Privacy – ident: ref198 doi: 10.1038/s41928-020-00510-8 – ident: ref148 doi: 10.1016/j.bspc.2020.101981 – ident: ref97 doi: 10.1109/TBCAS.2019.2940030 – ident: ref164 doi: 10.1016/j.medengphy.2011.12.007 – ident: ref162 doi: 10.1109/CBMS.2014.43 – ident: ref233 doi: 10.1109/TOH.2019.2943154 – ident: ref41 doi: 10.1038/sdata.2014.53 – ident: ref138 doi: 10.1145/2030112.2030154 – volume: 10 start-page: p. 13 year: 2015 ident: ref140 article-title: Optomyography (OMG): A novel technique for the detection of muscle surface displacement using photoelectric sensors publication-title: " Measurements – ident: ref220 doi: 10.1109/TNSRE.2018.2878439 – volume: 18 year: 2018 ident: ref193 article-title: Multiday emg-based classification of hand motions with deep learning techniques publication-title: SENSORS – ident: ref48 doi: 10.1109/MPRV.2018.022511241 – ident: ref132 doi: 10.1145/3338286.3340147 – ident: ref149 doi: 10.1109/JSEN.2020.3023742 – ident: ref166 doi: 10.1109/10.661262 – ident: ref227 doi: 10.1109/LED.2017.2649497 – ident: ref69 doi: 10.1109/INFOCOM.2018.8486006 – ident: ref33 doi: 10.1109/ENBENG.2015.7088817 – ident: ref40 doi: 10.1109/THMS.2015.2470657 – ident: ref16 doi: 10.1109/TNSRE.2019.2946625 – ident: ref63 doi: 10.1109/JBHI.2016.2598302 – ident: ref142 doi: 10.23919/SICE.2017.8105457 – ident: ref45 doi: 10.1109/JSEN.2018.2865623 – ident: ref96 doi: 10.1109/TNSRE.2019.2905658 – ident: ref104 doi: 10.1371/journal.pone.0227039 – ident: ref29 doi: 10.1109/TNSRE.2016.2560906 – ident: ref192 doi: 10.1002/aisy.201970072 – ident: ref157 doi: 10.1109/JSEN.2013.2263797 – ident: ref5 doi: 10.1109/TNSRE.2012.2196711 – ident: ref43 doi: 10.1038/srep36571 – ident: ref234 doi: 10.1016/j.nanoen.2020.105017 – ident: ref84 doi: 10.1145/2984511.2984574 – ident: ref2 doi: 10.1016/j.mejo.2018.01.014 – ident: ref172 doi: 10.1109/TBME.2011.2113182 – ident: ref199 doi: 10.1145/3268866.3268890 – ident: ref128 doi: 10.1109/JSEN.2017.2679806 – ident: ref109 doi: 10.1109/ICRA.2015.7139544 – year: 0 ident: ref24 article-title: Upper extremity prosthetics: current status & evaluation – ident: ref195 doi: 10.1016/j.patrec.2017.12.005 – ident: ref126 doi: 10.1007/s40846-017-0303-8 – ident: ref130 doi: 10.1145/3173574.3174011 – ident: ref20 doi: 10.1016/j.ijhcs.2019.03.011 – year: 0 ident: ref145 – ident: ref107 doi: 10.3390/informatics5020028 – ident: ref146 doi: 10.1126/scirobotics.abb0467 – ident: ref223 doi: 10.1109/JBHI.2018.2805760 |
| SSID | ssj0000547180 |
| Score | 2.6251395 |
| SecondaryResourceType | review_article |
| Snippet | Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life.... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 85 |
| SubjectTerms | Algorithms Deep learning Discriminant analysis electromyography Exoskeleton Exoskeletons forcemyography Gesture recognition Gestures Hand Hand (anatomy) human-computer interaction Human-computer interface Humans Interfaces Learning algorithms Machine learning Machine learning algorithms Mathematical analysis Neurological diseases Prostheses Prosthetics Quality of Life Recovery of function Rehabilitation Reproducibility of Results Stroke (medical condition) Support vector machines Training Wearable Electronic Devices Wearable technology Wrist |
| Title | Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey |
| URI | https://ieeexplore.ieee.org/document/9426433 https://www.ncbi.nlm.nih.gov/pubmed/33961564 https://www.proquest.com/docview/2621793029 https://www.proquest.com/docview/2524360967 |
| Volume | 15 |
| WOSCitedRecordID | wos000745516700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1941-1189 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000547180 issn: 1937-3333 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2CSH2wMcGW8eYgsQTolsu6SUNbwfa2MsmdIC4typNXZg02ql3ncR_P7vtVSABEn2q2rSNajv-2Y5tgFeoS29T7-MydZJbmLnYa1_ERnkCtxqnSd43m7CXl-li4T5uwJsxFwYRu81neMynXSy_qEPLrrITx-pb603YtNb2uVqjP4WgBy2zsg8ik9zQMQQxJ9KdzN9dnJIxqCbHmqvbOG4Ap7UzXCrlN43UtVj5O9rstM7Zo_-b72N4OKBLMevZ4QlsYLUD27_UHNyB-xdDNH0X5uyR4iZF4ivxO-dQic5BWPI2LeGrQsyuv9XN1er7j6UgcCvO-doHmm_boJivtx7V1VsxE5_a5hZ_PoUvZ6ef35_HQ4-FOOjErWJvUZoyEIqzaa4IaStMpoEoWJjSk-yjKXwSTEjywnlZks6bKJV6Fn0nHSb6GWxVdYX7IMiwRMNKMRDMoYUiL6c5WUvWWFlyjZoI5Po_Z2EoQM59MK6zzhCRLmMqZUylbKBSBK_HR2766hv_GrzLJBgHDn8_gsM1MbNBPpeZMopXJqlcBC_H2yRZHC7xFdYtjZmqRBsy8WwEez0TjO9e887Bn7_5HB4oTpPoXDWHsLVqWnwB98Lt6mrZHBH7LtKjjn3vAKtP5WM |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2gQY88LHxURgsSDyhdcsladrwdqCNQ9ud0G1oe6vSNIVJo0W96yT-e-y2V4E0kOhT1aZtVNvxz3ZsA7zxsrBxYm1YJIZTCzMTWmnzUAuL4Fb6SGVds4l4NksuLsznNdgbcmG89-3mM79Pp20sP69cQ66yA0PqW8p1uBUpJUZdttbgUUHwgQst78LIKDl49GHMETcH8_fTQzQHxWhfUn0bQy3gpDSaiqX8oZPaJit_x5ut3jl68H8zfgj3e3zJxh1DPII1X27Bvd-qDm7B5rSPp2_DnHxS1KaInSPHUxYVa12EBW3UYrbM2fjqa1VfLr99XzCEt2xC1z7ifJvas_lq81FVvmNjdtrU1_7nY_hydHj2YRL2XRZCJ5VZhjb2XBcOcVycZAKxtvAqckjDXBcWpd_r3CqnncpyY3mBWm8kRGJJ-A03XsknsFFWpX8GDE1Lr0ktOgQ6uFRkRZShvRTrmBdUpSYAvvrPqetLkFMnjKu0NUW4SYlKKVEp7akUwNvhkR9d_Y1_Dd4mEgwD-78fwM6KmGkvoYtUaEFrExcmgNfDbZQtCpjY0lcNjomEkhqNvDiApx0TDO9e8c7zm7-5C3cmZ9OT9OTT7PgF3BWUNNE6bnZgY1k3_iXcdtfLy0X9qmXiX1yu58I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Wearable+Interfaces+and+Algorithms+for+Hand+Gesture+Recognition%3A+A+Survey&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Jiang%2C+Shuo&rft.au=Kang%2C+Peiqi&rft.au=Song%2C+Xinyu&rft.au=Lo%2C+Benny&rft.date=2022&rft.eissn=1941-1189&rft.volume=15&rft.spage=85&rft_id=info:doi/10.1109%2FRBME.2021.3078190&rft_id=info%3Apmid%2F33961564&rft.externalDocID=33961564 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon |