Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey

Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication...

Full description

Saved in:
Bibliographic Details
Published in:IEEE reviews in biomedical engineering Vol. 15; pp. 85 - 102
Main Authors: Jiang, Shuo, Kang, Peiqi, Song, Xinyu, Lo, Benny, Shull, Peter
Format: Journal Article
Language:English
Published: United States IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1937-3333, 1941-1189, 1941-1189
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces.
AbstractList Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces.
Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces.Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life. Wearable hand gesture interfaces hold promise to restore and assist hand function and to enhance human-human and human-computer communication. The purpose of this review is to synthesize current novel sensing interfaces and algorithms for hand gesture recognition, and the scope of applications covers rehabilitation, prosthesis control, exoskeletons for augmentation, sign language recognition, human-computer interaction, and user authentication. Results showed that electrical, mechanical, acoustical/vibratory, and optical sensing were the primary input modalities in gesture recognition interfaces. Two categories of algorithms were identified: 1) classification algorithms for predefined, fixed hand poses and 2) regression algorithms for continuous finger and wrist joint angles. Conventional machine learning algorithms, including linear discriminant analysis, support vector machines, random forests, and non-negative matrix factorization, have been widely used for a variety of gesture recognition applications, and deep learning algorithms have more recently been applied to further facilitate the complex relationship between sensor signals and multi-articulated hand postures. Future research should focus on increasing recognition accuracy with larger hand gesture datasets, improving reliability and robustness for daily use outside of the laboratory, and developing softer, less obtrusive interfaces.
Author Kang, Peiqi
Shull, Peter
Jiang, Shuo
Song, Xinyu
Lo, Benny
Author_xml – sequence: 1
  givenname: Shuo
  orcidid: 0000-0003-3645-6301
  surname: Jiang
  fullname: Jiang, Shuo
  email: jiangshuo@tongji.edu.cn
  organization: College of Electronics and Information Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Peiqi
  orcidid: 0000-0003-2499-1251
  surname: Kang
  fullname: Kang, Peiqi
  email: pekkykang@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Xinyu
  orcidid: 0000-0002-6396-7038
  surname: Song
  fullname: Song, Xinyu
  email: songxinyu@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Benny
  orcidid: 0000-0002-5080-108X
  surname: Lo
  fullname: Lo, Benny
  email: benny.lo@imperial.ac.uk
  organization: Department of Surgery and Cancer, Imperial College London, London, U.K
– sequence: 5
  givenname: Peter
  orcidid: 0000-0001-8931-5743
  surname: Shull
  fullname: Shull, Peter
  email: pshull@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33961564$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFr3DAQhUVJadI0P6AUiiCXXrzRSFrJ6m0btkkgJbBt6VFo5fFWwbZSyQ7k31dmNz3k0LnMIL43vNF7S46GOCAh74EtAJi52Hz5tl5wxmEhmK7BsFfkBIyECqA2R_MsdCVKHZOznO9ZqaXUULM35FgIo2Cp5AnZrHtMuzDs6C90yW07pDfDiKl1HjN1Q0NX3S6mMP7uM21jotfz2xXmcUpIN-jjbghjiMNnuqLfp_SIT-_I69Z1Gc8O_ZT8_Lr-cXld3d5d3VyubisvpBkrp5Gp1hvBdb3lmhuOculRtI1qHQNA1TjplZfbxjjWCgnAee2YZMwwg1Kckk_7vQ8p_pmKI9uH7LHr3IBxypYvuRSKGaULev4CvY9TGoo7yxUHbQTjplAfD9S07bGxDyn0Lj3Z598qgN4DPsWcE7bWh9HN14_Jhc4Cs3M0do7GztHYQzRFCS-Uz8v_p_mw1wRE_McbyYsTIf4Co8-Whg
CODEN IRBECO
CitedBy_id crossref_primary_10_3390_bioengineering10070866
crossref_primary_10_1109_ACCESS_2025_3569932
crossref_primary_10_1109_JBHI_2021_3100099
crossref_primary_10_1109_ACCESS_2023_3316509
crossref_primary_10_2478_cait_2024_0031
crossref_primary_10_3390_s25072188
crossref_primary_10_1002_admt_202401716
crossref_primary_10_1109_TOH_2025_3544134
crossref_primary_10_1109_TBCAS_2022_3211424
crossref_primary_10_1109_TNSRE_2024_3447669
crossref_primary_10_1109_TCPMT_2025_3539978
crossref_primary_10_1109_JBHI_2023_3330289
crossref_primary_10_1109_JSEN_2023_3264620
crossref_primary_10_1109_TNSRE_2025_3543649
crossref_primary_10_34133_cbsystems_0219
crossref_primary_10_3390_s23125462
crossref_primary_10_3390_s25061687
crossref_primary_10_1109_JSEN_2022_3222801
crossref_primary_10_1016_j_mee_2023_112102
crossref_primary_10_3390_s24134378
crossref_primary_10_1109_JIOT_2025_3581380
crossref_primary_10_1109_JSEN_2024_3444808
crossref_primary_10_3390_s23208570
crossref_primary_10_3390_s24186157
crossref_primary_10_1021_acs_nanolett_5c02030
crossref_primary_10_1364_OE_572413
crossref_primary_10_1109_TNSRE_2022_3228018
crossref_primary_10_1016_j_nanoen_2024_109639
crossref_primary_10_25300_MISQ_2025_18314
crossref_primary_10_1109_JSEN_2024_3374344
crossref_primary_10_1016_j_compbiomed_2022_106060
crossref_primary_10_1109_TCYB_2024_3504840
crossref_primary_10_1007_s10845_023_02150_z
crossref_primary_10_1016_j_rcim_2025_103110
crossref_primary_10_1109_TIM_2023_3271722
crossref_primary_10_1109_JSEN_2023_3289232
crossref_primary_10_1002_aisy_202300207
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_1109_ACCESS_2025_3556920
crossref_primary_10_1109_TNSRE_2023_3303316
crossref_primary_10_1109_JBHI_2024_3417236
crossref_primary_10_1038_s41598_024_81369_z
crossref_primary_10_1109_JSEN_2023_3241126
crossref_primary_10_1109_TCCN_2023_3345869
crossref_primary_10_1109_TIM_2024_3420372
crossref_primary_10_1109_TNSRE_2023_3335101
crossref_primary_10_1109_JBHI_2025_3533736
crossref_primary_10_1016_j_device_2024_100686
crossref_primary_10_3390_jsan11010017
crossref_primary_10_3390_electronics10222767
crossref_primary_10_1016_j_rineng_2025_105648
crossref_primary_10_3390_electronics12030613
crossref_primary_10_1002_admt_202400857
crossref_primary_10_1016_j_eswa_2024_125929
crossref_primary_10_1002_inf2_12642
crossref_primary_10_1109_ACCESS_2025_3555426
crossref_primary_10_3390_app13095544
crossref_primary_10_1109_TMECH_2023_3344181
crossref_primary_10_1016_j_eswa_2025_127040
crossref_primary_10_1016_j_neucom_2025_129963
crossref_primary_10_1109_JBHI_2022_3194017
crossref_primary_10_3390_mi14051085
crossref_primary_10_3390_s25154602
crossref_primary_10_3390_bios15070414
crossref_primary_10_1002_advs_202303403
crossref_primary_10_1007_s13369_024_09396_6
crossref_primary_10_1371_journal_pone_0322580
crossref_primary_10_1016_j_bspc_2023_105445
crossref_primary_10_1109_JOE_2023_3265634
crossref_primary_10_1016_j_neunet_2023_04_043
crossref_primary_10_1109_TIM_2024_3497179
crossref_primary_10_1109_JBHI_2024_3524398
crossref_primary_10_1109_TNSRE_2024_3414136
crossref_primary_10_1016_j_bspc_2023_105030
crossref_primary_10_1109_LRA_2022_3184792
crossref_primary_10_1109_JSEN_2023_3314104
crossref_primary_10_1016_j_engappai_2023_106179
crossref_primary_10_1109_TCYB_2024_3489438
crossref_primary_10_1109_TIM_2023_3325522
crossref_primary_10_1109_TRO_2025_3567547
crossref_primary_10_1002_adsr_202200054
crossref_primary_10_1109_JSEN_2025_3527918
crossref_primary_10_1080_10447318_2023_2212232
crossref_primary_10_1002_aisy_202300210
crossref_primary_10_3390_app15116045
crossref_primary_10_1109_TNSRE_2024_3521583
crossref_primary_10_1016_j_matdes_2024_113029
crossref_primary_10_1109_JSEN_2022_3221181
crossref_primary_10_1109_TIM_2025_3562991
crossref_primary_10_1016_j_cmpb_2022_106999
crossref_primary_10_3390_s22197512
crossref_primary_10_1109_JSEN_2024_3445128
crossref_primary_10_1007_s41315_023_00282_2
crossref_primary_10_1109_TIM_2024_3440381
crossref_primary_10_1016_j_asoc_2024_112235
crossref_primary_10_1016_j_engappai_2024_109225
crossref_primary_10_1080_10447318_2025_2560516
crossref_primary_10_1016_j_nanoen_2025_110805
crossref_primary_10_1016_j_pmcj_2024_101976
crossref_primary_10_1016_j_pmcj_2025_102029
crossref_primary_10_1016_j_ins_2022_05_085
crossref_primary_10_1016_j_robot_2023_104567
crossref_primary_10_3389_fncom_2025_1543643
crossref_primary_10_1016_j_bspc_2025_107591
crossref_primary_10_1016_j_nanoen_2025_110821
crossref_primary_10_3390_nano14141173
crossref_primary_10_1109_TFUZZ_2024_3438805
crossref_primary_10_1016_j_cviu_2024_104095
crossref_primary_10_1089_soro_2021_0209
crossref_primary_10_1109_TMRB_2025_3550646
crossref_primary_10_1109_TIM_2022_3232159
crossref_primary_10_1109_TII_2024_3375376
crossref_primary_10_1109_TVCG_2022_3148007
crossref_primary_10_3390_s24061800
crossref_primary_10_1016_j_cej_2025_161142
Cites_doi 10.1007/s40846-016-0151-y
10.1109/ICHMS49158.2020.9209381
10.1109/ICMECH.2015.7083969
10.1109/TBME.2012.2190734
10.1109/JBHI.2016.2560907
10.1088/1741-2552/ab8682
10.1145/3175684.3175697
10.1109/RBME.2019.2950897
10.3390/s20041201
10.1109/TII.2017.2779814
10.1310/9KFM-KF81-P9A4-5WW0
10.1145/2702123.2702501
10.1038/nature14539
10.1080/01691864.2018.1490666
10.1109/JBHI.2017.2766249
10.3390/app9183751
10.3390/s16040556
10.1109/JBHI.2019.2941535
10.1109/IEMCON51383.2020.9284893
10.1038/s41467-020-15990-7
10.1162/105474698565686
10.1109/TOH.2015.2417570
10.1186/s12984-016-0168-z
10.1145/3301275.3302296
10.1177/0300060516656689
10.1109/JBHI.2014.2329841
10.1186/1743-0003-11-2
10.1109/TNSRE.2012.2207916
10.1109/TII.2020.3001612
10.1310/tsr1803-277
10.1145/3145690.3145731
10.1145/2858036.2858466
10.1109/ICRA.2017.7989337
10.1007/s11370-018-0250-4
10.1109/JERM.2019.2949456
10.1109/ICSENS.2018.8589574
10.1109/TCSII.2020.3006430
10.1371/journal.pone.0206049
10.1038/s41928-018-0120-2
10.3389/fnbot.2020.00011
10.1109/ICMRA.2018.8490559
10.1109/SII.2017.8279239
10.1145/3287080
10.1016/j.siny.2005.10.010
10.1109/JSEN.2019.2927325
10.1016/j.patrec.2018.02.010
10.1145/2968219.2971403
10.1002/adfm.201602733
10.1016/j.sna.2019.111738
10.3390/s17030458
10.1109/TNSRE.2019.2907200
10.1109/TBME.2019.2899927
10.1145/3432199
10.1109/JSEN.2014.2339843
10.1109/TBME.2019.2962499
10.1109/JBHI.2018.2867539
10.1109/RBME.2018.2848518
10.1038/s41586-019-1687-0
10.3389/frobt.2019.00124
10.1109/JBHI.2018.2860780
10.1109/TIE.2019.2914621
10.1145/3025453.3025807
10.1109/ICPR.2014.477
10.1109/TNSRE.2018.2829913
10.1109/TNSRE.2015.2492619
10.1145/2735711.2735830
10.1109/TNSRE.2010.2079334
10.1145/2735711.2735801
10.1145/2897824.2925953
10.3389/fnbot.2018.00047
10.3390/bdcc2030021
10.1109/JSEN.2017.2776262
10.1109/ISCAS.2018.8351727
10.1177/0142331216672918
10.1016/j.eswa.2010.09.068
10.1109/TIE.2019.2898614
10.1109/JSEN.2018.2877978
10.1109/IROS.2018.8593448
10.1145/2807442.2807480
10.1145/2380296.2380336
10.1038/srep25727
10.1109/JTEHM.2018.2829208
10.1186/s12984-019-0612-y
10.3390/s19030710
10.1109/THMS.2019.2925191
10.1109/ISWC.2001.962092
10.1016/j.medengphy.2014.09.003
10.1016/j.medengphy.2013.04.011
10.1145/2807442.2807462
10.1109/CYBER.2017.8446436
10.1145/3191788
10.1109/ISUVR.2017.16
10.1109/MSP.2012.2205597
10.1109/TCYB.2020.3007173
10.1109/ICRA.2014.6906601
10.1109/ISCAS.2018.8351296
10.1088/1741-2552/aaf4c3
10.1038/s41928-020-0428-6
10.1007/978-3-319-56148-6_22
10.1109/JSEN.2020.2965580
10.1109/EMBC.2017.8037842
10.1109/TBME.2019.2900415
10.1109/BSN.2018.8329688
10.1109/IECBES.2018.8626719
10.1145/3150974
10.1109/TBME.2008.2007967
10.1145/2642918.2647396
10.1145/2815585.2815732
10.1109/BIGCOM.2018.00018
10.1109/RBME.2020.3019769
10.1007/s41315-019-00115-1
10.1126/science.1206157
10.1109/TNSRE.2014.2318431
10.1109/TII.2019.2909877
10.1109/JSEN.2015.2459067
10.1109/TNSRE.2016.2626800
10.1088/1742-6596/1019/1/012017
10.1201/9781420034462
10.1145/2512349.2512821
10.1145/3065386
10.1109/HOLM.1998.722422
10.1145/3274783.3274854
10.1109/TKDE.2009.191
10.1109/TSMCA.2011.2116004
10.1682/JRRD.2015.03.0041
10.1089/soro.2018.0116
10.1109/MSP.2012.2203480
10.1109/JSEN.2020.3014276
10.1109/EMBC.2012.6345896
10.1109/TNSRE.2019.2939587
10.1016/j.bspc.2019.101774
10.1109/TMC.2019.2962760
10.3389/fbioe.2020.00058
10.1016/j.jelekin.2011.09.004
10.1109/EMBC.2017.8036844
10.1177/1179597220912825
10.1007/s10055-016-0301-0
10.1016/j.bspc.2019.101737
10.1016/j.compeleceng.2019.08.006
10.1007/s12541-013-0073-3
10.1016/j.displa.2018.08.001
10.1007/s00521-019-04427-y
10.1109/TBME.2020.2989311
10.1109/ICMLC48188.2019.8949209
10.1109/ICIT.2018.8352399
10.1109/TNSRE.2019.2896269
10.1145/3122986.3123015
10.1109/TNSRE.2019.2939202
10.1109/CBS.2018.8612211
10.1109/JSEN.2017.2779466
10.1109/JBHI.2019.2945593
10.1145/3126594.3126604
10.1109/TNSRE.2016.2562180
10.1109/TNSRE.2016.2644264
10.1038/s41565-018-0226-8
10.3390/s20102972
10.1109/TBME.2018.2872593
10.1109/JBHI.2014.2380454
10.1109/IROS.2014.6943125
10.1109/EMBC.2012.6346923
10.1109/TASE.2020.3030852
10.1145/1613858.1613878
10.1109/JBHI.2016.2633287
10.1109/RAEE.2019.8886931
10.1109/TII.2015.2405413
10.1109/JSEN.2015.2450211
10.1016/j.eswa.2019.01.080
10.3390/s18072208
10.1109/TBME.2019.2899222
10.7717/peerj-cs.218
10.1145/2858036.2858093
10.3390/s19183827
10.1038/s41928-020-0422-z
10.1038/s41928-020-00510-8
10.1016/j.bspc.2020.101981
10.1109/TBCAS.2019.2940030
10.1016/j.medengphy.2011.12.007
10.1109/CBMS.2014.43
10.1109/TOH.2019.2943154
10.1038/sdata.2014.53
10.1145/2030112.2030154
10.1109/TNSRE.2018.2878439
10.1109/MPRV.2018.022511241
10.1145/3338286.3340147
10.1109/JSEN.2020.3023742
10.1109/10.661262
10.1109/LED.2017.2649497
10.1109/INFOCOM.2018.8486006
10.1109/ENBENG.2015.7088817
10.1109/THMS.2015.2470657
10.1109/TNSRE.2019.2946625
10.1109/JBHI.2016.2598302
10.23919/SICE.2017.8105457
10.1109/JSEN.2018.2865623
10.1109/TNSRE.2019.2905658
10.1371/journal.pone.0227039
10.1109/TNSRE.2016.2560906
10.1002/aisy.201970072
10.1109/JSEN.2013.2263797
10.1109/TNSRE.2012.2196711
10.1038/srep36571
10.1016/j.nanoen.2020.105017
10.1145/2984511.2984574
10.1016/j.mejo.2018.01.014
10.1109/TBME.2011.2113182
10.1145/3268866.3268890
10.1109/JSEN.2017.2679806
10.1109/ICRA.2015.7139544
10.1016/j.patrec.2017.12.005
10.1007/s40846-017-0303-8
10.1145/3173574.3174011
10.1016/j.ijhcs.2019.03.011
10.3390/informatics5020028
10.1126/scirobotics.abb0467
10.1109/JBHI.2018.2805760
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/RBME.2021.3078190
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1941-1189
EndPage 102
ExternalDocumentID 33961564
10_1109_RBME_2021_3078190
9426433
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: China Scholarship Council; Chinese Scholarship Council
  funderid: 10.13039/501100004543
– fundername: National Natural Science Foundation of China
  grantid: 51950410602
  funderid: 10.13039/501100001809
GroupedDBID ---
0R~
23N
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACPRK
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-a7e06fc93278b27292e45ce3fd6fa011e6da4c6c4bd9a0f3411228a0400909e43
IEDL.DBID RIE
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000745516700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1937-3333
1941-1189
IngestDate Thu Oct 02 16:51:59 EDT 2025
Mon Jun 30 10:21:13 EDT 2025
Thu Jan 02 22:55:24 EST 2025
Tue Nov 18 22:43:11 EST 2025
Sat Nov 29 02:05:54 EST 2025
Wed Aug 27 03:02:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a7e06fc93278b27292e45ce3fd6fa011e6da4c6c4bd9a0f3411228a0400909e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-5080-108X
0000-0002-6396-7038
0000-0003-3645-6301
0000-0003-2499-1251
0000-0001-8931-5743
PMID 33961564
PQID 2621793029
PQPubID 85512
PageCount 18
ParticipantIDs proquest_journals_2621793029
proquest_miscellaneous_2524360967
pubmed_primary_33961564
crossref_primary_10_1109_RBME_2021_3078190
crossref_citationtrail_10_1109_RBME_2021_3078190
ieee_primary_9426433
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE reviews in biomedical engineering
PublicationTitleAbbrev RBME
PublicationTitleAlternate IEEE Rev Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref207
ref56
ref208
ref59
ref205
ref58
ref53
ref203
orizio (ref161) 1993; 21
ref204
ref55
ref201
ref54
ref202
ref209
ref210
ref211
ref51
gao (ref52) 0
ref50
holder (ref150) 2004
ref46
ref218
ref45
ref219
ref48
ref216
ref47
ref217
ref42
ref41
ref44
ref212
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref221
ref101
ref222
ref40
ref220
pfister (ref169) 2016
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
(ref170) 2020
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref200
fan (ref68) 0
ref128
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
ref93
ref133
ref92
ref134
ref95
ref131
ref132
ref130
ref91
ref90
ref89
ref139
ref86
ref137
ref85
ref138
ref88
ref135
ref87
ref136
muhammed (ref140) 2015; 10
lecun (ref15) 2015; 521
ref82
ref144
ref81
ref84
ref142
ref143
ref141
ref80
ref79
ref229
ref108
ref78
ref109
ref227
ref106
ref228
ref107
ref75
ref225
ref104
ref74
ref226
ref105
ref77
ref223
ref102
ref76
ref224
ref103
ref71
ref232
ref111
ref70
ref233
ref112
ref73
ref230
ref72
chegani (ref94) 2018; 17
ref231
ref110
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref234
ref113
ref65
ref114
cornelius (ref83) 0
booth (ref129) 2016; 39
ref60
ref122
ref123
ref62
ref120
ref61
guo (ref206) 0
ref121
ref168
ref178
ref175
ref176
ref173
tzeng (ref213) 2014
ref174
ref171
ref172
ref179
ref180
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref156
ref153
ref154
ref151
ref152
ref159
ref157
ref158
(ref145) 0
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref13
ref12
ref14
ref11
ref10
ref17
ref16
ref19
han (ref155) 0
ref18
plettenburg (ref24) 0
jiménez (ref177) 0
ref2
ref1
rehman (ref193) 2018; 18
ref191
yosinski (ref215) 0
ref192
ref190
ref199
ref197
ref198
ref195
ref196
ref194
long (ref214) 0
References_xml – ident: ref173
  doi: 10.1007/s40846-016-0151-y
– start-page: 365
  year: 0
  ident: ref155
  article-title: Wearable handwriting input device using magnetic field
  publication-title: Proc SICE Annu Conf
– ident: ref50
  doi: 10.1109/ICHMS49158.2020.9209381
– ident: ref143
  doi: 10.1109/ICMECH.2015.7083969
– ident: ref61
  doi: 10.1109/TBME.2012.2190734
– ident: ref54
  doi: 10.1109/JBHI.2016.2560907
– ident: ref222
  doi: 10.1088/1741-2552/ab8682
– ident: ref175
  doi: 10.1145/3175684.3175697
– ident: ref14
  doi: 10.1109/RBME.2019.2950897
– ident: ref194
  doi: 10.3390/s20041201
– ident: ref10
  doi: 10.1109/TII.2017.2779814
– ident: ref27
  doi: 10.1310/9KFM-KF81-P9A4-5WW0
– ident: ref42
  doi: 10.1145/2702123.2702501
– volume: 521
  start-page: 436
  year: 2015
  ident: ref15
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref111
  doi: 10.1080/01691864.2018.1490666
– ident: ref125
  doi: 10.1109/JBHI.2017.2766249
– ident: ref51
  doi: 10.3390/app9183751
– ident: ref62
  doi: 10.3390/s16040556
– ident: ref201
  doi: 10.1109/JBHI.2019.2941535
– ident: ref188
  doi: 10.1109/IEMCON51383.2020.9284893
– ident: ref203
  doi: 10.1038/s41467-020-15990-7
– ident: ref28
  doi: 10.1162/105474698565686
– ident: ref34
  doi: 10.1109/TOH.2015.2417570
– ident: ref25
  doi: 10.1186/s12984-016-0168-z
– ident: ref58
  doi: 10.1145/3301275.3302296
– ident: ref38
  doi: 10.1177/0300060516656689
– ident: ref103
  doi: 10.1109/JBHI.2014.2329841
– ident: ref152
  doi: 10.1186/1743-0003-11-2
– ident: ref122
  doi: 10.1109/TNSRE.2012.2207916
– ident: ref74
  doi: 10.1109/TII.2020.3001612
– ident: ref26
  doi: 10.1310/tsr1803-277
– ident: ref81
  doi: 10.1145/3145690.3145731
– volume: 21
  start-page: 201
  year: 1993
  ident: ref161
  article-title: Muscle sound: Bases for the introduction of a mechanomyographic signal in muscle studies
  publication-title: Crit Rev Biomed Eng
– ident: ref105
  doi: 10.1145/2858036.2858466
– ident: ref49
  doi: 10.1109/ICRA.2017.7989337
– ident: ref47
  doi: 10.1007/s11370-018-0250-4
– start-page: 233
  year: 0
  ident: ref177
  article-title: Gesture recognition and machine learning applied to sign language translation
  publication-title: Proc 7th Latin Amer Congr Biomed Eng CLAIB 2016
– ident: ref191
  doi: 10.1109/JERM.2019.2949456
– ident: ref117
  doi: 10.1109/ICSENS.2018.8589574
– ident: ref76
  doi: 10.1109/TCSII.2020.3006430
– ident: ref197
  doi: 10.1371/journal.pone.0206049
– ident: ref226
  doi: 10.1038/s41928-018-0120-2
– ident: ref102
  doi: 10.3389/fnbot.2020.00011
– ident: ref115
  doi: 10.1109/ICMRA.2018.8490559
– ident: ref156
  doi: 10.1109/SII.2017.8279239
– ident: ref55
  doi: 10.1145/3287080
– ident: ref23
  doi: 10.1016/j.siny.2005.10.010
– ident: ref221
  doi: 10.1109/JSEN.2019.2927325
– ident: ref187
  doi: 10.1016/j.patrec.2018.02.010
– start-page: 196
  year: 0
  ident: ref206
  article-title: Towards zero training for myoelectric control based on a wearable wireless semg armband
  publication-title: Proc IEEE Int Conf Adv Intell Mechatronics
– ident: ref71
  doi: 10.1145/2968219.2971403
– ident: ref110
  doi: 10.1002/adfm.201602733
– ident: ref78
  doi: 10.1016/j.sna.2019.111738
– volume: 39
  year: 2016
  ident: ref129
  article-title: Validation of a piezoelectric sensor array for a wrist-worn muscle-computer interface
  publication-title: CMBES Proc
– ident: ref207
  doi: 10.3390/s17030458
– ident: ref210
  doi: 10.1109/TNSRE.2019.2907200
– ident: ref30
  doi: 10.1109/TBME.2019.2899927
– ident: ref218
  doi: 10.1145/3432199
– ident: ref174
  doi: 10.1109/JSEN.2014.2339843
– ident: ref159
  doi: 10.1109/TBME.2019.2962499
– ident: ref124
  doi: 10.1109/JBHI.2018.2867539
– ident: ref39
  doi: 10.1109/RBME.2018.2848518
– ident: ref228
  doi: 10.1038/s41586-019-1687-0
– ident: ref101
  doi: 10.3389/frobt.2019.00124
– ident: ref73
  doi: 10.1109/JBHI.2018.2860780
– ident: ref65
  doi: 10.1109/TIE.2019.2914621
– ident: ref123
  doi: 10.1145/3025453.3025807
– ident: ref211
  doi: 10.1109/ICPR.2014.477
– ident: ref119
  doi: 10.1109/TNSRE.2018.2829913
– ident: ref209
  doi: 10.1109/TNSRE.2015.2492619
– ident: ref139
  doi: 10.1145/2735711.2735830
– ident: ref37
  doi: 10.1109/TNSRE.2010.2079334
– ident: ref134
  doi: 10.1145/2735711.2735801
– ident: ref11
  doi: 10.1145/2897824.2925953
– ident: ref91
  doi: 10.3389/fnbot.2018.00047
– ident: ref44
  doi: 10.3390/bdcc2030021
– ident: ref106
  doi: 10.1109/JSEN.2017.2776262
– ident: ref229
  doi: 10.1109/ISCAS.2018.8351727
– ident: ref231
  doi: 10.1177/0142331216672918
– ident: ref147
  doi: 10.1016/j.eswa.2010.09.068
– ident: ref121
  doi: 10.1109/TIE.2019.2898614
– ident: ref60
  doi: 10.1109/JSEN.2018.2877978
– ident: ref219
  doi: 10.1109/IROS.2018.8593448
– ident: ref82
  doi: 10.1145/2807442.2807480
– start-page: 553
  year: 0
  ident: ref52
  article-title: Transition movement models for large vocabulary continuous sign language recognition
  publication-title: Proc 6th IEEE Int Conf Autom Face Gesture Recognit
– start-page: 539
  year: 0
  ident: ref68
  article-title: Double hand-gesture interaction for walk-through in VR environment
  publication-title: Proc IEEE/ACIS 16th Int Conf Comput Inf Sci
– ident: ref127
  doi: 10.1145/2380296.2380336
– ident: ref232
  doi: 10.1038/srep25727
– ident: ref31
  doi: 10.1109/JTEHM.2018.2829208
– start-page: 3320
  year: 0
  ident: ref215
  article-title: How transferable are features in deep neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref1
  doi: 10.1186/s12984-019-0612-y
– ident: ref190
  doi: 10.3390/s19030710
– ident: ref179
  doi: 10.1109/THMS.2019.2925191
– ident: ref88
  doi: 10.1109/ISWC.2001.962092
– ident: ref163
  doi: 10.1016/j.medengphy.2014.09.003
– ident: ref168
  doi: 10.1016/j.medengphy.2013.04.011
– ident: ref112
  doi: 10.1145/2807442.2807462
– ident: ref46
  doi: 10.1109/CYBER.2017.8446436
– ident: ref136
  doi: 10.1145/3191788
– ident: ref67
  doi: 10.1109/ISUVR.2017.16
– year: 2016
  ident: ref169
  article-title: Gest: work with your hands
– ident: ref182
  doi: 10.1109/MSP.2012.2205597
– ident: ref200
  doi: 10.1109/TCYB.2020.3007173
– ident: ref21
  doi: 10.1109/ICRA.2014.6906601
– ident: ref86
  doi: 10.1109/ISCAS.2018.8351296
– ident: ref202
  doi: 10.1088/1741-2552/aaf4c3
– ident: ref53
  doi: 10.1038/s41928-020-0428-6
– ident: ref93
  doi: 10.1007/978-3-319-56148-6_22
– ident: ref108
  doi: 10.1109/JSEN.2020.2965580
– ident: ref70
  doi: 10.1109/EMBC.2017.8037842
– ident: ref153
  doi: 10.1109/TBME.2019.2900415
– ident: ref95
  doi: 10.1109/BSN.2018.8329688
– ident: ref22
  doi: 10.1109/IECBES.2018.8626719
– ident: ref59
  doi: 10.1145/3150974
– ident: ref178
  doi: 10.1109/TBME.2008.2007967
– ident: ref92
  doi: 10.1145/2642918.2647396
– ident: ref133
  doi: 10.1145/2815585.2815732
– ident: ref185
  doi: 10.1109/BIGCOM.2018.00018
– ident: ref64
  doi: 10.1109/RBME.2020.3019769
– ident: ref141
  doi: 10.1007/s41315-019-00115-1
– ident: ref230
  doi: 10.1126/science.1206157
– ident: ref7
  doi: 10.1109/TNSRE.2014.2318431
– ident: ref18
  doi: 10.1109/TII.2019.2909877
– ident: ref6
  doi: 10.1109/JSEN.2015.2459067
– ident: ref87
  doi: 10.1109/TNSRE.2016.2626800
– ident: ref165
  doi: 10.1145/2380296.2380336
– ident: ref116
  doi: 10.1088/1742-6596/1019/1/012017
– year: 2004
  ident: ref150
  publication-title: Electrical Impedance Tomography Methods History and Applications
  doi: 10.1201/9781420034462
– ident: ref131
  doi: 10.1145/2512349.2512821
– ident: ref181
  doi: 10.1145/3065386
– ident: ref151
  doi: 10.1109/HOLM.1998.722422
– ident: ref89
  doi: 10.1145/3274783.3274854
– year: 2014
  ident: ref213
  article-title: Deep domain confusion: Maximizing for domain invariance
  publication-title: arXiv 1412 3474
– ident: ref17
  doi: 10.1109/TKDE.2009.191
– ident: ref9
  doi: 10.1109/TSMCA.2011.2116004
– ident: ref99
  doi: 10.1682/JRRD.2015.03.0041
– ident: ref114
  doi: 10.1089/soro.2018.0116
– ident: ref204
  doi: 10.1109/MSP.2012.2203480
– ident: ref189
  doi: 10.1109/JSEN.2020.3014276
– ident: ref154
  doi: 10.1109/EMBC.2012.6345896
– ident: ref3
  doi: 10.1109/TNSRE.2019.2939587
– ident: ref184
  doi: 10.1016/j.bspc.2019.101774
– ident: ref137
  doi: 10.1109/TMC.2019.2962760
– ident: ref75
  doi: 10.3389/fbioe.2020.00058
– ident: ref167
  doi: 10.1016/j.jelekin.2011.09.004
– ident: ref171
  doi: 10.1109/EMBC.2017.8036844
– ident: ref144
  doi: 10.1177/1179597220912825
– ident: ref12
  doi: 10.1007/s10055-016-0301-0
– ident: ref36
  doi: 10.1016/j.bspc.2019.101737
– ident: ref57
  doi: 10.1016/j.compeleceng.2019.08.006
– ident: ref32
  doi: 10.1007/s12541-013-0073-3
– volume: 17
  start-page: 1
  year: 2018
  ident: ref94
  article-title: Regressing grasping using force myography: An exploratory study
  publication-title: Biomed Eng Online
– ident: ref186
  doi: 10.1016/j.displa.2018.08.001
– ident: ref217
  doi: 10.1007/s00521-019-04427-y
– ident: ref80
  doi: 10.1109/TBME.2020.2989311
– ident: ref120
  doi: 10.1109/ICMLC48188.2019.8949209
– ident: ref205
  doi: 10.1109/ICIT.2018.8352399
– ident: ref216
  doi: 10.1109/TNSRE.2019.2896269
– ident: ref13
  doi: 10.1145/3122986.3123015
– ident: ref4
  doi: 10.1109/TNSRE.2019.2939202
– ident: ref35
  doi: 10.1109/CBS.2018.8612211
– ident: ref66
  doi: 10.1109/JSEN.2017.2779466
– ident: ref85
  doi: 10.1109/JBHI.2019.2945593
– ident: ref135
  doi: 10.1145/3126594.3126604
– ident: ref212
  doi: 10.1109/TNSRE.2016.2562180
– ident: ref79
  doi: 10.1109/TNSRE.2016.2644264
– ident: ref225
  doi: 10.1038/s41565-018-0226-8
– ident: ref180
  doi: 10.3390/s20102972
– year: 2020
  ident: ref170
  article-title: Myo gesture control
– ident: ref160
  doi: 10.1109/TBME.2018.2872593
– ident: ref208
  doi: 10.1109/JBHI.2014.2380454
– ident: ref113
  doi: 10.1109/IROS.2014.6943125
– ident: ref224
  doi: 10.1109/EMBC.2012.6346923
– ident: ref90
  doi: 10.1109/TASE.2020.3030852
– ident: ref77
  doi: 10.1145/1613858.1613878
– ident: ref183
  doi: 10.1109/JBHI.2016.2633287
– start-page: 97
  year: 0
  ident: ref214
  article-title: Learning transferable features with deep adaptation networks
  publication-title: Proc Int Conf Mach Learn
– ident: ref118
  doi: 10.1109/RAEE.2019.8886931
– ident: ref98
  doi: 10.1109/TII.2015.2405413
– ident: ref158
  doi: 10.1109/JSEN.2015.2450211
– ident: ref72
  doi: 10.1016/j.eswa.2019.01.080
– ident: ref8
  doi: 10.3390/s18072208
– ident: ref196
  doi: 10.1109/TBME.2019.2899222
– ident: ref19
  doi: 10.7717/peerj-cs.218
– ident: ref100
  doi: 10.1145/2858036.2858093
– ident: ref176
  doi: 10.3390/s19183827
– ident: ref56
  doi: 10.1038/s41928-020-0422-z
– year: 0
  ident: ref83
  publication-title: Proc USENIX Workshop Health Secur Privacy
– ident: ref198
  doi: 10.1038/s41928-020-00510-8
– ident: ref148
  doi: 10.1016/j.bspc.2020.101981
– ident: ref97
  doi: 10.1109/TBCAS.2019.2940030
– ident: ref164
  doi: 10.1016/j.medengphy.2011.12.007
– ident: ref162
  doi: 10.1109/CBMS.2014.43
– ident: ref233
  doi: 10.1109/TOH.2019.2943154
– ident: ref41
  doi: 10.1038/sdata.2014.53
– ident: ref138
  doi: 10.1145/2030112.2030154
– volume: 10
  start-page: p. 13
  year: 2015
  ident: ref140
  article-title: Optomyography (OMG): A novel technique for the detection of muscle surface displacement using photoelectric sensors
  publication-title: " Measurements
– ident: ref220
  doi: 10.1109/TNSRE.2018.2878439
– volume: 18
  year: 2018
  ident: ref193
  article-title: Multiday emg-based classification of hand motions with deep learning techniques
  publication-title: SENSORS
– ident: ref48
  doi: 10.1109/MPRV.2018.022511241
– ident: ref132
  doi: 10.1145/3338286.3340147
– ident: ref149
  doi: 10.1109/JSEN.2020.3023742
– ident: ref166
  doi: 10.1109/10.661262
– ident: ref227
  doi: 10.1109/LED.2017.2649497
– ident: ref69
  doi: 10.1109/INFOCOM.2018.8486006
– ident: ref33
  doi: 10.1109/ENBENG.2015.7088817
– ident: ref40
  doi: 10.1109/THMS.2015.2470657
– ident: ref16
  doi: 10.1109/TNSRE.2019.2946625
– ident: ref63
  doi: 10.1109/JBHI.2016.2598302
– ident: ref142
  doi: 10.23919/SICE.2017.8105457
– ident: ref45
  doi: 10.1109/JSEN.2018.2865623
– ident: ref96
  doi: 10.1109/TNSRE.2019.2905658
– ident: ref104
  doi: 10.1371/journal.pone.0227039
– ident: ref29
  doi: 10.1109/TNSRE.2016.2560906
– ident: ref192
  doi: 10.1002/aisy.201970072
– ident: ref157
  doi: 10.1109/JSEN.2013.2263797
– ident: ref5
  doi: 10.1109/TNSRE.2012.2196711
– ident: ref43
  doi: 10.1038/srep36571
– ident: ref234
  doi: 10.1016/j.nanoen.2020.105017
– ident: ref84
  doi: 10.1145/2984511.2984574
– ident: ref2
  doi: 10.1016/j.mejo.2018.01.014
– ident: ref172
  doi: 10.1109/TBME.2011.2113182
– ident: ref199
  doi: 10.1145/3268866.3268890
– ident: ref128
  doi: 10.1109/JSEN.2017.2679806
– ident: ref109
  doi: 10.1109/ICRA.2015.7139544
– year: 0
  ident: ref24
  article-title: Upper extremity prosthetics: current status & evaluation
– ident: ref195
  doi: 10.1016/j.patrec.2017.12.005
– ident: ref126
  doi: 10.1007/s40846-017-0303-8
– ident: ref130
  doi: 10.1145/3173574.3174011
– ident: ref20
  doi: 10.1016/j.ijhcs.2019.03.011
– year: 0
  ident: ref145
– ident: ref107
  doi: 10.3390/informatics5020028
– ident: ref146
  doi: 10.1126/scirobotics.abb0467
– ident: ref223
  doi: 10.1109/JBHI.2018.2805760
SSID ssj0000547180
Score 2.6251395
SecondaryResourceType review_article
Snippet Hands are vital in a wide range of fundamental daily activities, and neurological diseases that impede hand function can significantly affect quality of life....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 85
SubjectTerms Algorithms
Deep learning
Discriminant analysis
electromyography
Exoskeleton
Exoskeletons
forcemyography
Gesture recognition
Gestures
Hand
Hand (anatomy)
human-computer interaction
Human-computer interface
Humans
Interfaces
Learning algorithms
Machine learning
Machine learning algorithms
Mathematical analysis
Neurological diseases
Prostheses
Prosthetics
Quality of Life
Recovery of function
Rehabilitation
Reproducibility of Results
Stroke (medical condition)
Support vector machines
Training
Wearable Electronic Devices
Wearable technology
Wrist
Title Emerging Wearable Interfaces and Algorithms for Hand Gesture Recognition: A Survey
URI https://ieeexplore.ieee.org/document/9426433
https://www.ncbi.nlm.nih.gov/pubmed/33961564
https://www.proquest.com/docview/2621793029
https://www.proquest.com/docview/2524360967
Volume 15
WOSCitedRecordID wos000745516700010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-1189
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000547180
  issn: 1937-3333
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLe2CSF42GDjozCmIPGE6JZLemnC24E29sAmdHzdW5UmKUwaLepdJ-2_x0571ZAAiT5VbdpEsR3_Ysc2wAvUKT7TpUuFFyrNSjVNtVM6dU5OKq2UE9Fj-uV9fn6uFwvzYQNejbEwIYR4-Cwc0m305fvGdWQqOzKkvqXchM08z_tYrdGegtADl1neO5FRbvAanJgTbo7mb86OcTMoJoeSstsYKgAnpVGUKuU3jRRLrPwdbUatc7Lzf-O9B9sDumSznh3uw0aod-HujZyDu3D7bPCm78GcLFJUpIh9RX6nGCoWDYQVHdNitvZsdvmtaS9W338sGYJbdkrP3uF4uzaw-froUVO_ZjP2sWuvwvUD-Hxy_OntaTrUWEidzMwqtXngqnKI4nJdCkTaImRTF2TlVWVR9oPyNnPKZaU3lleo8yZCaEuib7gJmXwIW3VTh8fApFbGiVCVVPsIlWDptfUqCMFtFRDZJcDX81y4IQE51cG4LOJGhJuCqFQQlYqBSgm8HD_52Wff-FfjPSLB2HCY_QT218QsBvlcFkIJWpm4MAk8H1-jZJG7xNah6bDNVGRS4RYvT-BRzwTjv9e88-TPfT6FO4LCJKKpZh-2Vm0XnsEtd7W6WLYHyL4LfRDZ9xeuUOYe
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-Ngfh44GPjIzDASDwhsjm269q8FbRRRFuhMsbeIsd2YNJIUNpM4r_H56QRSIBEnqLEiS3fne_nO98dwPOgU5xQhU2ZYzIVhRylykqVWsuzUklpWfSYnszGi4U6PdUftuDlEAvjvY-Hz_w-3kZfvqtti6ayA43qm_NLcHkkBMu6aK3BohLAR1hoaedGDpITrt6NmVF9sHw9PwzbQZbtc8xvo7EEHOdaYrKU33RSLLLyd7wZ9c7Rrf8b8W242eNLMukY4g5s-WoHbvySdXAHrs57f_ouLNEmhWWKyOfA8RhFRaKJsMSDWsRUjkzOv9TN2frrtxUJ8JZM8dnbMN628WS5OXxUV6_IhHxsmwv_4y58Ojo8fjNN-yoLqeVCr1Mz9lSWNuC4sSpYwNrMi5H1vHSyNEH6vXRGWGlF4bShZdB6GWPKoPBrqr3g92C7qiv_AAhXUlvmywKrHwU1WDhlnPSMUVP6gO0SoJt5zm2fghwrYZzncStCdY5UypFKeU-lBF4Mn3zv8m_8q_EukmBo2M9-AnsbYua9hK5yJhmuTZTpBJ4Nr4NsocPEVL5uQ5sRE1yGTd44gfsdEwz_3vDOwz_3-RSuTY_ns3z2bvH-EVxnGDQRDTd7sL1uWv8YrtiL9dmqeRKZ-CdjQ-h9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Wearable+Interfaces+and+Algorithms+for+Hand+Gesture+Recognition%3A+A+Survey&rft.jtitle=IEEE+reviews+in+biomedical+engineering&rft.au=Jiang%2C+Shuo&rft.au=Kang%2C+Peiqi&rft.au=Song%2C+Xinyu&rft.au=Lo%2C+Benny&rft.date=2022&rft.eissn=1941-1189&rft.volume=15&rft.spage=85&rft_id=info:doi/10.1109%2FRBME.2021.3078190&rft_id=info%3Apmid%2F33961564&rft.externalDocID=33961564
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3333&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3333&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3333&client=summon