Deep learning for prognostics and health management: State of the art, challenges, and opportunities

•The state-of-the-art deep models in PHM applications have been overviewed.•The models are classified into generative, discriminative and hybrid categories.•The transfer learning and domain adaptation in the context of PHM are discussed.•Important challenges and future research directions have been...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Measurement : journal of the International Measurement Confederation Ročník 163; s. 107929
Hlavní autoři: Rezaeianjouybari, Behnoush, Shang, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Elsevier Ltd 15.10.2020
Elsevier Science Ltd
Témata:
ISSN:0263-2241, 1873-412X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •The state-of-the-art deep models in PHM applications have been overviewed.•The models are classified into generative, discriminative and hybrid categories.•The transfer learning and domain adaptation in the context of PHM are discussed.•Important challenges and future research directions have been provided. Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This paper provides a systematic review of state-of-the-art deep learning-based PHM frameworks. It emphasizes on the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. In addition, limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research.
AbstractList Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This paper provides a systematic review of state-of-the-art deep learning-based PHM frameworks. It emphasizes on the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. In addition, limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research.
•The state-of-the-art deep models in PHM applications have been overviewed.•The models are classified into generative, discriminative and hybrid categories.•The transfer learning and domain adaptation in the context of PHM are discussed.•Important challenges and future research directions have been provided. Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and water declination industries. This requires efficient and effective system health monitoring methods, including processing and analyzing massive machinery data to detect anomalies and performing diagnosis and prognosis. In recent years, deep learning has been a fast-growing field and has shown promising results for Prognostics and Health Management (PHM) in interpreting condition monitoring signals such as vibration, acoustic emission, and pressure due to its capacity to mine complex representations from raw data. This paper provides a systematic review of state-of-the-art deep learning-based PHM frameworks. It emphasizes on the most recent trends within the field and presents the benefits and potentials of state-of-the-art deep neural networks for system health management. In addition, limitations and challenges of the existing technologies are discussed, which leads to opportunities for future research.
ArticleNumber 107929
Author Rezaeianjouybari, Behnoush
Shang, Yi
Author_xml – sequence: 1
  givenname: Behnoush
  surname: Rezaeianjouybari
  fullname: Rezaeianjouybari, Behnoush
  email: b.rezaeianjouybari@mail.missouri.edu
  organization: Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO 65211, USA
– sequence: 2
  givenname: Yi
  surname: Shang
  fullname: Shang, Yi
  organization: Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
BookMark eNqNkE1LAzEQhoMo2Kr_IeK1W7NJdtN4EamfIHhQwVtIs5M2ZZusSSr47922HsRTTwMz7wfzDNGhDx4QOi_JuCRlfbkcr0CndYQV-DymhG72QlJ5gAblRLCCl_TjEA0IrVlBKS-P0TClJSGkZrIeoOYWoMMt6Oidn2MbIu5imPuQsjMJa9_gBeg2L_BKez3f1lzh16wz4GBxXgDWMY-wWei2BT-HNNqaQteFmNfeZQfpFB1Z3SY4-50n6P3-7m36WDy_PDxNb54Lw7jMhRYzJio64ZOZANmQhlvW1MRUhgshuLVUzpjtr5ICp6KRopRmohmZUSsNA3aCLna5_Qufa0hZLcM6-r5SUV5VleBVzXuV3KlMDClFsKqLbqXjtyqJ2kBVS_UHqtpAVTuovff6n9e4noULPkft2r0SprsE6EF8OYgqGQfeQOMimKya4PZI-QGaD561
CitedBy_id crossref_primary_10_1016_j_future_2025_107945
crossref_primary_10_3390_math11153283
crossref_primary_10_1016_j_engfailanal_2022_106791
crossref_primary_10_1016_j_measurement_2024_115038
crossref_primary_10_1177_16878132241229314
crossref_primary_10_3390_s21030972
crossref_primary_10_1016_j_est_2025_116002
crossref_primary_10_3390_s23187819
crossref_primary_10_1007_s10586_024_05063_5
crossref_primary_10_1016_j_aei_2023_101945
crossref_primary_10_1016_j_cie_2023_109605
crossref_primary_10_1016_j_compstruct_2025_119478
crossref_primary_10_1016_j_measurement_2021_109673
crossref_primary_10_1007_s12206_024_0407_3
crossref_primary_10_1088_1361_6501_adc9d3
crossref_primary_10_3390_su15097298
crossref_primary_10_1016_j_engappai_2022_105712
crossref_primary_10_1016_j_compind_2025_104357
crossref_primary_10_1016_j_measurement_2025_117618
crossref_primary_10_1080_09544828_2023_2177937
crossref_primary_10_1049_elp2_70074
crossref_primary_10_1016_j_ress_2023_109247
crossref_primary_10_3390_s21175888
crossref_primary_10_1016_j_psep_2021_03_016
crossref_primary_10_1088_1361_6501_acd2f3
crossref_primary_10_1007_s10462_025_11303_w
crossref_primary_10_1080_00295450_2024_2323260
crossref_primary_10_1016_j_aei_2023_102195
crossref_primary_10_1016_j_measurement_2021_110099
crossref_primary_10_1016_j_measurement_2022_112170
crossref_primary_10_1016_j_eswa_2023_120066
crossref_primary_10_3389_fenrg_2021_663296
crossref_primary_10_1016_j_eswa_2023_121670
crossref_primary_10_1109_TITS_2023_3250962
crossref_primary_10_3390_electronics12020312
crossref_primary_10_1016_j_optlastec_2023_109227
crossref_primary_10_1007_s40430_023_04202_0
crossref_primary_10_1016_j_measurement_2024_114212
crossref_primary_10_1016_j_dajour_2025_100591
crossref_primary_10_1109_ACCESS_2022_3216573
crossref_primary_10_1155_2023_2267376
crossref_primary_10_1088_1361_6501_ad8cf6
crossref_primary_10_1016_j_measen_2021_100220
crossref_primary_10_1016_j_isatra_2024_08_012
crossref_primary_10_1088_1742_6596_2362_1_012029
crossref_primary_10_1088_1361_6501_ad099b
crossref_primary_10_1109_TIA_2021_3091958
crossref_primary_10_1007_s40857_021_00222_9
crossref_primary_10_1016_j_ress_2023_109776
crossref_primary_10_1007_s10845_024_02536_7
crossref_primary_10_1109_TII_2024_3384611
crossref_primary_10_1016_j_jmsy_2024_05_021
crossref_primary_10_1177_14759217241287907
crossref_primary_10_1007_s11276_022_03129_z
crossref_primary_10_1016_j_flowmeasinst_2024_102730
crossref_primary_10_1016_j_ress_2022_108383
crossref_primary_10_1177_10775463241311349
crossref_primary_10_1016_j_rser_2024_114861
crossref_primary_10_1016_j_eswa_2024_124169
crossref_primary_10_1016_j_ifacol_2023_10_311
crossref_primary_10_1016_j_measurement_2022_111376
crossref_primary_10_1109_TIM_2023_3244822
crossref_primary_10_1016_j_compind_2022_103766
crossref_primary_10_1016_j_conbuildmat_2022_129285
crossref_primary_10_1016_j_measurement_2022_112346
crossref_primary_10_3390_math12050758
crossref_primary_10_1016_j_isatra_2022_04_043
crossref_primary_10_3389_fenrg_2021_696785
crossref_primary_10_1016_j_ress_2024_110749
crossref_primary_10_1016_j_procir_2025_02_119
crossref_primary_10_1155_2024_1270912
crossref_primary_10_1016_j_engappai_2025_110242
crossref_primary_10_1016_j_engappai_2024_108212
crossref_primary_10_1016_j_eswa_2023_121777
crossref_primary_10_1109_TIM_2024_3480226
crossref_primary_10_3390_math10101733
crossref_primary_10_3390_s25082599
crossref_primary_10_1088_1361_6501_acbed0
crossref_primary_10_1103_rzjx_9zz1
crossref_primary_10_1016_j_asoc_2024_111580
crossref_primary_10_1016_j_engappai_2024_109644
crossref_primary_10_1016_j_measurement_2021_109685
crossref_primary_10_1109_ACCESS_2024_3447573
crossref_primary_10_3390_make6030069
crossref_primary_10_1016_j_measurement_2021_109442
crossref_primary_10_1016_j_cej_2024_153382
crossref_primary_10_1080_14680629_2021_1886160
crossref_primary_10_3390_aerospace10060496
crossref_primary_10_3390_wevj12040256
crossref_primary_10_1016_j_ress_2022_108525
crossref_primary_10_1109_TII_2021_3102017
crossref_primary_10_1109_TIM_2025_3576953
crossref_primary_10_3233_JHS_222014
crossref_primary_10_1016_j_ress_2021_108063
crossref_primary_10_3390_machines11010102
crossref_primary_10_2478_fas_2023_0012
crossref_primary_10_1016_j_ress_2025_111106
crossref_primary_10_1177_14759217231181678
crossref_primary_10_1007_s42417_025_01814_9
crossref_primary_10_3390_info15080424
crossref_primary_10_1088_1361_6501_add48e
crossref_primary_10_1007_s10462_022_10342_x
crossref_primary_10_1007_s10845_023_02154_9
crossref_primary_10_1016_j_jmsy_2021_06_006
crossref_primary_10_1088_1361_6501_acd6ac
crossref_primary_10_3389_fmech_2020_578379
crossref_primary_10_1016_j_procs_2025_01_230
crossref_primary_10_1038_s41598_025_13189_8
crossref_primary_10_1109_TIM_2023_3317472
crossref_primary_10_3390_s21206841
crossref_primary_10_1007_s10921_022_00856_3
crossref_primary_10_1007_s12206_024_0616_9
crossref_primary_10_1016_j_rser_2025_116269
crossref_primary_10_3390_app14020621
crossref_primary_10_1088_1361_6501_ad38d4
crossref_primary_10_1093_jigpal_jzae017
crossref_primary_10_1109_TNNLS_2021_3111732
crossref_primary_10_3390_lubricants11020074
crossref_primary_10_3390_en15176273
crossref_primary_10_1177_1748006X241238582
crossref_primary_10_1016_j_engappai_2025_110821
crossref_primary_10_3390_sym14061111
crossref_primary_10_1155_2021_9937846
crossref_primary_10_1016_j_apacoust_2024_110459
crossref_primary_10_1016_j_ress_2025_111004
crossref_primary_10_1016_j_isatra_2024_02_001
crossref_primary_10_3390_en17051010
crossref_primary_10_3390_s23146346
crossref_primary_10_1016_j_measurement_2021_109464
crossref_primary_10_1016_j_measurement_2022_111424
crossref_primary_10_1016_j_measurement_2024_115902
crossref_primary_10_1007_s11760_024_03534_1
crossref_primary_10_1016_j_ress_2022_108865
crossref_primary_10_1016_j_ijhydene_2022_04_048
crossref_primary_10_1016_j_engappai_2025_110152
crossref_primary_10_1016_j_ijhydene_2023_04_143
crossref_primary_10_3390_computation10070108
crossref_primary_10_1016_j_jechem_2024_03_013
crossref_primary_10_1007_s12206_023_1013_5
crossref_primary_10_1080_14680629_2023_2222835
crossref_primary_10_1016_j_jsv_2024_118562
crossref_primary_10_1016_j_ymssp_2022_109082
crossref_primary_10_1002_we_2604
crossref_primary_10_1016_j_knosys_2022_109846
crossref_primary_10_1016_j_measurement_2024_114124
crossref_primary_10_1177_1748006X211044343
crossref_primary_10_1016_j_apm_2023_07_011
crossref_primary_10_1016_j_engappai_2023_106707
crossref_primary_10_1016_j_engappai_2023_105859
crossref_primary_10_1016_j_ymssp_2022_109760
crossref_primary_10_1016_j_aei_2023_102139
crossref_primary_10_1016_j_measurement_2023_112824
crossref_primary_10_1109_TIM_2023_3236323
crossref_primary_10_1080_09537287_2025_2555924
crossref_primary_10_1016_j_measurement_2021_110079
crossref_primary_10_1016_j_measurement_2021_110354
crossref_primary_10_3390_su152316206
crossref_primary_10_1109_JSEN_2025_3548675
crossref_primary_10_1016_j_aei_2024_103060
crossref_primary_10_1016_j_apenergy_2020_116049
crossref_primary_10_1109_TIM_2023_3273676
crossref_primary_10_1016_j_eswa_2024_124752
crossref_primary_10_1177_1748006X221087503
crossref_primary_10_2174_0129503752352719250214061245
crossref_primary_10_1016_j_irfa_2024_103238
crossref_primary_10_1016_j_engappai_2024_109845
crossref_primary_10_1016_j_measurement_2020_108373
crossref_primary_10_1109_TIM_2025_3556919
crossref_primary_10_1016_j_engappai_2024_108513
crossref_primary_10_1016_j_measurement_2020_108249
crossref_primary_10_1016_j_measurement_2021_109359
crossref_primary_10_1177_10775463241272933
crossref_primary_10_7232_JKIIE_2025_51_2_127
crossref_primary_10_1016_j_ress_2021_108140
crossref_primary_10_1016_j_ress_2022_108561
crossref_primary_10_3390_en15196909
crossref_primary_10_1016_j_measurement_2021_110460
crossref_primary_10_3390_lubricants10040067
crossref_primary_10_3390_machines12010017
Cites_doi 10.1016/j.measurement.2019.06.004
10.1016/j.neucom.2016.12.038
10.1016/j.inffus.2013.10.002
10.1016/j.ymssp.2012.03.022
10.1109/TIE.2019.2912763
10.1109/ICACS.2018.8333495
10.1016/j.jmsy.2017.04.012
10.1016/j.knosys.2018.09.005
10.1016/j.ymssp.2012.03.011
10.1109/TII.2018.2864759
10.1016/j.apacoust.2014.08.016
10.1109/TIE.2017.2745473
10.1017/atsip.2013.9
10.1109/TIE.2018.2856193
10.1016/j.ress.2013.02.022
10.3390/s17071564
10.1109/TII.2018.2881543
10.21595/jve.2016.16939
10.1016/j.measurement.2019.107278
10.1016/j.apenergy.2018.09.111
10.1109/ACCESS.2019.2923610
10.1109/TSMCA.2006.886368
10.1016/j.neucom.2018.04.048
10.1007/s11465-015-0348-8
10.1016/j.mechmachtheory.2018.11.005
10.1109/TII.2019.2917233
10.3390/s19092000
10.1109/TIE.2017.2733438
10.1016/j.cogsys.2018.03.002
10.1109/TPAMI.2018.2814042
10.1109/TIA.2017.2661250
10.3390/s19051088
10.1109/TIE.2019.2891463
10.1109/TR.2018.2829738
10.1016/j.knosys.2016.12.012
10.1109/TIM.2017.2698738
10.3390/s19081826
10.1016/j.sigpro.2016.07.028
10.1109/TIE.2018.2807414
10.1109/TIM.2017.2674738
10.1109/COMST.2019.2904897
10.1109/TVT.2018.2805189
10.3390/s18072110
10.1145/3217871.3217872
10.1371/journal.pone.0164111
10.1109/TIM.2017.2669947
10.1109/MIPRO.2015.7160458
10.1109/ACCESS.2019.2926234
10.1155/2017/8617315
10.1016/j.ymssp.2018.12.009
10.1016/j.ymssp.2019.05.005
10.1109/TIE.2018.2868023
10.1016/j.neucom.2018.10.049
10.1109/ACCESS.2018.2878491
10.1016/j.compind.2019.04.013
10.1109/TIE.2019.2907440
10.1016/j.eswa.2007.06.029
10.1016/j.neucom.2018.05.021
10.1088/0957-0233/26/11/115002
10.1016/j.neucom.2018.07.034
10.1109/TPAMI.2013.50
10.1109/TR.2015.2500681
10.1109/TMECH.2017.2728371
10.1016/j.patcog.2019.106993
10.1016/S0888-3270(03)00077-3
10.3182/20100701-2-PT-4012.00025
10.1142/S0218488598000094
10.1109/TIE.2017.2767540
10.1016/j.neucom.2018.09.050
10.1016/j.measurement.2018.02.044
10.1109/TII.2019.2899118
10.1088/1361-6501/ab0793
10.1109/PHM.2008.4711414
10.1109/TII.2017.2690940
10.36001/phmconf.2019.v11i1.835
10.1016/j.knosys.2019.07.008
10.1016/j.ymssp.2018.12.051
10.1007/s10845-018-1456-1
10.1109/TIE.2017.2752151
10.1088/1361-6501/ab3072
10.1109/TIE.2016.2627020
10.1007/s00521-019-04097-w
10.1016/j.isatra.2018.04.005
10.1016/j.ymssp.2015.04.039
10.1109/TR.2019.2907402
10.1016/j.neucom.2018.03.014
10.1016/j.ymssp.2018.05.050
10.1109/TIE.2016.2535111
10.1016/j.ymssp.2015.11.008
10.1016/j.jmsy.2018.05.004
10.36001/phme.2016.v3i1.1577
10.1016/j.compind.2018.04.002
10.1016/j.neucom.2019.07.075
10.1109/CCBD.2016.029
10.1109/TIE.2018.2856205
10.1016/j.ress.2018.11.027
10.1016/j.aei.2017.02.005
10.1109/TIM.2018.2800978
10.1109/TIM.2017.2759418
10.1016/j.isatra.2018.11.044
10.3390/app8091584
10.1016/j.neucom.2018.06.078
10.1088/1361-6501/aae27a
10.1177/0954406219840381
10.1016/j.neucom.2015.09.116
10.1016/j.ymssp.2017.09.026
10.1016/j.engappai.2018.09.010
10.3390/s17020273
10.1109/CSCWD.2019.8791884
10.1109/TIE.2017.2774777
10.1016/j.ymssp.2018.07.048
10.1016/j.neucom.2015.06.008
10.1016/j.knosys.2018.12.019
10.1016/j.neucom.2018.02.083
10.1109/TSMC.2017.2754287
10.1016/j.neucom.2018.05.083
10.1016/j.neucom.2017.05.063
10.1155/2017/3583610
10.1007/s12206-018-0504-2
10.1016/j.measurement.2018.08.010
10.36001/phmconf.2015.v7i1.2571
10.1109/CVPR.2009.5206848
10.1016/j.measurement.2019.06.029
10.1016/j.ymssp.2019.05.049
10.21595/jve.2018.19637
10.1016/j.neucom.2018.09.076
10.1088/1361-6501/aaaca6
10.1016/j.ymssp.2017.03.034
10.1016/j.sigpro.2013.04.015
10.1016/j.eswa.2013.06.033
10.1016/j.apenergy.2018.10.113
10.1016/j.ymssp.2013.01.017
10.1007/s11831-018-09312-w
10.1016/j.measurement.2018.05.098
10.1109/TII.2018.2842821
10.1007/978-0-387-30164-8_83
10.1109/CAC.2018.8623346
10.1016/j.neucom.2017.02.045
10.1016/j.jmsy.2018.05.011
10.1016/j.measurement.2016.05.059
10.1016/j.engappai.2009.01.014
10.1016/j.ymssp.2017.08.002
10.1016/j.neucom.2017.01.032
10.1007/s12652-018-0794-3
10.1016/j.compind.2019.01.001
10.1016/j.ymssp.2016.02.007
10.1080/02564602.2014.987328
10.1109/TIE.2014.2336616
10.3390/s18092932
10.1007/s11465-018-0499-5
10.1109/CVPR.2015.7298594
10.3390/app8071102
10.1109/ACCESS.2019.2917604
10.1016/j.ymssp.2017.11.024
10.1016/j.apenergy.2019.02.025
10.1109/AERO.2008.4526631
10.3390/app8050795
10.1016/j.eswa.2013.12.026
10.1016/j.ress.2018.11.011
10.1109/TMECH.2017.2759301
10.1016/j.sigpro.2018.12.005
10.1016/j.jocs.2016.11.016
10.1109/TCYB.2014.2378056
10.1109/ACCESS.2018.2804930
10.1016/j.compind.2019.02.015
10.1109/ACCESS.2018.2877447
10.1016/j.epsr.2005.09.010
10.3115/v1/D14-1181
10.1109/TPEL.2015.2393373
10.1080/0740817X.2012.706376
10.1109/ACCESS.2019.2907131
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Oct 15, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Oct 15, 2020
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2020.107929
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2020_107929
S026322412030467X
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
AGCQF
ID FETCH-LOGICAL-c349t-a7b3752848b7e9d0d4f3d60c5c47774ff29b3f48b92e427d9719c8a30b2f9c3e3
ISICitedReferencesCount 228
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000575775400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Wed Aug 13 10:37:35 EDT 2025
Sat Nov 29 07:17:09 EST 2025
Tue Nov 18 22:21:08 EST 2025
Fri Feb 23 02:48:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords HI
NAS
CBLSTM
DNN
GDA
CPS
AdaBN
DL
MCMC
CPU
GPU
DBM
Deep learning
MLP
DBN
WPI
RNN
SDAE
FFT
RBF
EMA
JSD
WPT
RBM
SSAE
AE
AAE
MMD
CAE
SaaS
AI
Prognostics and health management
AFSA
PSO
Anomaly detection
PSR
RKH
SSDAE
SML
GAN
SAE
STPN
WJDA
RL
MSCNN
CNN
CORAL
PaaS
BLSTM
IIoT
CVAE
GDBM
KNN
GRU
SVM
Fault diagnosis
CLSTM
GRU-ED
PHM
HHT
WGAN
AHKL
SNR
Domain adaptation
TPU
DQN
ACGAN
CD
KL
LSTM
TDConvLSTM
DAD
IaaS
SPEV
DAE
SDAE-NCL
SCDA
CUDA
SGD
CDBN
LSTM-ED
TL
VAE
DA
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c349t-a7b3752848b7e9d0d4f3d60c5c47774ff29b3f48b92e427d9719c8a30b2f9c3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2455574564
PQPubID 2047460
ParticipantIDs proquest_journals_2455574564
crossref_primary_10_1016_j_measurement_2020_107929
crossref_citationtrail_10_1016_j_measurement_2020_107929
elsevier_sciencedirect_doi_10_1016_j_measurement_2020_107929
PublicationCentury 2000
PublicationDate 2020-10-15
PublicationDateYYYYMMDD 2020-10-15
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Jebara (b0375) 2012
Z.-X. Hu, Y. Wang, M.-F. Ge, J. Liu, Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network, IEEE Trans. Ind. Electron., vol. PP, no. 1, 2019, pp. 1–1, doi: 10.1109/tie.2019.2912763.
Ma, Zhang, Fan, Wang, Wen, Zhang (b1005) 2019; 30
I. Goodfellow, NIPS 2016 tutorial: Generative adversarial networks, arXiv Prepr. arXiv1701.00160, 2016.
J. Watkins, C. Teubert, J. Ossenfort, Prognostics as-a-service: a scalable cloud architecture for prognostics, in: 11th Annual Conference Prognostics and Health Management Society, 2019.
Lou, Loparo (b0270) 2004; 18
Xiao, Huang, Zhao, Qin, Shi, Liu (b1090) 2019; 7
Wu, Yuan, Dong, Lin, Liu (b0765) 2018; 275
D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv Prepr. arXiv1312.6114, 2013.
Guo, Li, Jia, Lei, Lin (b0745) 2017; 240
Wu, Hu, Cheng, Zhu, Shao, Wang (b0770) 2019
Peng, Jiao, Dong, Pi (b0445) 2019; 361
Y. ren Wang, Q. Jin, G. dong Sun, C. fei Sun, Planetary gearbox fault feature learning using conditional variational neural networks under noise environment, Knowledge-Based Syst., vol. 163, 2019, pp. 438–449, doi: 10.1016/j.knosys.2018.09.005.
Z. Wang, Q. She, T.E. Ward, Generative adversarial networks: a survey and taxonomy, arXiv Prepr. arXiv1906.01529, no. 2, pp. 1–16, 2019.
Zhang, Li, Li, Ng (b1035) 2018; 6
Wang, Xiang, Markert, Liang (b0190) 2016; 66
Gao, Ma, Song, Liu (b0435) 2017; 238
Goodfellow (b0150) 2014
Chen, Yang, Zhou (b1205) 2019; 19
Chan, Asgarpoor (b0255) 2006; 76
Tang, Chai, Qu, Ren (b0430) 2018; 8
Lee, Park, Kim, Jeon, Baek (b0220) 2018; 32
“Case Western Reserve University Bearing vibration Data,” 2015.
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep Learning and Its Applications to Machine Health Monitoring : A Survey, vol. 14, no. 8, pp. 1–14, 2015.
I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, arXiv Prepr. arXiv1711.01558, 2017.
Zhang, Tang, Qin, Deng (b0585) 2019; 131
J. Lee, H. Qiu, G. Yu, J. Lin, Rexnord technical services: Bearing data set, Moffett Field, CA IMS, Univ. Cincinnati. NASA Ames Progn. Data Repos. NASA Ames, 2007.
Zhu, Peng, Chen, Gao (b0680) 2019; 323
Han, Liu, Yang, Jiang (b0865) 2019; 165
Z. Wang, K. Liu, J. Li, Y. Zhu, Y. Zhang, Various frameworks and libraries of machine learning and deep learning: a survey, Arch. Comput. Methods Eng., 2019, pp. 1–24.
L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 1, 2017, pp. 136–144, doi: 10.1109/TSMC.2017.2754287.
H. Larochelle, M. Mandel, Y. Bengio, Learning Algorithms for the Classification Restricted Boltzmann Machine, vol. 13, pp. 643–669, 2012.
R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications, Signal Processing, vol. 96, no. PART A, pp. 1–15, 2014, doi: 10.1016/j.sigpro.2013.04.015.
Niu (b0240) 2017
G. Hu, H. Li, Y. Xia, L. Luo, A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis, Comput. Ind., vol. 100, no. May 2017, pp. 287–296, 2018, doi: 10.1016/j.compind.2018.04.002.
Bengio, Courville, Vincent (b0090) 2013; 35
Shao, Jiang, Zhang, Liang (b0920) 2018; 65
Yao (b0650) 2018; 8
Di Maio, Tsui, Zio (b0235) 2012; 31
Wang, Wang, Wang, Huang, Xue (b0480) 2019; 10
Bengio, Lamblin, Popovici, Larochelle (b0070) 2007; no
W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, Neurocomputing A survey of deep neural network architectures and their applications ☆, Neurocomputing, vol. 234, no. October 2016, pp. 11–26, 2017, doi: 10.1016/j.neucom.2016.12.038.
J. Xu, H. Li, S. Zhou, J. Xu, H. Li, S. Zhou, An overview of deep generative models an overview of deep generative models, no. December, pp. 37–41, 2014, doi: 10.1080/02564602.2014.987328.
M. Xia, T. Li, L. Xu, L. Liu, C.W. De Silva, Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks, IEEE/ASME Trans. Mechatronics, vol. 4435, no. c, pp. 1–9, 2017, doi: 10.1109/TMECH.2017.2728371.
A. Nazabal, P.M. Olmos, Z. Ghahramani, I. Valera, Handling incomplete heterogeneous data using VAEs, arXiv Prepr. arXiv1807.03653, 2018.
M.Z. Alom, et al., The history began from alexnet: A comprehensive survey on deep learning approaches, arXiv Prepr. arXiv1803.01164, 2018.
Feng, Liang, Chu (b0185) 2013; 38
Kashiparekh, Narwariya, Malhotra, Vig, Shroff (b0995) 2019
Lu (b1040) 2017; 64
Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Neurocomputing Deep learning for visual understanding : A review, vol. 187, pp. 27–48, 2016, doi: 10.1016/j.neucom.2015.09.116.
Fisher, Camp, Krzhizhanovskaya (b0210) 2017; 20
Sun, Yan, Wen (b0525) 2018; 67
Ranzato, Poultney, Chopra, Cun (b0100) 2007
Liu, Jia, Vong, Bu, Han, Tang (b0450) 2017; 13
Tamilselvan, Wang (b0385) 2013; 115
L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning, APSIPA Trans. Signal Inf. Process., vol. 3, 2014.
Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (b0465) 2015; 168
Khan, Yairi (b0035) 2018; 107
Shao, McAleer, Yan, Baldi (b0985) 2018; 15
Meng, Zhan, Li, Pan (b0495) 2018; 130
Han, Tang, Deng (b0665) 2018; 127
P. Malhotra, V. TV, L. Vig, P. Agarwal, G. Shroff, TimeNet: Pre-trained deep recurrent neural network for time series classification. arXiv 2017, arXiv Prepr. arXiv1706.08838.
Elsheikh, Yacout, Ouali (b0790) 2019; 323
Moghaddass, Sheng (b0215) 2019; 240
Ren, Sun, Wang, Zhang (b0700) 2018; 6
Huang, Huang, Li (b0785) 2019; 66
Cabrera (b0010) 2015; 10
X. Li, W. Zhang, Q. Ding, Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction, Reliab. Eng. Syst. Saf., vol. 182, no. July 2018, 2019, pp. 208–218, doi:10.1016/j.ress.2018.11.011.
P. Nectoux, et al., PRONOSTIA : An experimental platform for bearings accelerated degradation tests” in: IEEE International Conference on Prognostics and Health Management, 2012, pp. 1–8.
Hu, Baraldi, Di Maio, Zio (b0320) 2015; 65
Shao, Jiang, Wang, Zhao (b0565) 2017; 119
“Deeplearning4j: Open-source distributed deep learning for the JVM.” .
Shao, Wang, Yan (b0840) 2019; 106
Luo, Wang, Liu, Li, Peng (b0505) 2019; 66
Li, Zhang, Ding, Sun (b1085) 2019; 157
Chen, Sánchez, Li (b0600) 2015; 2015
Liu, Hu, Wang, Wu, Fan, Hu (b0515) 2018; 29
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248–255.
Liu, Zhou, Zheng, Jiang, Zhang (b0915) 2018; 77
J. Zacharias, M. Barz, D. Sonntag, A survey on deep learning toolkits and libraries for intelligent user interfaces, arXiv Prepr. arXiv1803.04818, 2018.
P.R. de O. da Costa, A. Akcay, Y. Zhang, U. Kaymak, Remaining useful lifetime prediction via deep domain adaptation, arXiv Prepr. arXiv1907.07480, 2019, pp. 1–30.
Liang, Zhang, Zhong, Yang (b0410) 2019; 122
Li, Sanchez, Zurita, Cerrada, Cabrera, Vásquez (b0470) 2016; 76–77
Lee, Grosse, Ranganath, Ng (b0875) 2009
Chen, Peng, Xie, Zhang, Li, Liu (b0630) 2018; 294
Chen, Li (b0930) 2017; 66
D.I.J. Im, S. Ahn, R. Memisevic, Y. Bengio, Denoising criterion for variational auto-encoding framework, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.
Verstraete, Ferrada, Droguett, Meruane, Modarres (b0670) 2017; 2017
G. Hinton and G. Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” 2010.
A.S. Yoon, et al., Semi-supervised learning with deep generative models for asset failure prediction, arXiv Prepr. arXiv1709.00845, 2017.
L. Wen, X. Li, X. Li, L. Gao, A new transfer learning based on VGG-19 network for fault diagnosis, in: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2019, pp. 205–209.
Singleton, Strangas, Aviyente (b0230) 2014; 62
Zhang, Patras, Haddadi (b1135) 2019; 21
Hochreiter (b0140) 1998; 6
A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp. 1200–1205.
A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders, arXiv Prepr. arXiv1511.05644, 2015.
Shao, Jiang, Zhang, Niu (b0395) 2015; 26
Zheng (b1180) 2018; 13
Zhang, Li, Xiao, Yang (b0555) 2019; 233–234
Shao, Jiang, Zhao, Wang (b0490) 2017; 95
Belmiloud, Benkedjouh, Lachi, Laggoun, Dron (b0610) 2018; 20
Liu, Zhou, Xu, Zheng, Peng, Jiang (b0855) 2018; 315
Ben Ali, Fnaiech, Saidi, Chebel-Morello, Fnaiech (b0260) 2015; 89
“The Microsoft Cognitive Toolkit.” https://www.microsoft.com/en-us/cognitive-toolkit/.
C. Lessmeier, J.K. Kimotho, D. Zimmer, W. Sextro, Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification, Third Eur. Conf. Progn. Heal. Manag. Soc. 2016, no. Cm, pp. 152–156, 2016.
Y. LeCun, LeNet-5, convolutional neural networks, URL http//yann. lecun. com/exdb/lenet, vol. 20, p. 5, 2015.
Zhao, Zhang, Wang, Zhou, Cheng (b0775) 2019; 146
Shen, Qi, Wang, Cai, Zhu (b0560) 2018; 76
Wang, Li, Han, An, Bao, Ji (b0825) 2019; PP
Sun, Wang, Liu, Huang, Fan (b1075) 2019; 146
Batista, Badri, Sabourin, Thomas (b0275) 2013; 40
Li, Zhang, Xu, Ding (b1115) 2019
Y. Li, N. Wang, J. Shi, J. Liu, X. Hou, Revisiting batch normalization for practical domain adaptation, arXiv Prepr. arXiv1603.04779, 2016.
A. Brown, A. Tuor, B. Hutchinson, N. Nichols, Recurrent neural network attention mechanisms for interpretable system log anomaly detection, in: Proceedings of the First Workshop on Machine Learning for Computing Systems, 2018, pp. 1–8.
Wu, Guo, Lin (b0895) 2018
X. Wang, H. He, L. Li, A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system, IEEE Trans. Ind. Informatics, vol. PP, no. XX, pp. 1–1, 2019, doi: 10.1109/tii.2019.2899118.
“The world’s leading software development platform , GitHub.”.
Qian, Li, Jiang (b1050)
Wu (10.1016/j.measurement.2020.107929_b0765) 2018; 275
Eren (10.1016/j.measurement.2020.107929_b0635) 2017; 2017
He (10.1016/j.measurement.2020.107929_b0870) 2017; 53
Wang (10.1016/j.measurement.2020.107929_b1015) 2019; 7
10.1016/j.measurement.2020.107929_b1170
Shao (10.1016/j.measurement.2020.107929_b0880) 2018; 100
10.1016/j.measurement.2020.107929_b0080
Nguyen (10.1016/j.measurement.2020.107929_b0300) 2018; 67
Jiang (10.1016/j.measurement.2020.107929_b0570) 2018; 87
10.1016/j.measurement.2020.107929_b1175
10.1016/j.measurement.2020.107929_b0085
Shen (10.1016/j.measurement.2020.107929_b0560) 2018; 76
10.1016/j.measurement.2020.107929_b0655
Han (10.1016/j.measurement.2020.107929_b0740) 2019; 117
Huang (10.1016/j.measurement.2020.107929_b0785) 2019; 66
Wang (10.1016/j.measurement.2020.107929_b0825) 2019; PP
Liang (10.1016/j.measurement.2020.107929_b0410) 2019; 122
Yuan (10.1016/j.measurement.2020.107929_b0405) 2018; 48
10.1016/j.measurement.2020.107929_b1060
10.1016/j.measurement.2020.107929_b0095
Li (10.1016/j.measurement.2020.107929_b1085) 2019; 157
Saxena (10.1016/j.measurement.2020.107929_b0290) 2010; 1
Wu (10.1016/j.measurement.2020.107929_b0250) 2007; 37
Rui Zhao (10.1016/j.measurement.2020.107929_b0795) 2018; 65
Li (10.1016/j.measurement.2020.107929_b1200) 2020; 31
Xiao (10.1016/j.measurement.2020.107929_b1105) 2019
10.1016/j.measurement.2020.107929_b0305
Xiao (10.1016/j.measurement.2020.107929_b1090) 2019; 7
Zhao (10.1016/j.measurement.2020.107929_b0775) 2019; 146
Sun (10.1016/j.measurement.2020.107929_b0525) 2018; 67
Goodfellow (10.1016/j.measurement.2020.107929_b0120) 2016
Hochreiter (10.1016/j.measurement.2020.107929_b0140) 1998; 6
Ellefsen (10.1016/j.measurement.2020.107929_b0040) 2019; 68
10.1016/j.measurement.2020.107929_b1070
10.1016/j.measurement.2020.107929_b1190
Niu (10.1016/j.measurement.2020.107929_b0240) 2017
10.1016/j.measurement.2020.107929_b0420
Han (10.1016/j.measurement.2020.107929_b0665) 2018; 127
Zhu (10.1016/j.measurement.2020.107929_b0680) 2019; 323
Belmiloud (10.1016/j.measurement.2020.107929_b0610) 2018; 20
San Martin (10.1016/j.measurement.2020.107929_b0580) 2018
Pan (10.1016/j.measurement.2020.107929_b0620) 2018; 65
Sugumaran (10.1016/j.measurement.2020.107929_b0005) 2008; 34
Yoo (10.1016/j.measurement.2020.107929_b0675) 2018; 8
Chen (10.1016/j.measurement.2020.107929_b0295) 2013; 45
Peng (10.1016/j.measurement.2020.107929_b0445) 2019; 361
Wang (10.1016/j.measurement.2020.107929_b0685) 2017; 44
Lou (10.1016/j.measurement.2020.107929_b0270) 2004; 18
Chen (10.1016/j.measurement.2020.107929_b0930) 2017; 66
Shao (10.1016/j.measurement.2020.107929_b0265) 2018; 102
Van Eck (10.1016/j.measurement.2020.107929_b0370) 2013; 1
10.1016/j.measurement.2020.107929_b1080
Jebara (10.1016/j.measurement.2020.107929_b0375) 2012
Bengio (10.1016/j.measurement.2020.107929_b0090) 2013; 35
He (10.1016/j.measurement.2020.107929_b0440) 2017; 17
Li (10.1016/j.measurement.2020.107929_b0470) 2016; 76–77
10.1016/j.measurement.2020.107929_b0325
Gao (10.1016/j.measurement.2020.107929_b0435) 2017; 238
Mao (10.1016/j.measurement.2020.107929_b1020) 2020; 152
Meng (10.1016/j.measurement.2020.107929_b0495) 2018; 130
Kashiparekh (10.1016/j.measurement.2020.107929_b0995) 2019
Han (10.1016/j.measurement.2020.107929_b0865) 2019; 165
Di Maio (10.1016/j.measurement.2020.107929_b0235) 2012; 31
Yu (10.1016/j.measurement.2020.107929_b0530) 2019; 108
Shao (10.1016/j.measurement.2020.107929_b0920) 2018; 65
Bole (10.1016/j.measurement.2020.107929_b0360) 2014
Jiang (10.1016/j.measurement.2020.107929_b0625) 2017; 19
Lu (10.1016/j.measurement.2020.107929_b1040) 2017; 64
Ranzato (10.1016/j.measurement.2020.107929_b0100) 2007
10.1016/j.measurement.2020.107929_b0335
Zhang (10.1016/j.measurement.2020.107929_b1135) 2019; 21
Tamilselvan (10.1016/j.measurement.2020.107929_b0385) 2013; 115
Zhang (10.1016/j.measurement.2020.107929_b0760) 2018; 67
Ping (10.1016/j.measurement.2020.107929_b0575) 2019; 109
Chen (10.1016/j.measurement.2020.107929_b0630) 2018; 294
Alpaydin (10.1016/j.measurement.2020.107929_b0055) 2020
Zhang (10.1016/j.measurement.2020.107929_b0660) 2018
Zhang (10.1016/j.measurement.2020.107929_b0640) 2017
10.1016/j.measurement.2020.107929_b0690
10.1016/j.measurement.2020.107929_b0330
Safizadeh (10.1016/j.measurement.2020.107929_b0225) 2014; 18
Zhang (10.1016/j.measurement.2020.107929_b0510) 2018; 7
Zhang (10.1016/j.measurement.2020.107929_b0780) 2018; 48
Zhang (10.1016/j.measurement.2020.107929_b1035) 2018; 6
Verstraete (10.1016/j.measurement.2020.107929_b0670) 2017; 2017
Rozantsev (10.1016/j.measurement.2020.107929_b1030) 2018; 41
10.1016/j.measurement.2020.107929_b0905
Shao (10.1016/j.measurement.2020.107929_b0395) 2015; 26
Hoang (10.1016/j.measurement.2020.107929_b0705) 2019; 53
Li (10.1016/j.measurement.2020.107929_b0465) 2015; 168
Wu (10.1016/j.measurement.2020.107929_b0770) 2019
Lee (10.1016/j.measurement.2020.107929_b0220) 2018; 32
Tran (10.1016/j.measurement.2020.107929_b0390) 2014; 41
Zhao (10.1016/j.measurement.2020.107929_b0030) 2019; 115
10.1016/j.measurement.2020.107929_b0345
10.1016/j.measurement.2020.107929_b0460
Zheng (10.1016/j.measurement.2020.107929_b1180) 2018; 13
Cabrera (10.1016/j.measurement.2020.107929_b0830) 2019; 7
10.1016/j.measurement.2020.107929_b0340
Ben Ali (10.1016/j.measurement.2020.107929_b0260) 2015; 89
Sun (10.1016/j.measurement.2020.107929_b1075) 2019; 146
10.1016/j.measurement.2020.107929_b0115
10.1016/j.measurement.2020.107929_b0910
Liu (10.1016/j.measurement.2020.107929_b0450) 2017; 13
10.1016/j.measurement.2020.107929_b0590
Feng (10.1016/j.measurement.2020.107929_b0185) 2013; 38
Zhou (10.1016/j.measurement.2020.107929_b0835) 2020; 187
10.1016/j.measurement.2020.107929_b0475
Zhao (10.1016/j.measurement.2020.107929_b0890) 2017; 17
10.1016/j.measurement.2020.107929_b0595
10.1016/j.measurement.2020.107929_b0355
Xie (10.1016/j.measurement.2020.107929_b0455) 2018; 6
10.1016/j.measurement.2020.107929_b0350
Vincent (10.1016/j.measurement.2020.107929_b0105) 2008
10.1016/j.measurement.2020.107929_b0925
10.1016/j.measurement.2020.107929_b1215
10.1016/j.measurement.2020.107929_b0805
Yang (10.1016/j.measurement.2020.107929_b1055) 2019; 122
Fisher (10.1016/j.measurement.2020.107929_b0210) 2017; 20
Elsheikh (10.1016/j.measurement.2020.107929_b0790) 2019; 323
10.1016/j.measurement.2020.107929_b0365
10.1016/j.measurement.2020.107929_b0485
10.1016/j.measurement.2020.107929_b0125
Deutsch (10.1016/j.measurement.2020.107929_b0285) 2018; 48
Shao (10.1016/j.measurement.2020.107929_b0840) 2019; 106
Jouppi (10.1016/j.measurement.2020.107929_b1140) 2017
Guo (10.1016/j.measurement.2020.107929_b0745) 2017; 240
Moghaddass (10.1016/j.measurement.2020.107929_b0215) 2019; 240
10.1016/j.measurement.2020.107929_b0810
Shao (10.1016/j.measurement.2020.107929_b0490) 2017; 95
Soualhi (10.1016/j.measurement.2020.107929_b0025) 2016; 63
10.1016/j.measurement.2020.107929_b0135
Cabrera (10.1016/j.measurement.2020.107929_b0010) 2015; 10
10.1016/j.measurement.2020.107929_b0130
10.1016/j.measurement.2020.107929_b1100
Sun (10.1016/j.measurement.2020.107929_b1130) 2019; 15
Hu (10.1016/j.measurement.2020.107929_b0320) 2015; 65
Zhao (10.1016/j.measurement.2020.107929_b0425) 2018; 29
10.1016/j.measurement.2020.107929_b0820
10.1016/j.measurement.2020.107929_b0940
Xu (10.1016/j.measurement.2020.107929_b1000) 2019; 19
Cheng (10.1016/j.measurement.2020.107929_b0205) 2016; 91
Qian (10.1016/j.measurement.2020.107929_b1050) 2019; 96
Zemouri (10.1016/j.measurement.2020.107929_b1210) 2019
Ren (10.1016/j.measurement.2020.107929_b0700) 2018; 6
Bengio (10.1016/j.measurement.2020.107929_b0070) 2007; no
Eren (10.1016/j.measurement.2020.107929_b0615) 2018; Syst
10.1016/j.measurement.2020.107929_b0380
Sabour (10.1016/j.measurement.2020.107929_b0730) 2017
Shao (10.1016/j.measurement.2020.107929_b0985) 2018; 15
10.1016/j.measurement.2020.107929_b0145
Liu (10.1016/j.measurement.2020.107929_b0515) 2018; 29
Wu (10.1016/j.measurement.2020.107929_b0895) 2018
Ma (10.1016/j.measurement.2020.107929_b1005) 2019; 30
Wang (10.1016/j.measurement.2020.107929_b0015) 2015; 30
Li (10.1016/j.measurement.2020.107929_b0800) 2019; 133
10.1016/j.measurement.2020.107929_b1110
Wen (10.1016/j.measurement.2020.107929_b0710) 2018; 65
Ma (10.1016/j.measurement.2020.107929_b0755) 2018; 231
Qiao (10.1016/j.measurement.2020.107929_b0900) 2018; 18
Lee (10.1016/j.measurement.2020.107929_b0875) 2009
Hoang (10.1016/j.measurement.2020.107929_b0045) 2019; 335
Singleton (10.1016/j.measurement.2020.107929_b0230) 2014; 62
Shi (10.1016/j.measurement.2020.107929_b1160) 2016
Yu (10.1016/j.measurement.2020.107929_b0955) 2019; 129
Guo (10.1016/j.measurement.2020.107929_b0605) 2018; 292
Zimroz (10.1016/j.measurement.2020.107929_b0200) 2013; 38
Ding (10.1016/j.measurement.2020.107929_b0695) 2017; 66
Shi (10.1016/j.measurement.2020.107929_b0550) 2019; 66
Chen (10.1016/j.measurement.2020.107929_b1205) 2019; 19
10.1016/j.measurement.2020.107929_b0155
10.1016/j.measurement.2020.107929_b0950
10.1016/j.measurement.2020.107929_b1125
Wang (10.1016/j.measurement.2020.107929_b0520) 2019; 329
10.1016/j.measurement.2020.107929_b0725
10.1016/j.measurement.2020.107929_b0845
Li (10.1016/j.measurement.2020.107929_b1065) 2019; 7
10.1016/j.measurement.2020.107929_b0720
10.1016/j.measurement.2020.107929_b0965
Lu (10.1016/j.measurement.2020.107929_b0715) 2017; 32
Qi (10.1016/j.measurement.2020.107929_b1185) 2019; 7
Jing (10.1016/j.measurement.2020.107929_b0645) 2017
Li (10.1016/j.measurement.2020.107929_b0945) 2019; 66
10.1016/j.measurement.2020.107929_b0160
Li (10.1016/j.measurement.2020.107929_b1045) 2018; 30
Park (10.1016/j.measurement.2020.107929_b0885) 2018; 18
Jiang (10.1016/j.measurement.2020.107929_b0500) 2018; 23
10.1016/j.measurement.2020.107929_b1010
10.1016/j.measurement.2020.107929_b0165
Rifai (10.1016/j.measurement.2020.107929_b0110) 2011
10.1016/j.measurement.2020.107929_b0735
Lu (10.1016/j.measurement.2020.107929_b0935) 2018; 67
Zemouri (10.1016/j.measurement.2020.107929_b0310) 2010; 43
Zhao (10.1016/j.measurement.2020.107929_b0815) 2019; 19
10.1016/j.measurement.2020.107929_b0975
Liu (10.1016/j.measurement.2020.107929_b0915) 2018; 77
Li (10.1016/j.measurement.2020.107929_b1195) 2018; 14
Zhang
References_xml – volume: 165
  start-page: 474
  year: 2019
  end-page: 487
  ident: b0865
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowledge-Based Syst.
– volume: 292
  start-page: 142
  year: 2018
  end-page: 150
  ident: b0605
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
– year: 2018
  ident: b0895
  article-title: A weighted deep representation learning model for imbalanced fault diagnosis in cyber-physical systems
  publication-title: Sensors
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: b0150
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  start-page: 2727
  year: 2018
  end-page: 2736
  ident: b0920
  article-title: Electric locomotive bearing fault diagnosis using novel convolutional deep belief network
  publication-title: IEEE Trans. Ind. Electron.
– reference: P. Gupta, Deep Learning-Regularisation, 2015.
– reference: L. Wen, X. Li, X. Li, L. Gao, A new transfer learning based on VGG-19 network for fault diagnosis, in: 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD), 2019, pp. 205–209.
– volume: 129
  start-page: 764
  year: 2019
  end-page: 780
  ident: b0955
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech. Syst. Signal Process.
– volume: 7
  start-page: 70643
  year: 2019
  end-page: 70653
  ident: b0830
  article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery
  publication-title: IEEE Access
– volume: 29
  start-page: pp
  year: 2018
  ident: b0515
  article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis
  publication-title: Meas. Sci. Technol.
– volume: 65
  start-page: 1539
  year: 2018
  end-page: 1548
  ident: b0795
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans. Ind. Electron.
– reference: M.Z. Alom, et al., The history began from alexnet: A comprehensive survey on deep learning approaches, arXiv Prepr. arXiv1803.01164, 2018.
– volume: 17
  start-page: 1
  year: 2017
  end-page: 21
  ident: b0440
  article-title: Unsupervised fault diagnosis of a gear transmission chain using a deep belief network
  publication-title: Sensors
– reference: W. Xiao, A probabilistic machine learning approach to detect industrial plant faults, arXiv Prepr. arXiv1603.05770, 2016.
– volume: 146
  start-page: 305
  year: 2019
  end-page: 314
  ident: b1075
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
– start-page: 3856
  year: 2017
  end-page: 3866
  ident: b0730
  article-title: Dynamic routing between capsules
  publication-title: Adv. Neural Inf. Process. Systems
– volume: 127
  start-page: 246
  year: 2018
  end-page: 255
  ident: b0665
  article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis
  publication-title: Measurement
– volume: 38
  start-page: 165
  year: 2013
  end-page: 205
  ident: b0185
  article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples
  publication-title: Mech. Syst. Signal Process.
– volume: 48
  start-page: 11
  year: 2018
  end-page: 20
  ident: b0285
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans. NEURAL NETWORKS Learn. Syst.
– reference: A. Listou Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, H. Zhang, Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture, Reliab. Eng. Syst. Saf., vol. 183, no. June 2018, pp. 240–251, 2019, doi: 10.1016/j.ress.2018.11.027.
– volume: 66
  start-page: 509
  year: 2019
  end-page: 518
  ident: b0505
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans. Ind. Electron.
– reference: P.R. de O. da Costa, A. Akcay, Y. Zhang, U. Kaymak, Remaining useful lifetime prediction via deep domain adaptation, arXiv Prepr. arXiv1907.07480, 2019, pp. 1–30.
– volume: 23
  start-page: 89
  year: 2018
  end-page: 100
  ident: b0500
  article-title: Wind turbine fault detection using a denoising autoencoder with temporal information
  publication-title: IEEE/ASME Trans. Mechatronics
– reference: W. Peng, Z.-S. Ye, N. Chen, Bayesian deep learning based health prognostics towards prognostics uncertainty, IEEE Trans. Ind. Electron., vol. PP, no. c, 2019, pp. 1–1, doi: 10.1109/TIE.2019.2907440.
– volume: 13
  start-page: 137
  year: 2018
  end-page: 150
  ident: b1180
  article-title: Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives
  publication-title: Front. Mech. Eng.
– reference: S. Ruder, An overview of gradient descent optimization algorithms, arXiv Prepr. arXiv1609.04747, 2016.
– reference: M. Arjovsky, S. Chintala, L. Bottou, Wasserstein gan, arXiv Prepr. arXiv1701.07875, 2017.
– volume: 30
  start-page: 77
  year: 2018
  end-page: 95
  ident: b1045
  article-title: A robust intelligent fault diagnosis method for rolling element bearings base d on deep distance metric learning
  publication-title: Neurocomputing
– volume: 6
  start-page: 107
  year: 1998
  end-page: 116
  ident: b0140
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
– volume: 43
  start-page: 140
  year: 2010
  end-page: 145
  ident: b0310
  article-title: Towards accurate and reproducible predictions for prognostic: an approach combining a RRBF network and an autoregressive model
  publication-title: IFAC Proc.
– volume: 102
  start-page: 278
  year: 2018
  end-page: 297
  ident: b0265
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mech. Syst. Signal Process.
– volume: 19
  start-page: 1826
  year: 2019
  ident: b1205
  article-title: Transfer learning based fault diagnosis with missing data due to multi-rate sampling
  publication-title: Sensors
– volume: 305
  start-page: 1
  year: 2018
  end-page: 14
  ident: b0400
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
– volume: Syst
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0615
  article-title: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier
  publication-title: J Signal Process.
– volume: 66
  start-page: 1926
  year: 2017
  end-page: 1935
  ident: b0695
  article-title: Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 361
  start-page: 19
  year: 2019
  end-page: 28
  ident: b0445
  article-title: A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter
  publication-title: Neurocomputing
– start-page: 1137
  year: 2007
  end-page: 1144
  ident: b0100
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 40
  start-page: 6788
  year: 2013
  end-page: 6797
  ident: b0275
  article-title: A classifier fusion system for bearing fault diagnosis
  publication-title: Expert Syst. Appl.
– reference: Y. Xie, T. Zhang, A transfer learning strategy for rotation machinery fault diagnosis based on cycle-consistent generative adversarial networks, Proc. 2018 Chinese Autom. Congr. CAC 2018, pp. 1309–1313, 2019, doi:10.1109/CAC.2018.8623346.
– volume: 14
  start-page: 4665
  year: 2018
  end-page: 4673
  ident: b1195
  article-title: Deep learning for smart industry: Efficient manufacture inspection system with fog computing
  publication-title: IEEE Trans. Ind. Informatics
– reference: Y. Kim, Convolutional neural networks for sentence classification, arXiv Prepr. arXiv1408.5882, 2014.
– volume: 115
  start-page: 124
  year: 2013
  end-page: 135
  ident: b0385
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
– reference: A.S. Yoon, et al., Semi-supervised learning with deep generative models for asset failure prediction, arXiv Prepr. arXiv1709.00845, 2017.
– reference: B. Zhang, W. Li, J. Hao, X.-L. Li, M. Zhang, Adversarial adaptive 1-D convolutional neural networks for bearing fault diagnosis under varying working condition, arXiv Prepr. arXiv1805.00778, 2018, pp. 1–19.
– volume: 30
  start-page: 55402
  year: 2019
  ident: b1005
  article-title: A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network
  publication-title: Meas. Sci. Technol.
– volume: 65
  start-page: 718
  year: 2015
  end-page: 735
  ident: b0320
  article-title: Online performance assessment method for a model-based prognostic approach
  publication-title: IEEE Trans. Reliab.
– reference: Z.-X. Hu, Y. Wang, M.-F. Ge, J. Liu, Data-driven fault diagnosis method based on compressed sensing and improved multi-scale network, IEEE Trans. Ind. Electron., vol. PP, no. 1, 2019, pp. 1–1, doi: 10.1109/tie.2019.2912763.
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b0105
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– reference: C. Lessmeier, J.K. Kimotho, D. Zimmer, W. Sextro, Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification, Third Eur. Conf. Progn. Heal. Manag. Soc. 2016, no. Cm, pp. 152–156, 2016.
– start-page: 609
  year: 2009
  end-page: 616
  ident: b0875
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
  publication-title: Proceedings of the 26th annual international conference on machine learning
– volume: 19
  start-page: 1088
  year: 2019
  ident: b1000
  article-title: Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning
  publication-title: Sensors
– volume: 238
  start-page: 13
  year: 2017
  end-page: 23
  ident: b0435
  article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
  publication-title: Neurocomputing
– volume: 63
  start-page: 3271
  year: 2016
  end-page: 3281
  ident: b0025
  article-title: Hidden Markov models for the prediction of impending faults
  publication-title: IEEE Trans. Ind. Electron.
– volume: 66
  year: 2019
  ident: b0785
  article-title: A Bi-Directional LSTM prognostics method under multiple operational conditions
  publication-title: IEEE Trans. Ind. Electron.
– volume: 17
  start-page: 1
  year: 2017
  end-page: 18
  ident: b0890
  article-title: Learning to monitor machine health with convolutional Bi-directional LSTM networks
  publication-title: Sensors
– volume: 15
  start-page: 2416
  year: 2019
  end-page: 2425
  ident: b1130
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Informatics
– volume: 6
  start-page: 13041
  year: 2018
  end-page: 13049
  ident: b0700
  article-title: Prediction of bearing remaining useful life with deep convolution neural network
  publication-title: IEEE Access
– reference: Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M.S. Lew, Neurocomputing Deep learning for visual understanding : A review, vol. 187, pp. 27–48, 2016, doi: 10.1016/j.neucom.2015.09.116.
– volume: 119
  start-page: 200
  year: 2017
  end-page: 220
  ident: b0565
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowledge-Based Syst.
– volume: 1
  start-page: 1
  year: 2013
  end-page: 53
  ident: b0370
  article-title: VOSviewer manual
  publication-title: Leiden: Univeristeit Leiden
– year: 2019
  ident: b1105
  article-title: Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
– volume: 87
  start-page: 235
  year: 2018
  end-page: 250
  ident: b0570
  article-title: A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder
  publication-title: ISA Trans.
– volume: 2017
  year: 2017
  ident: b0670
  article-title: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings
  publication-title: Shock Vib.
– reference: “The Microsoft Cognitive Toolkit.” https://www.microsoft.com/en-us/cognitive-toolkit/.
– reference: R. Salakhutdinov, G. Hinton, Deep Boltzmann Machines, no. 3, pp. 448–455, 2009.
– volume: 122
  start-page: 692
  year: 2019
  end-page: 706
  ident: b1055
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
– volume: 30
  start-page: 7006
  year: 2015
  end-page: 7018
  ident: b0015
  article-title: Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach
  publication-title: IEEE Trans. Power Electron.
– volume: 146
  start-page: 279
  year: 2019
  end-page: 288
  ident: b0775
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: Measurement
– volume: 65
  start-page: 4973
  year: 2018
  end-page: 4982
  ident: b0620
  article-title: LiftingNet: a novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification
  publication-title: IEEE Trans. Ind. Electron.
– volume: 31
  start-page: 433
  year: 2020
  end-page: 452
  ident: b1200
  article-title: Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
  publication-title: J. Intell. Manuf.
– volume: 91
  start-page: 140
  year: 2016
  end-page: 154
  ident: b0205
  article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition
  publication-title: Measurement
– reference: A. Brown, A. Tuor, B. Hutchinson, N. Nichols, Recurrent neural network attention mechanisms for interpretable system log anomaly detection, in: Proceedings of the First Workshop on Machine Learning for Computing Systems, 2018, pp. 1–8.
– reference: Y. Qin, X. Wang, J. Zou, The optimized deep belief networks with improved logistic Sigmoid units and their application in fault diagnosis for planetary gearboxes of wind turbines, IEEE Trans. Ind. Electron., vol. PP, no. CD, pp. 1–1, 2018, doi: 10.1109/TIE.2018.2856205.
– volume: 67
  start-page: 1679
  year: 2018
  end-page: 1689
  ident: b0935
  article-title: Early fault detection approach with deep architectures
  publication-title: IEEE Trans. Instrum. Meas.
– reference: I. Tolstikhin, O. Bousquet, S. Gelly, B. Schoelkopf, Wasserstein auto-encoders, arXiv Prepr. arXiv1711.01558, 2017.
– year: 2017
  ident: b0640
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation
  publication-title: Sensors
– volume: 106
  start-page: 85
  year: 2019
  end-page: 93
  ident: b0840
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
– volume: 323
  start-page: 148
  year: 2019
  end-page: 156
  ident: b0790
  article-title: Bidirectional handshaking LSTM for remaining useful life prediction
  publication-title: Neurocomputing
– volume: 37
  start-page: 226
  year: 2007
  end-page: 236
  ident: b0250
  article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy
  publication-title: IEEE Trans. Syst. Man, Cybern. A Syst. Humans
– reference: M. Xia, T. Li, L. Xu, L. Liu, C.W. De Silva, Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks, IEEE/ASME Trans. Mechatronics, vol. 4435, no. c, pp. 1–9, 2017, doi: 10.1109/TMECH.2017.2728371.
– reference: A. Nazabal, P.M. Olmos, Z. Ghahramani, I. Valera, Handling incomplete heterogeneous data using VAEs, arXiv Prepr. arXiv1807.03653, 2018.
– reference: C. Cheng, B. Zhou, G. Ma, D. Wu, Y. Yuan, Wasserstein distance based deep adversarial transfer learning for intelligent fault diagnosis, arXiv Prepr. arXiv1903.06753, 2019.
– year: 2017
  ident: b0240
  article-title: Data-Driven Technology for Engineering Systems Health Management
– reference: G. Hu, H. Li, Y. Xia, L. Luo, A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis, Comput. Ind., vol. 100, no. May 2017, pp. 287–296, 2018, doi: 10.1016/j.compind.2018.04.002.
– volume: 72
  start-page: 2
  year: 2016
  end-page: 31
  ident: b0020
  article-title: Particle filter-based prognostics: Review, discussion and perspectives
  publication-title: Mech. Syst. Signal Process.
– year: 2016
  ident: b0120
  article-title: Deep Learning
– volume: 66
  start-page: 3794
  year: 2019
  end-page: 3803
  ident: b0550
  article-title: Using multiple feature spaces-based deep learning for tool condition monitoring in ultra-precision manufacturing
  publication-title: IEEE Trans. Ind. Electron.
– volume: 20
  start-page: 2878
  year: 2018
  end-page: 2891
  ident: b0610
  article-title: Deep convolutional neural networks for Bearings failure prediction and temperature correlation
  publication-title: J. Vibroengineering
– volume: 66
  start-page: 190
  year: 2018
  end-page: 193
  ident: b0280
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans. Ind. Electron.
– volume: 7
  start-page: 91216
  year: 2019
  end-page: 91224
  ident: b1065
  article-title: A deep transfer nonnegativity-constraint sparse autoencoder for rolling bearing fault diagnosis with few labeled data
  publication-title: IEEE Access
– volume: 65
  start-page: 3539
  year: 2018
  end-page: 3549
  ident: b0415
  article-title: Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– volume: 44
  start-page: 310
  year: 2017
  end-page: 316
  ident: b0685
  article-title: Virtualization and deep recognition for system fault classification
  publication-title: J. Manuf. Syst.
– volume: 76–77
  start-page: 283
  year: 2016
  end-page: 293
  ident: b0470
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mech. Syst. Signal Process.
– volume: 13
  start-page: 1213
  year: 2017
  end-page: 1226
  ident: b0450
  article-title: Capturing high-discriminative fault features for electronics-rich analog system via deep learning
  publication-title: IEEE Trans. Ind. Informatics
– reference: “Deeplearning4j: Open-source distributed deep learning for the JVM.” .
– volume: 7
  year: 2018
  ident: b0510
  article-title: Deep learning with emerging new labels for fault diagnosis
  publication-title: IEEE Access
– volume: 76
  start-page: 170
  year: 2018
  end-page: 184
  ident: b0560
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
– reference: J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: A large-scale hierarchical image database, in: 2009 IEEE conference on computer vision and pattern recognition, 2009, pp. 248–255.
– volume: 19
  start-page: pp
  year: 2019
  ident: b0815
  article-title: Bearing fault diagnosis based on the switchable normalization SSGAN with 1-D representation of vibration signals as input
  publication-title: Sensors
– volume: 45
  start-page: 2626
  year: 2015
  end-page: 2639
  ident: b0315
  article-title: A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
  publication-title: IEEE Trans. Cybern.
– volume: 21
  start-page: 2224
  year: 2019
  end-page: 2287
  ident: b1135
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutorials
– reference: G. Hinton and G. Hinton, “A Practical Guide to Training Restricted Boltzmann Machines,” 2010.
– volume: 107
  start-page: 241
  year: 2018
  end-page: 265
  ident: b0035
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
– reference: Z. Chen, K. Gryllias, W. Li, Intelligent fault diagnosis for rotary machinery using transferable convolutional neural network, IEEE Trans. Ind. Informatics, vol. 3203, no. c, 2019, pp. 1–1, doi: 10.1109/tii.2019.2917233.
– volume: 18
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0225
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Inf. Fusion
– volume: 1
  start-page: 4
  year: 2010
  end-page: 23
  ident: b0290
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int. J. Progn. Heal. Manag.
– volume: 53
  start-page: 3057
  year: 2017
  end-page: 3065
  ident: b0870
  article-title: Deep learning based approach for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Appl.
– reference: X. Li, W. Zhang, Q. Ding, Deep learning-based remaining useful life estimation of bearings using multi-scale feature extraction, Reliab. Eng. Syst. Saf., vol. 182, no. July 2018, 2019, pp. 208–218, doi:10.1016/j.ress.2018.11.011.
– volume: 8
  start-page: 1102
  year: 2018
  ident: b0675
  article-title: A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network
  publication-title: Appl. Sci.
– volume: 32
  start-page: 139
  year: 2017
  end-page: 151
  ident: b0715
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Informatics
– volume: 323
  start-page: 62
  year: 2019
  end-page: 75
  ident: b0680
  article-title: A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
  publication-title: Neurocomputing
– reference: Q. Li, L. Chen, S. Changqing, Y. Bingru, Enhanced generative adversarial networks for fault diagnosis of rotating machinery with imbalanced data, Meas. Sci. Technol., vol. 30, no. 11, 2019.
– reference: C. Lu, Y. Wang, M. Ragulskis, Y. Cheng, Fault diagnosis for rotating machinery: A method based on image processing, PLoS One, vol. 11, no. 10, 2016.
– volume: 20
  start-page: 143
  year: 2017
  end-page: 153
  ident: b0210
  article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
  publication-title: J. Comput. Sci.
– reference: P. Nectoux, et al., PRONOSTIA : An experimental platform for bearings accelerated degradation tests” in: IEEE International Conference on Prognostics and Health Management, 2012, pp. 1–8.
– reference: B. Saha, K. Goebel, Uncertainty management for diagnostics and prognostics of batteries using Bayesian techniques, in: 2008 IEEE Aerospace Conference, 2008, pp. 1–8.
– volume: 89
  start-page: 16
  year: 2015
  end-page: 27
  ident: b0260
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl. Acoust.
– reference: R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications, Signal Processing, vol. 96, no. PART A, pp. 1–15, 2014, doi: 10.1016/j.sigpro.2013.04.015.
– year: 2019
  ident: b0770
  article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network
  publication-title: ISA Trans.
– reference: Z. Wang, Q. She, T.E. Ward, Generative adversarial networks: a survey and taxonomy, arXiv Prepr. arXiv1906.01529, no. 2, pp. 1–16, 2019.
– volume: 122
  start-page: 19
  year: 2019
  end-page: 41
  ident: b0410
  article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery q
  publication-title: Mech. Syst. Signal Process.
– reference: S.A. Khan, A.E. Prosvirin, J.-M. Kim, Towards bearing health prognosis using generative adversarial networks: Modeling bearing degradation, in: 2018 International Conference on Advancements in Computational Sciences (ICACS), 2018, pp. 1–6.
– volume: 18
  start-page: 1077
  year: 2004
  end-page: 1095
  ident: b0270
  article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference
  publication-title: Mech. Syst. Signal Process.
– volume: 29
  year: 2018
  ident: b0425
  article-title: A novel deep fuzzy clustering neural network model and its application in rolling bearing fault recognition
  publication-title: Meas. Sci. Technol.
– reference: A. Jović, K. Brkić, N. Bogunović, A review of feature selection methods with applications, in: 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015, pp. 1200–1205.
– volume: 41
  start-page: 4113
  year: 2014
  end-page: 4122
  ident: b0390
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager – Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
– volume: 168
  start-page: 119
  year: 2015
  end-page: 127
  ident: b0465
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
– volume: 7
  year: 2019
  ident: b1090
  article-title: Domain adaptive motor fault diagnosis using deep transfer learning
  publication-title: IEEE Access
– volume: 66
  start-page: 5525
  year: 2019
  end-page: 5534
  ident: b0945
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electron.
– volume: 130
  start-page: 448
  year: 2018
  end-page: 454
  ident: b0495
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
– volume: 41
  start-page: 801
  year: 2018
  end-page: 814
  ident: b1030
  article-title: Beyond sharing weights for deep domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: C. Szegedy, et al., Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp. 1–9.
– volume: 240
  start-page: 561
  year: 2019
  end-page: 582
  ident: b0215
  article-title: An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework
  publication-title: Appl. Energy
– volume: 108
  start-page: 62
  year: 2019
  end-page: 72
  ident: b0530
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis
  publication-title: Comput. Ind.
– volume: 45
  start-page: 939
  year: 2013
  end-page: 952
  ident: b0295
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: Revisited
  publication-title: IiE Trans.
– volume: 6
  start-page: 66367
  year: 2018
  end-page: 66384
  ident: b1035
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
– volume: 95
  start-page: 187
  year: 2017
  end-page: 204
  ident: b0490
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  ident: b0745
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– reference: L. Wen, L. Gao, X. Li, A new deep transfer learning based on sparse auto-encoder for fault diagnosis, IEEE Trans. Syst. Man, Cybern. Syst., vol. 49, no. 1, 2017, pp. 136–144, doi: 10.1109/TSMC.2017.2754287.
– volume: 275
  start-page: 167
  year: 2018
  end-page: 179
  ident: b0765
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
– reference: W. Jiang, C. Cheng, B. Zhou, G. Ma, Y. Yuan, A novel GAN-based fault diagnosis approach for imbalanced industrial time series, arXiv Prepr. arXiv1904.00575, 2019, pp. 1–6.
– volume: 18
  start-page: pp
  year: 2018
  ident: b0900
  article-title: A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series
  publication-title: Sensors
– volume: 7
  start-page: 42373
  year: 2019
  end-page: 42383
  ident: b1015
  article-title: A deep learning method for bearing fault diagnosis based on time-frequency image
  publication-title: IEEE Access
– reference: N. Kodali, J. Abernethy, J. Hays, Z. Kira, On convergence and stability of gans, arXiv Prepr. arXiv1705.07215, 2017.
– reference: X. Wang, H. He, L. Li, A hierarchical deep domain adaptation approach for fault diagnosis of power plant thermal system, IEEE Trans. Ind. Informatics, vol. PP, no. XX, pp. 1–1, 2019, doi: 10.1109/tii.2019.2899118.
– year: 2020
  ident: b0055
  article-title: Introduction to machine learning
– volume: 10
  start-page: 851
  year: 2019
  end-page: 861
  ident: b0480
  article-title: Deep Boltzmann machine based condition prediction for smart manufacturing
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 77
  start-page: 167
  year: 2018
  end-page: 178
  ident: b0915
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans.
– reference: J. Watkins, C. Teubert, J. Ossenfort, Prognostics as-a-service: a scalable cloud architecture for prognostics, in: 11th Annual Conference Prognostics and Health Management Society, 2019.
– volume: 19
  start-page: 138
  year: 2017
  end-page: 149
  ident: b0625
  article-title: Rolling bearing fault identification using multilayer deep learning convolutional neural network
  publication-title: J. Vibroengineering
– volume: 38
  start-page: 237
  year: 2013
  end-page: 247
  ident: b0200
  article-title: Two simple multivariate procedures for monitoring planetary gearboxes in non-stationary operating conditions
  publication-title: Mech. Syst. Signal Process.
– volume: 6
  start-page: 63584
  year: 2018
  end-page: 63596
  ident: b0455
  article-title: An end-to-end model based on improved adaptive deep belief network and its application to bearing fault diagnosis
  publication-title: IEEE Access
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b0090
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 133
  start-page: 229
  year: 2019
  end-page: 249
  ident: b0800
  article-title: Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network
  publication-title: Mech. Mach. Theory
– reference: H. Larochelle, M. Mandel, Y. Bengio, Learning Algorithms for the Classification Restricted Boltzmann Machine, vol. 13, pp. 643–669, 2012.
– year: 2014
  ident: b0360
  article-title: Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use
  publication-title: Annual Conference of the Prognostics and Health Management, PHM 2014
– reference: W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, F.E. Alsaadi, Neurocomputing A survey of deep neural network architectures and their applications ☆, Neurocomputing, vol. 234, no. October 2016, pp. 11–26, 2017, doi: 10.1016/j.neucom.2016.12.038.
– volume: 66
  start-page: 679
  year: 2016
  end-page: 698
  ident: b0190
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
– reference: I. Goodfellow, NIPS 2016 tutorial: Generative adversarial networks, arXiv Prepr. arXiv1701.00160, 2016.
– volume: 152
  year: 2020
  ident: b1020
  article-title: Online detection for bearing incipient fault based on deep transfer learning
  publication-title: Measurement
– reference: J. Zacharias, M. Barz, D. Sonntag, A survey on deep learning toolkits and libraries for intelligent user interfaces, arXiv Prepr. arXiv1803.04818, 2018.
– volume: 8
  start-page: pp
  year: 2018
  ident: b0430
  article-title: Fisher discriminative sparse representation based on DBN for fault diagnosis of complex system
  publication-title: Appl. Sci.
– reference: Y. Li, N. Wang, J. Shi, J. Liu, X. Hou, Revisiting batch normalization for practical domain adaptation, arXiv Prepr. arXiv1603.04779, 2016.
– start-page: 1
  year: 2017
  end-page: 12
  ident: b1140
  article-title: In-datacenter performance analysis of a tensor processing unit
  publication-title: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA)
– reference: L. Deng, A tutorial survey of architectures, algorithms, and applications for deep learning, APSIPA Trans. Signal Inf. Process., vol. 3, 2014.
– volume: 312
  start-page: 135
  year: 2018
  end-page: 153
  ident: b0960
  article-title: Deep visual domain adaptation : A survey
  publication-title: Neurocomputing
– reference: A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial autoencoders, arXiv Prepr. arXiv1511.05644, 2015.
– volume: 2017
  year: 2017
  ident: b0635
  article-title: Bearing fault detection by one-dimensional convolutional neural networks
  publication-title: Math. Probl. Eng.
– volume: 67
  start-page: 1269
  year: 2018
  end-page: 1280
  ident: b0300
  article-title: New methodology for improving the inspection policies for degradation model selection according to prognostic measures
  publication-title: IEEE Trans. Reliab.
– reference: Y. ren Wang, Q. Jin, G. dong Sun, C. fei Sun, Planetary gearbox fault feature learning using conditional variational neural networks under noise environment, Knowledge-Based Syst., vol. 163, 2019, pp. 438–449, doi: 10.1016/j.knosys.2018.09.005.
– volume: 15
  start-page: 2446
  year: 2018
  end-page: 2455
  ident: b0985
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Informatics
– volume: 131
  start-page: 243
  year: 2019
  end-page: 260
  ident: b0585
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
– reference: “The world’s leading software development platform , GitHub.”.
– volume: 48
  start-page: 1
  year: 2018
  end-page: 8
  ident: b0405
  article-title: Signal fusion-based deep fast random forest method for machine health assessment
  publication-title: J. Manuf. Syst.
– volume: 157
  start-page: 180
  year: 2019
  end-page: 197
  ident: b1085
  article-title: Multi-Layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
– reference: A. Ng, “CS294A Lecture notes Sparse autoencoder,” pp. 1–19.
– volume: PP
  year: 2019
  ident: b0825
  article-title: Generalization of deep neural networks for imbalanced fault classification of machinery using generative adversarial networks
  publication-title: IEEE Access
– reference: J. Xu, H. Li, S. Zhou, J. Xu, H. Li, S. Zhou, An overview of deep generative models an overview of deep generative models, no. December, pp. 37–41, 2014, doi: 10.1080/02564602.2014.987328.
– reference: Y. LeCun, LeNet-5, convolutional neural networks, URL http//yann. lecun. com/exdb/lenet, vol. 20, p. 5, 2015.
– volume: 66
  start-page: 2391
  year: 2017
  end-page: 2402
  ident: b0535
  article-title: Stacked multilevel-denoising autoencoders : a new representation learning approach for wind turbine gearbox fault diagnosis
  publication-title: Ieee Trans. Instrum. Meas.
– volume: 22
  start-page: 1089
  year: 2009
  end-page: 1103
  ident: b0245
  article-title: Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach
  publication-title: Eng. Appl. Artif. Intell.
– volume: 62
  start-page: 1781
  year: 2014
  end-page: 1790
  ident: b0230
  article-title: Extended Kalman filtering for remaining-useful-life estimation of bearings
  publication-title: IEEE Trans. Ind. Electron.
– volume: 329
  start-page: 53
  year: 2019
  end-page: 65
  ident: b0520
  article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines
  publication-title: Neurocomputing
– reference: R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep Learning and Its Applications to Machine Health Monitoring : A Survey, vol. 14, no. 8, pp. 1–14, 2015.
– volume: 26
  start-page: pp
  year: 2015
  ident: b0395
  article-title: Rolling bearing fault diagnosis using an optimization deep belief network
  publication-title: Meas. Sci. Technol.
– volume: 231
  start-page: 102
  year: 2018
  end-page: 115
  ident: b0755
  article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method
  publication-title: Appl. Energy
– year: 2018
  ident: b0580
  article-title: Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis
  publication-title: Struct. Heal. Monit.
– volume: 315
  start-page: 412
  year: 2018
  end-page: 424
  ident: b0855
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
– volume: 68
  start-page: 720
  year: 2019
  end-page: 740
  ident: b0040
  article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
  publication-title: IEEE Trans. Reliab.
– reference: P. Malhotra, V. TV, L. Vig, P. Agarwal, G. Shroff, TimeNet: Pre-trained deep recurrent neural network for time series classification. arXiv 2017, arXiv Prepr. arXiv1706.08838.
– reference: L. Wen, X. Li, L. Gao, A transfer convolutional neural network for fault diagnosis based on ResNet-50, Neural Comput. Appl., 2019, pp. 1–14.
– year: 2018
  ident: b0660
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Trans.
– reference: Z. Wang, K. Liu, J. Li, Y. Zhu, Y. Zhang, Various frameworks and libraries of machine learning and deep learning: a survey, Arch. Comput. Methods Eng., 2019, pp. 1–24.
– volume: 48
  start-page: 78
  year: 2018
  end-page: 86
  ident: b0780
  article-title: Long short-term memory for machine remaining life prediction
  publication-title: J. Manuf. Syst.
– volume: 31
  start-page: 405
  year: 2012
  end-page: 427
  ident: b0235
  article-title: Combining relevance vector machines and exponential regression for bearing residual life estimation
  publication-title: Mech. Syst. Signal Process.
– volume: 53
  start-page: 42
  year: 2019
  end-page: 50
  ident: b0705
  article-title: Rolling element bearing fault diagnosis using convolutional neural network and vibration image
  publication-title: Cogn. Syst. Res.
– reference: G. Zhao, X. Liu, B. Zhang, Y. Liu, G. Niu, C. Hu, A novel approach for analog circuit fault diagnosis based on Deep Belief Network, Measurement, vol. 121, no. August 2017, 2018, pp. 170–178, doi: 10.1016/j.measurement.2018.02.044.
– volume: 8
  start-page: 1584
  year: 2018
  ident: b0650
  article-title: End-To-end convolutional neural network model for gear fault diagnosis based on sound signals
  publication-title: Appl. Sci.
– reference: E.F. Hogge, et al., Verification of a remaining flying time prediction system for small electric aircraft, in: Annual Conference of the Prognostics and Health Management, PHM 2015, 2015.
– start-page: 833
  year: 2011
  end-page: 840
  ident: b0110
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
  publication-title: Proceedings of the 28th International Conference on International Conference on Machine Learning
– year: 2017
  ident: b0545
  article-title: Deep fault recognizer : an integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci.
– volume: 109
  start-page: 72
  year: 2019
  end-page: 82
  ident: b0575
  article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder
  publication-title: Comput. Ind.
– reference: N. Gugulothu, V. TV, P. Malhotra, G.S. Lovekesh Vig, Puneet Agarwal, Predicting remaining useful life using time series embeddings based on recurrent neural networks, Work. Proc. New Secur. Paradig., 2017, doi: 10.1145/nnnnnnn.nnnnnnn.
– volume: 64
  start-page: 2296
  year: 2017
  end-page: 2305
  ident: b1040
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
– reference: D.I.J. Im, S. Ahn, R. Memisevic, Y. Bengio, Denoising criterion for variational auto-encoding framework, in: Thirty-First AAAI Conference on Artificial Intelligence, 2017.
– year: 2019
  ident: b1210
  article-title: “Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators”
  publication-title: IEEE Access
– volume: 335
  start-page: 327
  year: 2019
  end-page: 335
  ident: b0045
  article-title: A survey on Deep Learning based bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 18
  start-page: pp
  year: 2018
  ident: b0885
  article-title: Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks
  publication-title: Sensors (Switzerland)
– reference: “Case Western Reserve University Bearing vibration Data,” 2015.
– volume: 187
  year: 2020
  ident: b0835
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowledge-Based Syst.
– volume: 32
  start-page: 2473
  year: 2018
  end-page: 2478
  ident: b0220
  article-title: Anomaly detection of tripod shafts using modified Mahalanobis distance
  publication-title: J. Mech. Sci. Technol.
– year: 2019
  ident: b1095
  article-title: Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans.
– reference: S. Shi, Q. Wang, P. Xu, X. Chu, Benchmarking state-of-the-art deep learning software tools, in: Proc. - 2016 7th Int. Conf. Cloud Comput. Big Data, CCBD 2016, pp. 99–104, 2017, doi: 10.1109/CCBD.2016.029.
– reference: D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv Prepr. arXiv1312.6114, 2013.
– volume: 130
  start-page: 377
  year: 2017
  end-page: 388
  ident: b0540
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identi fi cation
  publication-title: Signal Process.
– reference: “Model Zoo: Pre-trained networks.” https://github.com/BVLC/caffe/wiki/Model-Zoo.
– start-page: 99
  year: 2016
  end-page: 104
  ident: b1160
  article-title: Benchmarking state-of-the-art deep learning software tools
  publication-title: 2016 7th International Conference on Cloud Computing and Big Data (CCBD)
– volume: 76
  start-page: 452
  year: 2006
  end-page: 456
  ident: b0255
  article-title: Optimum maintenance policy with Markov processes
  publication-title: Electr. Power Syst. Res.
– year: 2017
  ident: b0645
  article-title: An adaptive multi-sensor data fusion method based on deep convolutional neural networks for
  publication-title: Sensors
– reference: C.M. Bishop, Pattern recognition and machine learning, Springer, 2006.
– volume: 294
  start-page: 61
  year: 2018
  end-page: 71
  ident: b0630
  article-title: ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis
  publication-title: Neurocomputing
– volume: 67
  start-page: 185
  year: 2018
  end-page: 195
  ident: b0525
  article-title: Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 96
  year: 2019
  ident: b1050
  article-title: Deep transfer network for rotating machine fault analysis
  publication-title: Pattern Recognit.
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 18
  ident: b0600
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock Vib.
– volume: 100
  start-page: 743
  year: 2018
  end-page: 765
  ident: b0880
  article-title: Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
  publication-title: Mech. Syst. Signal Process.
– year: 2012
  ident: b0375
  article-title: Machine learning: discriminative and generative
– volume: no
  start-page: 1
  year: 2007
  ident: b0070
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: F. Zhou, Y. Gao, C. Wen, A novel multimode fault classification method based on deep learning, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 2017, 2017, pp. 442–452, doi: 10.1155/2017/3583610.
– volume: 65
  start-page: 5990
  year: 2018
  end-page: 5998
  ident: b0710
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
– reference: P. Malhotra, et al., Multi-sensor prognostics using an unsupervised health index based on LSTM encoder-decoder, arXiv Prepr. arXiv1608.06154, 2016.
– volume: 7
  start-page: 86769
  year: 2019
  end-page: 86777
  ident: b1185
  article-title: A Smart Manufacturing service system based on edge computing, fog computing, and cloud computing
  publication-title: IEEE Access
– volume: 34
  start-page: 3090
  year: 2008
  end-page: 3098
  ident: b0005
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert Syst. Appl.
– reference: A. Saxena, K. Goebel, D. Simon, N. Eklund, Damage propagation modeling for aircraft engine run-to-failure simulation, 2008 Int. Conf. Progn. Heal. Manag. PHM 2008, 2008, doi: 10.1109/PHM.2008.4711414.
– volume: 66
  start-page: 1693
  year: 2017
  end-page: 1702
  ident: b0930
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 117
  start-page: 170
  year: 2019
  end-page: 187
  ident: b0740
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech. Syst. Signal Process.
– volume: 67
  start-page: 5695
  year: 2018
  end-page: 5705
  ident: b0760
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
– volume: 10
  start-page: 277
  year: 2015
  end-page: 286
  ident: b0010
  article-title: Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition
  publication-title: Front. Mech. Eng.
– start-page: 1
  year: 2019
  end-page: 8
  ident: b0995
  article-title: “ConvTimeNet: A pre-trained deep convolutional neural network for time series classification”
  publication-title: 2019 International Joint Conference on Neural Networks (IJCNN)
– volume: 115
  start-page: 213
  year: 2019
  end-page: 237
  ident: b0030
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
– reference: J. Lee, H. Qiu, G. Yu, J. Lin, Rexnord technical services: Bearing data set, Moffett Field, CA IMS, Univ. Cincinnati. NASA Ames Progn. Data Repos. NASA Ames, 2007.
– volume: 233–234
  start-page: 930
  year: 2019
  end-page: 942
  ident: b0555
  article-title: Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning
  publication-title: Appl. Energy
– year: 2019
  ident: b1120
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Ind Informatics
– year: 2019
  ident: b1115
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Ind. Electron.
– volume: 146
  start-page: 279
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0775
  article-title: A recurrent neural network approach for remaining useful life prediction utilizing a novel trend features construction method
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.004
– ident: 10.1016/j.measurement.2020.107929_b0130
  doi: 10.1016/j.neucom.2016.12.038
– volume: 18
  start-page: 1
  year: 2014
  ident: 10.1016/j.measurement.2020.107929_b0225
  article-title: Using multi-sensor data fusion for vibration fault diagnosis of rolling element bearings by accelerometer and load cell
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2013.10.002
– volume: 38
  start-page: 237
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0200
  article-title: Two simple multivariate procedures for monitoring planetary gearboxes in non-stationary operating conditions
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.03.022
– ident: 10.1016/j.measurement.2020.107929_b0720
  doi: 10.1109/TIE.2019.2912763
– ident: 10.1016/j.measurement.2020.107929_b0820
  doi: 10.1109/ICACS.2018.8333495
– volume: 44
  start-page: 310
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0685
  article-title: Virtualization and deep recognition for system fault classification
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2017.04.012
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0770
  article-title: Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network
  publication-title: ISA Trans.
– year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0580
  article-title: Deep variational auto-encoders: A promising tool for dimensionality reduction and ball bearing elements fault diagnosis
  publication-title: Struct. Heal. Monit.
– ident: 10.1016/j.measurement.2020.107929_b0590
  doi: 10.1016/j.knosys.2018.09.005
– start-page: 99
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b1160
  article-title: Benchmarking state-of-the-art deep learning software tools
– volume: 31
  start-page: 405
  year: 2012
  ident: 10.1016/j.measurement.2020.107929_b0235
  article-title: Combining relevance vector machines and exponential regression for bearing residual life estimation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2012.03.011
– ident: 10.1016/j.measurement.2020.107929_b1165
– volume: 15
  start-page: 2446
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0985
  article-title: Highly accurate machine fault diagnosis using deep transfer learning
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2018.2864759
– volume: 89
  start-page: 16
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0260
  article-title: Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2014.08.016
– volume: 65
  start-page: 2727
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0920
  article-title: Electric locomotive bearing fault diagnosis using novel convolutional deep belief network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2745473
– ident: 10.1016/j.measurement.2020.107929_b0380
  doi: 10.1017/atsip.2013.9
– start-page: 2672
  year: 2014
  ident: 10.1016/j.measurement.2020.107929_b0150
  article-title: Generative adversarial nets
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1096
  year: 2008
  ident: 10.1016/j.measurement.2020.107929_b0105
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 66
  start-page: 3794
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0550
  article-title: Using multiple feature spaces-based deep learning for tool condition monitoring in ultra-precision manufacturing
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2856193
– ident: 10.1016/j.measurement.2020.107929_b0125
– start-page: 833
  year: 2011
  ident: 10.1016/j.measurement.2020.107929_b0110
  article-title: Contractive auto-encoders: Explicit invariance during feature extraction
– volume: 115
  start-page: 124
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0385
  article-title: Failure diagnosis using deep belief learning based health state classification
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2013.02.022
– volume: 17
  start-page: 1
  issue: 7
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0440
  article-title: Unsupervised fault diagnosis of a gear transmission chain using a deep belief network
  publication-title: Sensors
  doi: 10.3390/s17071564
– volume: 15
  start-page: 2416
  issue: 4
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1130
  article-title: Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2018.2881543
– volume: 66
  start-page: 190
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0280
  article-title: Estimation of bearing remaining useful life based on multiscale convolutional neural network
  publication-title: IEEE Trans. Ind. Electron.
– volume: 1
  start-page: 4
  issue: 1
  year: 2010
  ident: 10.1016/j.measurement.2020.107929_b0290
  article-title: Metrics for offline evaluation of prognostic performance
  publication-title: Int. J. Progn. Heal. Manag.
– volume: 19
  start-page: 138
  issue: 1
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0625
  article-title: Rolling bearing fault identification using multilayer deep learning convolutional neural network
  publication-title: J. Vibroengineering
  doi: 10.21595/jve.2016.16939
– ident: 10.1016/j.measurement.2020.107929_b0905
– volume: 152
  year: 2020
  ident: 10.1016/j.measurement.2020.107929_b1020
  article-title: Online detection for bearing incipient fault based on deep transfer learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.107278
– volume: 231
  start-page: 102
  issue: March
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0755
  article-title: Data-driven proton exchange membrane fuel cell degradation predication through deep learning method
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.09.111
– volume: 7
  start-page: 86769
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1185
  article-title: A Smart Manufacturing service system based on edge computing, fog computing, and cloud computing
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923610
– ident: 10.1016/j.measurement.2020.107929_b0160
– volume: 37
  start-page: 226
  issue: 2
  year: 2007
  ident: 10.1016/j.measurement.2020.107929_b0250
  article-title: A neural network integrated decision support system for condition-based optimal predictive maintenance policy
  publication-title: IEEE Trans. Syst. Man, Cybern. A Syst. Humans
  doi: 10.1109/TSMCA.2006.886368
– ident: 10.1016/j.measurement.2020.107929_b0080
– volume: 305
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0400
  article-title: Adaptive deep feature learning network with Nesterov momentum and its application to rotating machinery fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.04.048
– volume: 10
  start-page: 277
  issue: 3
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0010
  article-title: Fault diagnosis of spur gearbox based on random forest and wavelet packet decomposition
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-015-0348-8
– volume: 133
  start-page: 229
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0800
  article-title: Rolling bearing health prognosis using a modified health index based hierarchical gated recurrent unit network
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2018.11.005
– ident: 10.1016/j.measurement.2020.107929_b1100
  doi: 10.1109/TII.2019.2917233
– volume: 19
  start-page: pp
  issue: 9
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0815
  article-title: Bearing fault diagnosis based on the switchable normalization SSGAN with 1-D representation of vibration signals as input
  publication-title: Sensors
  doi: 10.3390/s19092000
– start-page: 609
  year: 2009
  ident: 10.1016/j.measurement.2020.107929_b0875
  article-title: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1120
  article-title: Diagnosing rotating machines with weakly supervised data using deep transfer learning
  publication-title: IEEE Trans. Ind Informatics
– volume: 65
  start-page: 1539
  issue: 2
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0795
  article-title: Machine health monitoring using local feature-based gated recurrent unit networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2733438
– volume: 53
  start-page: 42
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0705
  article-title: Rolling element bearing fault diagnosis using convolutional neural network and vibration image
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.03.002
– volume: 41
  start-page: 801
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b1030
  article-title: Beyond sharing weights for deep domain adaptation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2814042
– volume: 2017
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0670
  article-title: Deep learning enabled fault diagnosis using time-frequency image analysis of rolling element bearings
  publication-title: Shock Vib.
– volume: 53
  start-page: 3057
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0870
  article-title: Deep learning based approach for bearing fault diagnosis
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.2017.2661250
– volume: 19
  start-page: 1088
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1000
  article-title: Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning
  publication-title: Sensors
  doi: 10.3390/s19051088
– volume: 66
  issue: 11
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0785
  article-title: A Bi-Directional LSTM prognostics method under multiple operational conditions
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2891463
– year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0640
  article-title: A new deep learning model for fault diagnosis with good anti-noise and domain adaptation
  publication-title: Sensors
– ident: 10.1016/j.measurement.2020.107929_b0595
– ident: 10.1016/j.measurement.2020.107929_b0165
– volume: 67
  start-page: 1269
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0300
  article-title: New methodology for improving the inspection policies for degradation model selection according to prognostic measures
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2018.2829738
– volume: 119
  start-page: 200
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0565
  article-title: An enhancement deep feature fusion method for rotating machinery fault diagnosis
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.12.012
– volume: 66
  start-page: 2391
  issue: 9
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0535
  article-title: Stacked multilevel-denoising autoencoders : a new representation learning approach for wind turbine gearbox fault diagnosis
  publication-title: Ieee Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2698738
– volume: 19
  start-page: 1826
  issue: 8
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1205
  article-title: Transfer learning based fault diagnosis with missing data due to multi-rate sampling
  publication-title: Sensors
  doi: 10.3390/s19081826
– ident: 10.1016/j.measurement.2020.107929_b0910
– volume: 130
  start-page: 377
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0540
  article-title: Fault diagnosis of rotary machinery components using a stacked denoising autoencoder-based health state identi fi cation
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.07.028
– volume: 66
  start-page: 509
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0505
  article-title: Early fault detection of machine tools based on deep learning and dynamic identification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2807414
– year: 2014
  ident: 10.1016/j.measurement.2020.107929_b0360
  article-title: Adaptation of an electrochemistry-based li-ion battery model to account for deterioration observed under randomized use
– volume: 66
  start-page: 1926
  issue: 8
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0695
  article-title: Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2674738
– volume: 21
  start-page: 2224
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1135
  article-title: Deep learning in mobile and wireless networking: A survey
  publication-title: IEEE Commun. Surv. Tutorials
  doi: 10.1109/COMST.2019.2904897
– volume: 67
  start-page: 5695
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0760
  article-title: Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2018.2805189
– volume: 18
  start-page: pp
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0885
  article-title: Lired: A light-weight real-time fault detection system for edge computing using LSTM recurrent neural networks
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18072110
– ident: 10.1016/j.measurement.2020.107929_b1215
  doi: 10.1145/3217871.3217872
– ident: 10.1016/j.measurement.2020.107929_b0335
  doi: 10.1371/journal.pone.0164111
– volume: 66
  start-page: 1693
  issue: 7
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0930
  article-title: Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2669947
– ident: 10.1016/j.measurement.2020.107929_b0195
  doi: 10.1109/MIPRO.2015.7160458
– volume: 7
  start-page: 91216
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1065
  article-title: A deep transfer nonnegativity-constraint sparse autoencoder for rolling bearing fault diagnosis with few labeled data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926234
– volume: 2017
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0635
  article-title: Bearing fault detection by one-dimensional convolutional neural networks
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2017/8617315
– volume: 122
  start-page: 19
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0410
  article-title: A novel multi-segment feature fusion based fault classification approach for rotating machinery q
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.009
– ident: 10.1016/j.measurement.2020.107929_b0970
– volume: 129
  start-page: 764
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0955
  article-title: Remaining useful life estimation using a bidirectional recurrent neural network based autoencoder scheme
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.005
– ident: 10.1016/j.measurement.2020.107929_b1155
– volume: 66
  start-page: 5525
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0945
  article-title: Cross-domain fault diagnosis of rolling element bearings using deep generative neural networks
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2868023
– volume: 329
  start-page: 53
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0520
  article-title: Batch-normalized deep neural networks for achieving fast intelligent fault diagnosis of machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.049
– ident: 10.1016/j.measurement.2020.107929_b0365
– volume: 6
  start-page: 66367
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b1035
  article-title: Intelligent fault diagnosis under varying working conditions based on domain adaptive convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878491
– volume: 109
  start-page: 72
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0575
  article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.04.013
– ident: 10.1016/j.measurement.2020.107929_b0750
  doi: 10.1109/TIE.2019.2907440
– year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0895
  article-title: A weighted deep representation learning model for imbalanced fault diagnosis in cyber-physical systems
  publication-title: Sensors
– volume: 34
  start-page: 3090
  issue: 4
  year: 2008
  ident: 10.1016/j.measurement.2020.107929_b0005
  article-title: Fault diagnostics of roller bearing using kernel based neighborhood score multi-class support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.06.029
– volume: 30
  start-page: 77
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b1045
  article-title: A robust intelligent fault diagnosis method for rolling element bearings base d on deep distance metric learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.021
– volume: 26
  start-page: pp
  issue: 11
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0395
  article-title: Rolling bearing fault diagnosis using an optimization deep belief network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/26/11/115002
– volume: 315
  start-page: 412
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0855
  article-title: Unsupervised fault diagnosis of rolling bearings using a deep neural network based on generative adversarial networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.034
– ident: 10.1016/j.measurement.2020.107929_b0050
– ident: 10.1016/j.measurement.2020.107929_b0975
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0090
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: 65
  start-page: 718
  issue: 2
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0320
  article-title: Online performance assessment method for a model-based prognostic approach
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2015.2500681
– ident: 10.1016/j.measurement.2020.107929_b0655
  doi: 10.1109/TMECH.2017.2728371
– ident: 10.1016/j.measurement.2020.107929_b0115
– start-page: 1137
  year: 2007
  ident: 10.1016/j.measurement.2020.107929_b0100
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 96
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1050
  article-title: Deep transfer network for rotating machine fault analysis
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.106993
– volume: 18
  start-page: 1077
  issue: 5
  year: 2004
  ident: 10.1016/j.measurement.2020.107929_b0270
  article-title: Bearing fault diagnosis based on wavelet transform and fuzzy inference
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/S0888-3270(03)00077-3
– volume: 43
  start-page: 140
  issue: 3
  year: 2010
  ident: 10.1016/j.measurement.2020.107929_b0310
  article-title: Towards accurate and reproducible predictions for prognostic: an approach combining a RRBF network and an autoregressive model
  publication-title: IFAC Proc.
  doi: 10.3182/20100701-2-PT-4012.00025
– volume: 6
  start-page: 107
  issue: 02
  year: 1998
  ident: 10.1016/j.measurement.2020.107929_b0140
  article-title: The vanishing gradient problem during learning recurrent neural nets and problem solutions
  publication-title: Int. J. Uncertainty, Fuzziness Knowledge-Based Syst.
  doi: 10.1142/S0218488598000094
– start-page: 3856
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0730
  article-title: Dynamic routing between capsules
  publication-title: Adv. Neural Inf. Process. Systems
– volume: 65
  start-page: 4973
  issue: 6
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0620
  article-title: LiftingNet: a novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2767540
– volume: 323
  start-page: 62
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0680
  article-title: A convolutional neural network based on a capsule network with strong generalization for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.050
– ident: 10.1016/j.measurement.2020.107929_b0460
  doi: 10.1016/j.measurement.2018.02.044
– ident: 10.1016/j.measurement.2020.107929_b1080
  doi: 10.1109/TII.2019.2899118
– volume: 30
  start-page: 55402
  issue: 5
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1005
  article-title: A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab0793
– ident: 10.1016/j.measurement.2020.107929_b0345
  doi: 10.1109/PHM.2008.4711414
– volume: 13
  start-page: 1213
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0450
  article-title: Capturing high-discriminative fault features for electronics-rich analog system via deep learning
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2017.2690940
– ident: 10.1016/j.measurement.2020.107929_b1190
  doi: 10.36001/phmconf.2019.v11i1.835
– ident: 10.1016/j.measurement.2020.107929_b0860
– start-page: 1
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0995
  article-title: “ConvTimeNet: A pre-trained deep convolutional neural network for time series classification”
  publication-title: 2019 International Joint Conference on Neural Networks (IJCNN)
– volume: 7
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1090
  article-title: Domain adaptive motor fault diagnosis using deep transfer learning
  publication-title: IEEE Access
– volume: 187
  year: 2020
  ident: 10.1016/j.measurement.2020.107929_b0835
  article-title: Deep learning fault diagnosis method based on global optimization GAN for unbalanced data
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2019.07.008
– volume: 122
  start-page: 692
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1055
  article-title: An intelligent fault diagnosis approach based on transfer learning from laboratory bearings to locomotive bearings
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.12.051
– volume: 31
  start-page: 433
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2020.107929_b1200
  article-title: Intelligent rotating machinery fault diagnosis based on deep learning using data augmentation
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-018-1456-1
– volume: 65
  start-page: 3539
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0415
  article-title: Scalable and unsupervised feature engineering using vibration-imaging and deep learning for rotor system diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2752151
– ident: 10.1016/j.measurement.2020.107929_b1110
– volume: 2015
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0600
  article-title: Gearbox fault identification and classification with convolutional neural networks
  publication-title: Shock Vib.
– ident: 10.1016/j.measurement.2020.107929_b0805
  doi: 10.1088/1361-6501/ab3072
– ident: 10.1016/j.measurement.2020.107929_b0155
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1210
  article-title: “Deep convolutional variational autoencoder as a 2D-visualization tool for partial discharge source classification in hydrogenerators”
  publication-title: IEEE Access
– year: 2012
  ident: 10.1016/j.measurement.2020.107929_b0375
– volume: 64
  start-page: 2296
  issue: 3
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b1040
  article-title: Deep model based domain adaptation for fault diagnosis
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2627020
– ident: 10.1016/j.measurement.2020.107929_b1010
  doi: 10.1007/s00521-019-04097-w
– volume: 77
  start-page: 167
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0915
  article-title: Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.04.005
– volume: 66
  start-page: 679
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0190
  article-title: Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.04.039
– volume: 68
  start-page: 720
  issue: 2
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0040
  article-title: A comprehensive survey of prognostics and health management based on deep learning for autonomous ships
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2019.2907402
– ident: 10.1016/j.measurement.2020.107929_b0095
– volume: PP
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0825
  article-title: Generalization of deep neural networks for imbalanced fault classification of machinery using generative adversarial networks
  publication-title: IEEE Access
– volume: 294
  start-page: 61
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0630
  article-title: ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.014
– ident: 10.1016/j.measurement.2020.107929_b0810
– ident: 10.1016/j.measurement.2020.107929_b0925
– volume: 115
  start-page: 213
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0030
  article-title: Deep learning and its applications to machine health monitoring
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.05.050
– volume: 63
  start-page: 3271
  issue: 5
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0025
  article-title: Hidden Markov models for the prediction of impending faults
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2535111
– ident: 10.1016/j.measurement.2020.107929_b0845
– volume: 48
  start-page: 11
  issue: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0285
  article-title: Using deep learning-based approach to predict remaining useful life of rotating components
  publication-title: IEEE Trans. NEURAL NETWORKS Learn. Syst.
– volume: 72
  start-page: 2
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0020
  article-title: Particle filter-based prognostics: Review, discussion and perspectives
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2015.11.008
– ident: 10.1016/j.measurement.2020.107929_b0060
– volume: 48
  start-page: 1
  issue: February
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0405
  article-title: Signal fusion-based deep fast random forest method for machine health assessment
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.05.004
– ident: 10.1016/j.measurement.2020.107929_b0325
  doi: 10.36001/phme.2016.v3i1.1577
– ident: 10.1016/j.measurement.2020.107929_b0475
  doi: 10.1016/j.compind.2018.04.002
– volume: 361
  start-page: 19
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0445
  article-title: A deep belief network based health indicator construction and remaining useful life prediction using improved particle filter
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.075
– ident: 10.1016/j.measurement.2020.107929_b1175
  doi: 10.1109/CCBD.2016.029
– ident: 10.1016/j.measurement.2020.107929_b0420
  doi: 10.1109/TIE.2018.2856205
– ident: 10.1016/j.measurement.2020.107929_b0940
  doi: 10.1016/j.ress.2018.11.027
– volume: 32
  start-page: 139
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0715
  article-title: Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification
  publication-title: Adv. Eng. Informatics
  doi: 10.1016/j.aei.2017.02.005
– volume: 67
  start-page: 1679
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0935
  article-title: Early fault detection approach with deep architectures
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2018.2800978
– volume: 67
  start-page: 185
  issue: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0525
  article-title: Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2759418
– volume: 87
  start-page: 235
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0570
  article-title: A multi-step progressive fault diagnosis method for rolling element bearing based on energy entropy theory and hybrid ensemble auto-encoder
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2018.11.044
– volume: 8
  start-page: 1584
  issue: 9
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0650
  article-title: End-To-end convolutional neural network model for gear fault diagnosis based on sound signals
  publication-title: Appl. Sci.
  doi: 10.3390/app8091584
– volume: 335
  start-page: 327
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0045
  article-title: A survey on Deep Learning based bearing fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.078
– volume: 29
  issue: 12
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0425
  article-title: A novel deep fuzzy clustering neural network model and its application in rolling bearing fault recognition
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aae27a
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1105
  article-title: Transfer learning with convolutional neural networks for small sample size problem in machinery fault diagnosis
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
  doi: 10.1177/0954406219840381
– ident: 10.1016/j.measurement.2020.107929_b0085
  doi: 10.1016/j.neucom.2015.09.116
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0265
  article-title: A novel method for intelligent fault diagnosis of rolling bearings using ensemble deep auto-encoders
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.09.026
– ident: 10.1016/j.measurement.2020.107929_b0330
– volume: 76
  start-page: 170
  issue: 8
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0560
  article-title: An automatic and robust features learning method for rotating machinery fault diagnosis based on contractive autoencoder
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.09.010
– volume: 17
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0890
  article-title: Learning to monitor machine health with convolutional Bi-directional LSTM networks
  publication-title: Sensors
  doi: 10.3390/s17020273
– ident: 10.1016/j.measurement.2020.107929_b0980
  doi: 10.1109/CSCWD.2019.8791884
– ident: 10.1016/j.measurement.2020.107929_b1060
– volume: 65
  start-page: 5990
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0710
  article-title: A new convolutional neural network-based data-driven fault diagnosis method
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2774777
– volume: 117
  start-page: 170
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0740
  article-title: An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.07.048
– year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0240
– volume: 168
  start-page: 119
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0465
  article-title: Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.008
– ident: 10.1016/j.measurement.2020.107929_b0850
– volume: 165
  start-page: 474
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0865
  article-title: A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.12.019
– ident: 10.1016/j.measurement.2020.107929_b0145
– volume: 292
  start-page: 142
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0605
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
– ident: 10.1016/j.measurement.2020.107929_b1125
  doi: 10.1109/TSMC.2017.2754287
– volume: 312
  start-page: 135
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0960
  article-title: Deep visual domain adaptation : A survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.083
– year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0660
  article-title: Deep residual learning-based fault diagnosis method for rotating machinery
  publication-title: ISA Trans.
– year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0545
  article-title: Deep fault recognizer : an integrated model to denoise and extract features for fault diagnosis in rotating machinery
  publication-title: Appl. Sci.
– volume: 275
  start-page: 167
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0765
  article-title: Remaining useful life estimation of engineered systems using vanilla LSTM neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.063
– ident: 10.1016/j.measurement.2020.107929_b0485
  doi: 10.1155/2017/3583610
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0370
  article-title: VOSviewer manual
  publication-title: Leiden: Univeristeit Leiden
– volume: 32
  start-page: 2473
  issue: 6
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0220
  article-title: Anomaly detection of tripod shafts using modified Mahalanobis distance
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-018-0504-2
– volume: 130
  start-page: 448
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0495
  article-title: An enhancement denoising autoencoder for rolling bearing fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.08.010
– ident: 10.1016/j.measurement.2020.107929_b0355
  doi: 10.36001/phmconf.2015.v7i1.2571
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1115
  article-title: Deep learning-based machinery fault diagnostics with domain adaptation across sensors at different places
  publication-title: IEEE Trans. Ind. Electron.
– ident: 10.1016/j.measurement.2020.107929_b1145
– ident: 10.1016/j.measurement.2020.107929_b0965
  doi: 10.1109/CVPR.2009.5206848
– volume: 146
  start-page: 305
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1075
  article-title: A sparse stacked denoising autoencoder with optimized transfer learning applied to the fault diagnosis of rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.06.029
– volume: no
  start-page: 1
  year: 2007
  ident: 10.1016/j.measurement.2020.107929_b0070
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 131
  start-page: 243
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0585
  article-title: Fault diagnosis of planetary gearbox using a novel semi-supervised method of multiple association layers networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.049
– volume: 20
  start-page: 2878
  issue: 8
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0610
  article-title: Deep convolutional neural networks for Bearings failure prediction and temperature correlation
  publication-title: J. Vibroengineering
  doi: 10.21595/jve.2018.19637
– volume: 323
  start-page: 148
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0790
  article-title: Bidirectional handshaking LSTM for remaining useful life prediction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.076
– year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1095
  article-title: Deep transfer network with joint distribution adaptation: a new intelligent fault diagnosis framework for industry application
  publication-title: ISA Trans.
– volume: 29
  start-page: pp
  issue: 5
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0515
  article-title: An integrated multi-sensor fusion-based deep feature learning approach for rotating machinery diagnosis
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/aaaca6
– volume: 95
  start-page: 187
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0490
  article-title: A novel deep autoencoder feature learning method for rotating machinery fault diagnosis
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.03.034
– ident: 10.1016/j.measurement.2020.107929_b1170
– ident: 10.1016/j.measurement.2020.107929_b0990
– year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0120
– ident: 10.1016/j.measurement.2020.107929_b0180
  doi: 10.1016/j.sigpro.2013.04.015
– volume: 40
  start-page: 6788
  issue: 17
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0275
  article-title: A classifier fusion system for bearing fault diagnosis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.06.033
– start-page: 1
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b1140
  article-title: In-datacenter performance analysis of a tensor processing unit
– volume: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0510
  article-title: Deep learning with emerging new labels for fault diagnosis
  publication-title: IEEE Access
– ident: 10.1016/j.measurement.2020.107929_b0950
– volume: 233–234
  start-page: 930
  issue: October
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0555
  article-title: Intelligent simultaneous fault diagnosis for solid oxide fuel cell system based on deep learning
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.113
– volume: 38
  start-page: 165
  issue: 1
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0185
  article-title: Recent advances in time–frequency analysis methods for machinery fault diagnosis: A review with application examples
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2013.01.017
– ident: 10.1016/j.measurement.2020.107929_b1150
  doi: 10.1007/s11831-018-09312-w
– volume: 127
  start-page: 246
  issue: February
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0665
  article-title: Multi-level wavelet packet fusion in dynamic ensemble convolutional neural network for fault diagnosis
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.05.098
– year: 2020
  ident: 10.1016/j.measurement.2020.107929_b0055
– volume: 14
  start-page: 4665
  issue: 10
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b1195
  article-title: Deep learning for smart industry: Efficient manufacture inspection system with fog computing
  publication-title: IEEE Trans. Ind. Informatics
  doi: 10.1109/TII.2018.2842821
– ident: 10.1016/j.measurement.2020.107929_b0065
  doi: 10.1007/978-0-387-30164-8_83
– ident: 10.1016/j.measurement.2020.107929_b1070
  doi: 10.1109/CAC.2018.8623346
– volume: 240
  start-page: 98
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0745
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 48
  start-page: 78
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0780
  article-title: Long short-term memory for machine remaining life prediction
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2018.05.011
– volume: 91
  start-page: 140
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0205
  article-title: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.05.059
– volume: 22
  start-page: 1089
  issue: 7
  year: 2009
  ident: 10.1016/j.measurement.2020.107929_b0245
  article-title: Dynamic scheduling of maintenance tasks in the petroleum industry: A reinforcement approach
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.01.014
– volume: 100
  start-page: 743
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0880
  article-title: Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.08.002
– ident: 10.1016/j.measurement.2020.107929_b1025
– volume: 238
  start-page: 13
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0435
  article-title: Deep quantum inspired neural network with application to aircraft fuel system fault diagnosis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.032
– volume: Syst
  start-page: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0615
  article-title: A generic intelligent bearing fault diagnosis system using compact adaptive 1D CNN classifier
  publication-title: J Signal Process.
– volume: 10
  start-page: 851
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0480
  article-title: Deep Boltzmann machine based condition prediction for smart manufacturing
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-018-0794-3
– ident: 10.1016/j.measurement.2020.107929_b0735
– volume: 106
  start-page: 85
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0840
  article-title: Generative adversarial networks for data augmentation in machine fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.001
– volume: 76–77
  start-page: 283
  year: 2016
  ident: 10.1016/j.measurement.2020.107929_b0470
  article-title: Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.02.007
– ident: 10.1016/j.measurement.2020.107929_b0075
  doi: 10.1080/02564602.2014.987328
– volume: 62
  start-page: 1781
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2020.107929_b0230
  article-title: Extended Kalman filtering for remaining-useful-life estimation of bearings
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2014.2336616
– ident: 10.1016/j.measurement.2020.107929_b0305
– volume: 18
  start-page: pp
  issue: 9
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0900
  article-title: A time-distributed spatiotemporal feature learning method for machine health monitoring with multi-sensor time series
  publication-title: Sensors
  doi: 10.3390/s18092932
– volume: 13
  start-page: 137
  issue: 2
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b1180
  article-title: Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives
  publication-title: Front. Mech. Eng.
  doi: 10.1007/s11465-018-0499-5
– ident: 10.1016/j.measurement.2020.107929_b0170
– ident: 10.1016/j.measurement.2020.107929_b0725
  doi: 10.1109/CVPR.2015.7298594
– volume: 8
  start-page: 1102
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0675
  article-title: A novel image feature for the remaining useful lifetime prediction of bearings based on continuous wavelet transform and convolutional neural network
  publication-title: Appl. Sci.
  doi: 10.3390/app8071102
– ident: 10.1016/j.measurement.2020.107929_b0340
– volume: 7
  start-page: 70643
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0830
  article-title: Generative adversarial networks selection approach for extremely imbalanced fault diagnosis of reciprocating machinery
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2917604
– volume: 107
  start-page: 241
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0035
  article-title: A review on the application of deep learning in system health management
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.11.024
– volume: 240
  start-page: 561
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0215
  article-title: An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.025
– ident: 10.1016/j.measurement.2020.107929_b0350
  doi: 10.1109/AERO.2008.4526631
– volume: 8
  start-page: pp
  issue: 5
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0430
  article-title: Fisher discriminative sparse representation based on DBN for fault diagnosis of complex system
  publication-title: Appl. Sci.
  doi: 10.3390/app8050795
– volume: 41
  start-page: 4113
  issue: 9
  year: 2014
  ident: 10.1016/j.measurement.2020.107929_b0390
  article-title: An approach to fault diagnosis of reciprocating compressor valves using Teager – Kaiser energy operator and deep belief networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.026
– ident: 10.1016/j.measurement.2020.107929_b0690
  doi: 10.1016/j.ress.2018.11.011
– volume: 23
  start-page: 89
  issue: 1
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0500
  article-title: Wind turbine fault detection using a denoising autoencoder with temporal information
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2017.2759301
– volume: 157
  start-page: 180
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1085
  article-title: Multi-Layer domain adaptation method for rolling bearing fault diagnosis
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2018.12.005
– volume: 20
  start-page: 143
  year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0210
  article-title: Anomaly detection in earth dam and levee passive seismic data using support vector machines and automatic feature selection
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2016.11.016
– volume: 45
  start-page: 2626
  issue: 12
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0315
  article-title: A new multivariate approach for prognostics based on extreme learning machine and fuzzy clustering
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2378056
– volume: 6
  start-page: 13041
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0700
  article-title: Prediction of bearing remaining useful life with deep convolution neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2804930
– volume: 108
  start-page: 62
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b0530
  article-title: A selective deep stacked denoising autoencoders ensemble with negative correlation learning for gearbox fault diagnosis
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.02.015
– volume: 6
  start-page: 63584
  year: 2018
  ident: 10.1016/j.measurement.2020.107929_b0455
  article-title: An end-to-end model based on improved adaptive deep belief network and its application to bearing fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2877447
– volume: 76
  start-page: 452
  issue: 6–7
  year: 2006
  ident: 10.1016/j.measurement.2020.107929_b0255
  article-title: Optimum maintenance policy with Markov processes
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2005.09.010
– ident: 10.1016/j.measurement.2020.107929_b0175
– year: 2017
  ident: 10.1016/j.measurement.2020.107929_b0645
  article-title: An adaptive multi-sensor data fusion method based on deep convolutional neural networks for
  publication-title: Sensors
– ident: 10.1016/j.measurement.2020.107929_b0135
  doi: 10.3115/v1/D14-1181
– volume: 30
  start-page: 7006
  issue: 12
  year: 2015
  ident: 10.1016/j.measurement.2020.107929_b0015
  article-title: Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach
  publication-title: IEEE Trans. Power Electron.
  doi: 10.1109/TPEL.2015.2393373
– volume: 45
  start-page: 939
  issue: 9
  year: 2013
  ident: 10.1016/j.measurement.2020.107929_b0295
  article-title: Condition monitoring and remaining useful life prediction using degradation signals: Revisited
  publication-title: IiE Trans.
  doi: 10.1080/0740817X.2012.706376
– volume: 7
  start-page: 42373
  year: 2019
  ident: 10.1016/j.measurement.2020.107929_b1015
  article-title: A deep learning method for bearing fault diagnosis based on time-frequency image
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2907131
SSID ssj0006396
Score 2.6316843
Snippet •The state-of-the-art deep models in PHM applications have been overviewed.•The models are classified into generative, discriminative and hybrid...
Improving the reliability of engineered systems is a crucial problem in many applications in various engineering fields, such as aerospace, nuclear energy, and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107929
SubjectTerms Acoustic emission
Acoustics
Aerospace engineering
Anomalies
Anomaly detection
Artificial neural networks
Condition monitoring
Declination
Deep learning
Domain adaptation
Fault diagnosis
Machine learning
Neural networks
Nuclear energy
Nuclear engineering
Nuclear reactors
Prognostics and health management
Reliability engineering
Signal monitoring
State-of-the-art reviews
Systems health monitoring
Vibration
Vibration monitoring
Title Deep learning for prognostics and health management: State of the art, challenges, and opportunities
URI https://dx.doi.org/10.1016/j.measurement.2020.107929
https://www.proquest.com/docview/2455574564
Volume 163
WOSCitedRecordID wos000575775400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbKBggeEAwQg4GMxONStY4dx4iXAUOAYEIwpPIUOf4hNo20Wrtp8L_wv3K248QdmihIvERV2nPd3pfz59N3Z4SeMFjTeV3QTBjKM1ivTVaPJcuYsIUtzUhR5Vvmv-N7e-VkIj4MBj9jLczpEW-a8uxMzP6rq-EeONuVzv6Fu7tB4Qa8BqfDFdwO15Uc_9KYWTwMIogknQarmfYNmUPtYytcjdlBzzqjYkCGQh4VT1qZR5HndOb4-knj-7CmxPZ9n2v0WYakI0Wvz4yJx_TDvuTQtf9MFQEfzQ9pALgwyvdahmL45-arayfbpa8_xVT3l4M0dQH7VKcEYUmEI0WeOQ6xFI7bgBcCKuxORUiJ_BbrQ9rhcPitn_PQfcuwt1nur31u3evUiFHodlglQ1VuqCoMdQmtE84ExP31nTe7k7fdUg_0rghJvPA7rqLHvYDwgnldRIDOUQHPb_ZvohvtxgTvBEDdQgPTbKDrSbvKDXTFy4XV_DbSDmQ4ggwDyHACMgxIwQFkuAfZU-whhqcWAyIwQGwb9wDb9kZL8LqDPr_a3X_xOmvP68hUTsUik7zOOQO-U9bcCD3S1Oa6GCmmKIddhrVE1LmFdwUxlHAt-FioUuajmlihcpPfRWvNtDH3EC61LgwZS6ukpJpbKYU2xHKhmWZjIzdRGf_ESrXN7N2ZKkfVH525iUhnOgsdXVYxehY9VbXUNFDOCtC4ivlW9G7VPn_zilDGGHftnO7_y5QeoGv9M7WF1hbHJ-YhuqxOFwfz40ctUn8B4afGfQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+for+prognostics+and+health+management%3A+State+of+the+art%2C+challenges%2C+and+opportunities&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Rezaeianjouybari%2C+Behnoush&rft.au=Shang%2C+Yi&rft.date=2020-10-15&rft.issn=0263-2241&rft.volume=163&rft.spage=107929&rft_id=info:doi/10.1016%2Fj.measurement.2020.107929&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2020_107929
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon