Fast Markov Clustering Algorithm Based on Belief Dynamics

Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 53; číslo 6; s. 3716 - 3725
Hlavní autoři: Li, Huijia, Xu, Wenzhe, Qiu, Chenyang, Pei, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches <inline-formula> <tex-math notation="LaTeX">O(TN) </tex-math></inline-formula> in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2022.3141598