Fast Markov Clustering Algorithm Based on Belief Dynamics

Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 53; číslo 6; s. 3716 - 3725
Hlavní autoři: Li, Huijia, Xu, Wenzhe, Qiu, Chenyang, Pei, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches <inline-formula> <tex-math notation="LaTeX">O(TN) </tex-math></inline-formula> in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
AbstractList Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches <inline-formula> <tex-math notation="LaTeX">O(TN) </tex-math></inline-formula> in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches O(TN) in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches O(TN) in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes’ normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches [Formula Omitted] in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration accurately and efficiently, we propose a new Markov clustering algorithm based on the limit state of the belief dynamics model. First, we present a new belief dynamics model, which focuses beliefs of multicontent and randomly broadcasting information. A strict proof is provided for the convergence of nodes' normalized beliefs in complex networks. Second, we introduce a new Markov clustering algorithm (denoted as BMCL) by employing a belief dynamics model, which guarantees the ideal cluster configuration. Following the trajectory of the belief convergence, each node is mapped into the corresponding cluster repeatedly. The proposed BMCL algorithm is highly efficient: the convergence speed of the proposed algorithm researches O(TN) in sparse networks. Last, we implement several experiments to evaluate the performance of the proposed methods.
Author Xu, Wenzhe
Qiu, Chenyang
Li, Huijia
Pei, Jian
Author_xml – sequence: 1
  givenname: Huijia
  orcidid: 0000-0001-7969-548X
  surname: Li
  fullname: Li, Huijia
  email: lihuijia0808@gmail.com
  organization: School of Science, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 2
  givenname: Wenzhe
  surname: Xu
  fullname: Xu, Wenzhe
  organization: School of Science, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 3
  givenname: Chenyang
  orcidid: 0000-0003-2332-8386
  surname: Qiu
  fullname: Qiu, Chenyang
  organization: School of Science, Beijing University of Posts and Telecommunications, Beijing, China
– sequence: 4
  givenname: Jian
  surname: Pei
  fullname: Pei, Jian
  organization: Jiangsu Provincial Key Laboratory of E-Business, Nanjing University of Finance and Economics, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35077385$$D View this record in MEDLINE/PubMed
BookMark eNp9kLtOwzAUhi0EotweACGhSCwsLb7Ut7ENFJBALDAwWSY5KYYkLnaC1LfHVUsHBrz4l_X9PkffIdptfQsInRI8IgTrq-f8dTqimNIRI2PCtdpBB5QINaRU8t1tFnKATmL8wOmo9KTVPhowjqVkih8gPbOxyx5t-PTfWV73sYPg2nk2qec-uO69yaY2Qpn5NptC7aDKrpetbVwRj9FeZesIJ5v7CL3Mbp7zu-HD0-19PnkYFmysu6EVRGCtQEtG7ZsSFAtWynElbVWCZAxKS5UuOU2pLCRwyzEpKSu0lBgn4ghdrv9dBP_VQ-xM42IBdW1b8H00VFCqBcGcJPTiD_rh-9Cm7QxVZMw51Vwl6nxD9W8NlGYRXGPD0vxKSQBZA0XwMQaotgjBZuXerNyblXuzcZ868k-ncJ3tnG-7YF39b_Ns3XQAsJ2khWaMcfYDsxuNpQ
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCSS_2024_3401218
crossref_primary_10_1109_TKDE_2023_3323567
crossref_primary_10_1109_TNSE_2024_3388994
crossref_primary_10_1057_s41599_022_01487_9
crossref_primary_10_1016_j_chaos_2023_114046
crossref_primary_10_1109_TCYB_2025_3536087
crossref_primary_10_1016_j_physleta_2023_129063
crossref_primary_10_1057_s41599_022_01278_2
crossref_primary_10_1109_TNSE_2023_3293233
crossref_primary_10_3389_fphar_2025_1541509
crossref_primary_10_3389_fphy_2023_1201983
crossref_primary_10_1109_TKDE_2023_3274547
crossref_primary_10_1145_3597436
crossref_primary_10_1016_j_physa_2023_129070
crossref_primary_10_3390_s24248026
crossref_primary_10_1080_02564602_2023_2258490
crossref_primary_10_1002_dac_5501
crossref_primary_10_1016_j_apm_2023_05_034
crossref_primary_10_1109_TCSS_2023_3324558
crossref_primary_10_1209_0295_5075_ace3ee
crossref_primary_10_1016_j_apr_2023_101883
crossref_primary_10_1109_TETC_2023_3315335
crossref_primary_10_1016_j_eswa_2023_121246
crossref_primary_10_1016_j_eswa_2025_128396
crossref_primary_10_1109_TCSII_2023_3319977
crossref_primary_10_1016_j_knosys_2023_111166
crossref_primary_10_1109_TBDATA_2023_3346715
Cites_doi 10.1103/PhysRevE.69.066133
10.1103/PhysRevLett.110.148701
10.1103/PhysRevLett.100.258701
10.1109/TKDE.2019.2958806
10.1109/TCYB.2018.2871673
10.1145/347057.347412
10.1007/s10732-008-9080-4
10.1109/TKDE.2021.3104155
10.1073/pnas.0400054101
10.1016/j.physa.2010.01.042
10.1103/PhysRevE.84.046102
10.1109/ICNC.2014.6975883
10.1016/j.physa.2013.07.021
10.1088/1742-5468/2008/10/P10008
10.1145/3341161.3342890
10.1609/aaai.v29i1.9201
10.1103/PhysRevE.76.036106
10.1103/PhysRevE.69.026113
10.1073/pnas.0406024101
10.1016/j.physa.2012.03.021
10.1073/pnas.122653799
10.1103/PhysRevE.83.016107
10.1109/TEVC.2011.2161090
10.1609/aaai.v33i01.3301152
10.1109/TKDE.2010.233
10.1145/3269206.3271697
10.1103/PhysRevE.78.046110
10.1103/PhysRevE.90.012811
10.1109/TKDE.2019.2937298
10.1109/TCYB.2014.2377154
10.1145/1854776.1854812
10.1016/j.physa.2006.07.023
10.1126/science.1073374
10.1103/PhysRevE.70.066111
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TCYB.2022.3141598
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Aerospace Database
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 3725
ExternalDocumentID 35077385
10_1109_TCYB_2022_3141598
9693335
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 71871233
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities of China
  grantid: 2020XD-A01-2
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7SC
7SP
7TB
8FD
F28
FR3
H8D
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c349t-a616098e9732ab862063d74f7afde733eda289d523eddc7e5a501d23c97700e73
IEDL.DBID RIE
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000750273100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 16:10:31 EDT 2025
Sun Nov 30 03:49:13 EST 2025
Thu Jan 02 22:51:30 EST 2025
Sat Nov 29 02:02:36 EST 2025
Tue Nov 18 21:35:26 EST 2025
Wed Aug 27 02:50:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a616098e9732ab862063d74f7afde733eda289d523eddc7e5a501d23c97700e73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7969-548X
0000-0003-2332-8386
PMID 35077385
PQID 2814552958
PQPubID 85422
PageCount 10
ParticipantIDs proquest_miscellaneous_2622961051
crossref_primary_10_1109_TCYB_2022_3141598
proquest_journals_2814552958
ieee_primary_9693335
crossref_citationtrail_10_1109_TCYB_2022_3141598
pubmed_primary_35077385
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
bishop (ref23) 2006; 128
ref12
ref34
ref15
ref37
ref36
van dongen (ref14) 2000
ref31
ref30
ref11
ref33
ref10
ref32
girvan (ref2) 2002; 99
reddy (ref5) 2002
ref1
ref17
ref16
ref38
ref19
ref18
pinto (ref13) 2016
ref24
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
References_xml – ident: ref7
  doi: 10.1103/PhysRevE.69.066133
– ident: ref8
  doi: 10.1103/PhysRevLett.110.148701
– ident: ref11
  doi: 10.1103/PhysRevLett.100.258701
– ident: ref10
  doi: 10.1109/TKDE.2019.2958806
– ident: ref31
  doi: 10.1109/TCYB.2018.2871673
– ident: ref4
  doi: 10.1145/347057.347412
– ident: ref38
  doi: 10.1007/s10732-008-9080-4
– ident: ref3
  doi: 10.1109/TKDE.2021.3104155
– ident: ref24
  doi: 10.1073/pnas.0400054101
– ident: ref19
  doi: 10.1016/j.physa.2010.01.042
– ident: ref21
  doi: 10.1103/PhysRevE.84.046102
– ident: ref32
  doi: 10.1109/ICNC.2014.6975883
– ident: ref30
  doi: 10.1016/j.physa.2013.07.021
– ident: ref12
  doi: 10.1088/1742-5468/2008/10/P10008
– ident: ref33
  doi: 10.1145/3341161.3342890
– ident: ref36
  doi: 10.1609/aaai.v29i1.9201
– year: 2016
  ident: ref13
  article-title: Information diffusion and opinion dynamics in social networks
– ident: ref18
  doi: 10.1103/PhysRevE.76.036106
– ident: ref25
  doi: 10.1103/PhysRevE.69.026113
– ident: ref1
  doi: 10.1073/pnas.0406024101
– ident: ref29
  doi: 10.1016/j.physa.2012.03.021
– year: 2000
  ident: ref14
  article-title: Graph clustering by flow simulation
– volume: 99
  start-page: 7821
  year: 2002
  ident: ref2
  article-title: Community structure in social and biological networks
  publication-title: Proc Nat Acad Sci United States Amer
  doi: 10.1073/pnas.122653799
– volume: 128
  year: 2006
  ident: ref23
  article-title: Pattern recognition
  publication-title: Machine Learning
– ident: ref28
  doi: 10.1103/PhysRevE.83.016107
– ident: ref27
  doi: 10.1109/TEVC.2011.2161090
– ident: ref15
  doi: 10.1609/aaai.v33i01.3301152
– start-page: 188
  year: 2002
  ident: ref5
  article-title: A graph based approach to extract a neighborhood customer community for collaborative filtering
  publication-title: Proc 2nd Int Workshop Databases Netw Inf Syst (DNIS)
– ident: ref22
  doi: 10.1109/TKDE.2010.233
– ident: ref34
  doi: 10.1145/3269206.3271697
– ident: ref26
  doi: 10.1103/PhysRevE.78.046110
– ident: ref35
  doi: 10.1103/PhysRevE.90.012811
– ident: ref37
  doi: 10.1109/TKDE.2019.2937298
– ident: ref16
  doi: 10.1109/TCYB.2014.2377154
– ident: ref17
  doi: 10.1145/1854776.1854812
– ident: ref20
  doi: 10.1016/j.physa.2006.07.023
– ident: ref6
  doi: 10.1126/science.1073374
– ident: ref9
  doi: 10.1103/PhysRevE.70.066111
SSID ssj0000816898
Score 2.5283496
Snippet Graph clustering is one of the most significant, challenging, and valuable topic in the analysis of real complex networks. To detect the cluster configuration...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3716
SubjectTerms Algorithms
Belief dynamics
Broadcasting
Clustering
Clustering algorithms
complex networks
Computational complexity
Configurations
Convergence
Dynamics
Heuristic algorithms
large-scale networks
Limit states
Markov clustering algorithm
Markov processes
Networks
Trajectory
Title Fast Markov Clustering Algorithm Based on Belief Dynamics
URI https://ieeexplore.ieee.org/document/9693335
https://www.ncbi.nlm.nih.gov/pubmed/35077385
https://www.proquest.com/docview/2814552958
https://www.proquest.com/docview/2622961051
Volume 53
WOSCitedRecordID wos000750273100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPHjx_VhfRPCgYt007TbN0V1dPIkHhfVU0iSrwtrKtuvvd5JmC4IK3gJN2pKZZObL4_sATmOuhI4VC6ihOoi1yQMZ50kQh3mKc6awpFVObILf36ejkXhYgMv2Lowxxh0-M1e26PbydalmdqmsKxKE31FvERY5581drXY9xQlIOOlbhoUAswruNzFDKrqPg-c-gkHGEKNiyBJWpi_CVMhyuXyLSE5i5fds00Wd4dr__ncdVn12Sa4bd9iABVNswoYfvxU58yTT51sghrKqib2pU36SwWRm-RIwipHryUs5fatf30kf45smZUH6BvPUMblptOurbXga3j4O7gIvoxCoKBZ1IJMwoSI1lpdH5ohgMCvRPB5zOdaGR5HRElGXRkRqtFbc9GSPhppFClNDSrHGDiwVZWH2gHDMH9C4YagTigbWudJjBHE5QlqtmJIdoPOuzJTnGLdSF5PMYQ0qMmuIzBoi84bowEXb5KMh2Pir8pbt5bai7-AOHM7tlfkhWGUstRzsTPSw1Un7GAeP3RGRhSlnWCdhDN0RJ6YO7DZ2bt89d4_9n795ACtWeb45NXYIS_V0Zo5gWX3Wb9X0GD10lB47D_0CxXvcVg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bT9swFD7iMgleNhgMyrh4Eg8MkdVxnKR-pIUKNKh4KBJ7ihzb3ZBKMjUpv59jx42EBJP2Zil2Evkc-5zPl-8DOOapEporFlBDdcC1yQPJ8yTgYd7DOVNY0ionNpGORr2HB3G3BGftXRhjjDt8Zn7YotvL16Wa26WyrkgQfkfxMqzGnLOwua3Vrqg4CQknfsuwEGBekfptzJCK7njwq49wkDFEqRi0hBXqizAZsmwur2KSE1l5P990cWf46f_-eAM--vySnDcOsQlLpvgMm34EV-TE00x_3wIxlFVN7F2d8pkMpnPLmIBxjJxPf5ezx_rPE-ljhNOkLEjfYKY6IReNen21DffDy_HgKvBCCoGKuKgDmYQJFT1jmXlkjhgG8xKd8kkqJ9qkUWS0RNylEZMarVVqYhnTULNIYXJIKdb4AitFWZhdIClmEGjeMNQJRRPrXOkJwrgcQa1WTMkO0EVXZsqzjFuxi2nm0AYVmTVEZg2ReUN04LRt8reh2PhX5S3by21F38Ed2F_YK_ODsMpYz7KwMxFjq2_tYxw-dk9EFqacY52EMXRInJo6sNPYuX33wj323v7mEaxdjW9vspvr0c-vsG516JszZPuwUs_m5gA-qOf6sZodOj99ATUx3rU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Markov+Clustering+Algorithm+Based+on+Belief+Dynamics&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Li%2C+Huijia&rft.au=Xu%2C+Wenzhe&rft.au=Qiu%2C+Chenyang&rft.au=Pei%2C+Jian&rft.date=2023-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2168-2267&rft.eissn=2168-2275&rft.volume=53&rft.issue=6&rft.spage=3716&rft_id=info:doi/10.1109%2FTCYB.2022.3141598&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon