Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports
Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of biomedical and health informatics Jg. 24; H. 1; S. 57 - 68 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential highpriority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating highand low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts. |
|---|---|
| AbstractList | Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts. Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential highpriority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating highand low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts. Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts. |
| Author | Chen, Cheng-Bang Kumara, Soundar Liu, Ning |
| Author_xml | – sequence: 1 givenname: Ning orcidid: 0000-0001-8670-9878 surname: Liu fullname: Liu, Ning email: nul147@psu.edu organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA – sequence: 2 givenname: Cheng-Bang orcidid: 0000-0003-0025-6447 surname: Chen fullname: Chen, Cheng-Bang email: czc184@psu.edu organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA – sequence: 3 givenname: Soundar orcidid: 0000-0002-7941-8818 surname: Kumara fullname: Kumara, Soundar email: skumara@psu.edu organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31395567$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtv1DAUhS1URB_0ByAkZIlNNxn8SPxYDqUwg0YC0bKOHOcm4yqJp7Yz0vx7Es20iy7wwr7y_c61dc4lOhv8AAh9oGRBKdFffn5drReMUL1gmjOZkzfoglGhMsaIOnuuqc7P0XWMj2RaarrS4h0655TrohDyAo330LvsftxB2LsINd6ACYMbWrzsWh9c2va48QGvaxiSaw5zZ-XabfY7uLl9wN_C2GbzhtdDgmBscn6I-GEb_Nhu8bLeQ4iA7_bTAPwHdj6k-B69bUwX4fp0XqG_3-8eblfZ5teP9e1yk1me65QZ1nBFLGiqteDSGFkXsqhEZa0iPAcCta1prWwlrKgkrSpqheTaKFVIZYFfoZvj3F3wTyPEVPYuWug6M4AfY8mYJIQKkhcT-vkV-ujHMEy_KxnnXE4mczJRn07UWPVQl7vgehMO5bOhE0CPgA0-xgDNC0JJOedWzrmVc27lKbdJI19prEtmtjEF47r_Kj8elQ4AXl5SUgmWK_4PRX6lQg |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_1097_MD_0000000000029387 crossref_primary_10_1055_s_0041_1742218 crossref_primary_10_1093_jamia_ocaa034 crossref_primary_10_1038_s41598_025_93952_z crossref_primary_10_1109_JBHI_2020_3010946 crossref_primary_10_1007_s10462_022_10306_1 crossref_primary_10_3389_fphar_2025_1632775 crossref_primary_10_1016_j_jconrel_2022_12_029 crossref_primary_10_3389_frai_2022_863261 crossref_primary_10_1109_JBHI_2023_3246225 crossref_primary_10_1016_j_jmgm_2023_108557 crossref_primary_10_3390_app14083280 crossref_primary_10_1016_j_ailsci_2021_100005 crossref_primary_10_1016_j_urolonc_2023_11_019 crossref_primary_10_1038_s41540_022_00247_4 crossref_primary_10_1109_ACCESS_2024_3372188 crossref_primary_10_1109_JBHI_2024_3422673 crossref_primary_10_1038_s42256_024_00888_6 crossref_primary_10_1186_s13321_025_01093_2 crossref_primary_10_1109_JBHI_2020_3048059 crossref_primary_10_1016_j_jbi_2024_104621 crossref_primary_10_1016_j_csbj_2022_04_021 crossref_primary_10_1093_bib_bbab421 crossref_primary_10_1002_ardp_202200628 crossref_primary_10_1016_j_ymeth_2023_10_007 crossref_primary_10_1155_2022_7818480 crossref_primary_10_1016_j_rineng_2025_106002 crossref_primary_10_2196_26646 crossref_primary_10_1016_j_eswa_2021_116434 crossref_primary_10_1080_17512433_2024_2343875 crossref_primary_10_1109_JBHI_2023_3343911 |
| Cites_doi | 10.1197/jamia.M2808 10.1186/s12859-016-1415-9 10.1109/ICTAI.2004.48 10.21105/joss.00296 10.1016/j.artmed.2017.01.004 10.1145/2689746.2689747 10.1093/bib/bbx010 10.1186/s13321-017-0200-8 10.1016/j.jbi.2016.02.009 10.1142/S0218001407005703 10.1016/j.jbi.2015.04.006 10.1038/s41598-017-08079-7 10.1126/science.1127647 10.1136/amiajnl-2013-001813 10.1016/j.ijmedinf.2017.12.027 10.1007/s10115-013-0706-y 10.2200/S00196ED1V01Y200906AIM006 10.1186/s12859-017-1546-7 10.1109/TNN.2009.2015974 10.1371/journal.pone.0085071 10.1007/s40264-014-0262-8 10.1097/PTS.0b013e31821d6f6e 10.1103/PhysRevE.64.061907 10.1136/amiajnl-2011-000612 10.1186/1472-6947-13-65 10.2165/00002018-199920020-00002 10.1136/amiajnl-2013-002512 10.1186/2046-4053-3-56 10.1093/jamia/ocw114 10.1016/j.inffus.2017.12.007 10.1016/j.jbi.2015.11.005 10.1145/170036.170072 10.1136/amiajnl-2013-001612 10.1136/amiajnl-2011-000214 10.1002/pds.615 10.1016/j.patrec.2008.01.030 10.1145/279943.279962 10.1093/nar/gkx1037 10.1136/amiajnl-2012-001089 10.1136/bmjqs-2017-007531 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/JBHI.2019.2932740 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 68 |
| ExternalDocumentID | 31395567 10_1109_JBHI_2019_2932740 8786248 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Allen E. Pearce and Allen M. Pearce Professorship |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION 6IL ADZIZ CGR CHZPO CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c349t-a2f380ce9199637aa7d575b6bcc8034e0edcd1d8cb6c6b71bb1c6739a88578ce3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506642000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Sun Sep 28 06:17:47 EDT 2025 Sun Jun 29 14:27:21 EDT 2025 Thu Jan 02 22:58:53 EST 2025 Sat Nov 29 04:18:15 EST 2025 Tue Nov 18 22:27:45 EST 2025 Wed Aug 27 02:40:57 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c349t-a2f380ce9199637aa7d575b6bcc8034e0edcd1d8cb6c6b71bb1c6739a88578ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-8670-9878 0000-0002-7941-8818 0000-0003-0025-6447 |
| PMID | 31395567 |
| PQID | 2333729330 |
| PQPubID | 85417 |
| PageCount | 12 |
| ParticipantIDs | ieee_primary_8786248 pubmed_primary_31395567 proquest_journals_2333729330 proquest_miscellaneous_2270016045 crossref_primary_10_1109_JBHI_2019_2932740 crossref_citationtrail_10_1109_JBHI_2019_2932740 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan. 2020-1-00 2020-01-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Piscataway |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref52 ref11 ref10 (ref39) 0 ref17 ref16 ref19 ref18 abadi (ref50) 0 ref51 ref45 hinton (ref46) 2014; 15 ref44 ref43 kingma (ref48) 2014 ref8 ref7 friedman (ref41) 2001 ref9 vincent (ref14) 2010; 11 ref4 ref3 ref6 ref5 zhu (ref27) 2006 ref40 bottou (ref47) 0 ref35 ref34 ref37 ref36 ref31 ref30 asuncion (ref53) 2007 ref33 ref32 goodfellow (ref42) 2016 ref2 ref1 powers (ref49) 2011; 2 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 (ref38) 2018 bennett (ref29) 0 |
| References_xml | – start-page: 265 year: 0 ident: ref50 article-title: Tensorflow: A system for large-scale machine learning publication-title: Proc Symp Oper Syst Des Implementation – ident: ref9 doi: 10.1197/jamia.M2808 – volume: 15 start-page: 1929 year: 2014 ident: ref46 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: ref23 doi: 10.1186/s12859-016-1415-9 – year: 2001 ident: ref41 publication-title: The Elements of Statistical Learning – ident: ref33 doi: 10.1109/ICTAI.2004.48 – ident: ref51 doi: 10.21105/joss.00296 – ident: ref17 doi: 10.1016/j.artmed.2017.01.004 – ident: ref44 doi: 10.1145/2689746.2689747 – year: 2018 ident: ref38 article-title: Questions and answers on FDA's adverse event reporting system (FAERS) – ident: ref18 doi: 10.1093/bib/bbx010 – ident: ref25 doi: 10.1186/s13321-017-0200-8 – ident: ref21 doi: 10.1016/j.jbi.2016.02.009 – ident: ref15 doi: 10.1142/S0218001407005703 – ident: ref36 doi: 10.1016/j.jbi.2015.04.006 – ident: ref20 doi: 10.1038/s41598-017-08079-7 – ident: ref43 doi: 10.1126/science.1127647 – year: 0 ident: ref39 publication-title: RxNorm API – ident: ref8 doi: 10.1136/amiajnl-2013-001813 – ident: ref10 doi: 10.1016/j.ijmedinf.2017.12.027 – ident: ref28 doi: 10.1007/s10115-013-0706-y – ident: ref26 doi: 10.2200/S00196ED1V01Y200906AIM006 – ident: ref24 doi: 10.1186/s12859-017-1546-7 – ident: ref30 doi: 10.1109/TNN.2009.2015974 – ident: ref4 doi: 10.1371/journal.pone.0085071 – ident: ref6 doi: 10.1007/s40264-014-0262-8 – year: 2007 ident: ref53 article-title: UCI machine learning repository – ident: ref1 doi: 10.1097/PTS.0b013e31821d6f6e – ident: ref52 doi: 10.1103/PhysRevE.64.061907 – ident: ref11 doi: 10.1136/amiajnl-2011-000612 – ident: ref2 doi: 10.1186/1472-6947-13-65 – volume: 11 start-page: 3371 year: 2010 ident: ref14 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: ref35 doi: 10.2165/00002018-199920020-00002 – ident: ref22 doi: 10.1136/amiajnl-2013-002512 – ident: ref3 doi: 10.1186/2046-4053-3-56 – ident: ref5 doi: 10.1093/jamia/ocw114 – ident: ref45 doi: 10.1016/j.inffus.2017.12.007 – ident: ref19 doi: 10.1016/j.jbi.2015.11.005 – ident: ref40 doi: 10.1145/170036.170072 – ident: ref16 doi: 10.1136/amiajnl-2013-001612 – ident: ref13 doi: 10.1136/amiajnl-2011-000214 – volume: 2 start-page: 37 year: 2011 ident: ref49 article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation publication-title: J Mach Learn Technol – ident: ref34 doi: 10.1002/pds.615 – start-page: 368 year: 0 ident: ref29 article-title: Semi-supervised support vector machines publication-title: Proc Adv Neural Inf Process Syst – ident: ref31 doi: 10.1016/j.patrec.2008.01.030 – start-page: 177 year: 0 ident: ref47 article-title: Large-scale machine learning with stochastic gradient descent publication-title: Proc 19th Int Conf Comput Statist – year: 2014 ident: ref48 article-title: Adam: A method for stochastic optimization – ident: ref32 doi: 10.1145/279943.279962 – ident: ref37 doi: 10.1093/nar/gkx1037 – year: 2006 ident: ref27 article-title: Semi-supervised learning literature survey – ident: ref12 doi: 10.1136/amiajnl-2012-001089 – year: 2016 ident: ref42 publication-title: Deep Learning – ident: ref7 doi: 10.1136/bmjqs-2017-007531 |
| SSID | ssj0000816896 |
| Score | 2.4280646 |
| Snippet | Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 57 |
| SubjectTerms | Adverse Drug Reaction Reporting Systems adverse event reports Algorithms classification clinical decision support Databases, Factual Decision Support Systems, Clinical drug-drug interactions Drug-Related Side Effects and Adverse Reactions - diagnosis Drug-Related Side Effects and Adverse Reactions - epidemiology Drug-Related Side Effects and Adverse Reactions - prevention & control Drugs Feature extraction Humans Information sources Learning algorithms Machine learning Machine learning algorithms Prediction algorithms Semi-supervised learning Semisupervised learning stacked autoencoder Supervised Machine Learning Support vector machines Workflow |
| Title | Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports |
| URI | https://ieeexplore.ieee.org/document/8786248 https://www.ncbi.nlm.nih.gov/pubmed/31395567 https://www.proquest.com/docview/2333729330 https://www.proquest.com/docview/2270016045 |
| Volume | 24 |
| WOSCitedRecordID | wos000506642000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB6SUEpfeqXHNmlQoU-lSmSPbUmPaQ7S0oZAUtg3o2OyXUh2g70O5N9Hkh1DoS30xQgk2cYz47n1AXzMS4umEgU3SMFByaXjxmfIpbZ5TsqjVqlR-Ls8PVXTqT5bg89jLwwRpeIz2o3DlMv3S9fFUNmekrGdQa3DupRV36s1xlMSgESC48rDgAdBLIYkZib03rcvJ19jHZfeDeotOGLiNzWUcFX-bmImVXP87P9e8jk8HUxKtt_zwAtYo8VLePxjSJpvQndO13N-3t3E30JLng1nqs7Y_tVs2cxXv65ZMF1Z37Ob-p5YLP_gZ808Tt-xw6ab8XhhKYDY90K07KLH-GEJ1LkldhRrJ1lv0rev4Ofx0cXBCR_QFrjDQq-4yS9RCUc61iWjNEb6YMrZyjqnBBYkyDufeeVs5SorM2szV0nURqkg9Y7wNWwslgt6CwyNLpXCQhXkCnEZ6CKw9MZYF_YFVTkB8fDxazccRR4RMa7q5JIIXUd61ZFe9UCvCXwat9z053D8a_FmpMu4cCDJBLYfKFwPktrWOWLMXCKGXR_G6SBjMXFiFrTswpqUnQ8cXU7gTc8Z470xmNBlWcl3f37mFjzJo4eegjbbsLFqOnoPj9ztat42O4GRp2onMfI9_RLugw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFe2LX632tOoKPonbbrJJdvexastVr0ehJ_Qt7FfPg_auJBfB_96dzTYgqOBLWNjdJGRmMt_7A3iXl4brihVUcx8clFxYql3GqVAmz710XMnYKDwR06m8uFBnG_Bh6IXx3sfiM7-Pw5jLdyvbYajsQApsZ5B34C4iZ6VurSGiEiEkIiBXHgY0iGKR0pgZUwdfPo5PsJJL7QcFF1wx9psiisgqfzcyo7I5fvR_r_kYHiajkhz2XPAENvzyKdw_TWnzbejO_fWCnnc3-GNovSPpVNU5Obyar5rF-vs1CcYr6bt2Y-cTwQIQetYscPon-dx0c4oXEkOIfTdES2Y9yg-JsM6tJ0dYPUl6o77dgW_HR7NPY5rwFqjlhVpTnV9yyaxXWJnMhdbCBWPOVMZayXjhmXfWZU5aU9nKiMyYzFaCKy1lkHvr-TPYXK6WfhcI16qUkhey8LZgl4EujJdOa2PDvqAsR8BuP35t02HkiIlxVUenhKka6VUjvepErxG8H7bc9Cdx_GvxNtJlWJhIMoK9WwrXSVbbOuccc5ech11vh-kgZZg60Uu_6sKamJ8PPF2O4HnPGcO9eTCiy7ISL_78zDfwYDw7ndSTk-nXl7CVo78eQzh7sLluOv8K7tkf60XbvI7s_AvuJPDk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Learning+Algorithm+for+Identifying+High-Priority+Drug%E2%80%93Drug+Interactions+Through+Adverse+Event+Reports&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Liu%2C+Ning&rft.au=Chen%2C+Cheng-Bang&rft.au=Kumara%2C+Soundar&rft.date=2020-01-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=24&rft.issue=1&rft.spage=57&rft.epage=68&rft_id=info:doi/10.1109%2FJBHI.2019.2932740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2019_2932740 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |