Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports

Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics Jg. 24; H. 1; S. 57 - 68
Hauptverfasser: Liu, Ning, Chen, Cheng-Bang, Kumara, Soundar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2168-2194, 2168-2208, 2168-2208
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential highpriority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating highand low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.
AbstractList Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.
Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDIrelated adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential highpriority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating highand low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.
Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts during prescribing workflow has the potential to prevent DDI-related adverse events. However, the implementation of DDI alerting system remains a challenge as users are experiencing alert overload which causes alert fatigue. One strategy to optimize the current system is to establish a list of high-priority DDIs for alerting purposes, though it is a resource-intensive task. In this study, we propose a machine learning framework to extract useful features from the FDA adverse event reports and then identify potential high-priority DDIs using an autoencoder-based semi-supervised learning algorithm. The experimental results demonstrate the effectiveness of using adverse event feature representations in differentiating high- and low-priority DDIs. Additionally, the proposed algorithm utilizes stacked autoencoders and weighted support vector machine for boosting classification performance, which outperforms other competing methods in terms of F-measure and AUC score. This framework integrates multiple information sources, leverages domain knowledge and clinical evidence, and provides a practical approach for pre-screening high-priority DDI candidates for medication alerts.
Author Chen, Cheng-Bang
Kumara, Soundar
Liu, Ning
Author_xml – sequence: 1
  givenname: Ning
  orcidid: 0000-0001-8670-9878
  surname: Liu
  fullname: Liu, Ning
  email: nul147@psu.edu
  organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA
– sequence: 2
  givenname: Cheng-Bang
  orcidid: 0000-0003-0025-6447
  surname: Chen
  fullname: Chen, Cheng-Bang
  email: czc184@psu.edu
  organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA
– sequence: 3
  givenname: Soundar
  orcidid: 0000-0002-7941-8818
  surname: Kumara
  fullname: Kumara, Soundar
  email: skumara@psu.edu
  organization: Department of Industrial and Manufacturing Engineering, The Pennsylvania State University, University Park, PA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31395567$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB_0ByAkZIlNNxn8SPxYDqUwg0YC0bKOHOcm4yqJp7Yz0vx7Es20iy7wwr7y_c61dc4lOhv8AAh9oGRBKdFffn5drReMUL1gmjOZkzfoglGhMsaIOnuuqc7P0XWMj2RaarrS4h0655TrohDyAo330LvsftxB2LsINd6ACYMbWrzsWh9c2va48QGvaxiSaw5zZ-XabfY7uLl9wN_C2GbzhtdDgmBscn6I-GEb_Nhu8bLeQ4iA7_bTAPwHdj6k-B69bUwX4fp0XqG_3-8eblfZ5teP9e1yk1me65QZ1nBFLGiqteDSGFkXsqhEZa0iPAcCta1prWwlrKgkrSpqheTaKFVIZYFfoZvj3F3wTyPEVPYuWug6M4AfY8mYJIQKkhcT-vkV-ujHMEy_KxnnXE4mczJRn07UWPVQl7vgehMO5bOhE0CPgA0-xgDNC0JJOedWzrmVc27lKbdJI19prEtmtjEF47r_Kj8elQ4AXl5SUgmWK_4PRX6lQg
CODEN IJBHA9
CitedBy_id crossref_primary_10_1097_MD_0000000000029387
crossref_primary_10_1055_s_0041_1742218
crossref_primary_10_1093_jamia_ocaa034
crossref_primary_10_1038_s41598_025_93952_z
crossref_primary_10_1109_JBHI_2020_3010946
crossref_primary_10_1007_s10462_022_10306_1
crossref_primary_10_3389_fphar_2025_1632775
crossref_primary_10_1016_j_jconrel_2022_12_029
crossref_primary_10_3389_frai_2022_863261
crossref_primary_10_1109_JBHI_2023_3246225
crossref_primary_10_1016_j_jmgm_2023_108557
crossref_primary_10_3390_app14083280
crossref_primary_10_1016_j_ailsci_2021_100005
crossref_primary_10_1016_j_urolonc_2023_11_019
crossref_primary_10_1038_s41540_022_00247_4
crossref_primary_10_1109_ACCESS_2024_3372188
crossref_primary_10_1109_JBHI_2024_3422673
crossref_primary_10_1038_s42256_024_00888_6
crossref_primary_10_1186_s13321_025_01093_2
crossref_primary_10_1109_JBHI_2020_3048059
crossref_primary_10_1016_j_jbi_2024_104621
crossref_primary_10_1016_j_csbj_2022_04_021
crossref_primary_10_1093_bib_bbab421
crossref_primary_10_1002_ardp_202200628
crossref_primary_10_1016_j_ymeth_2023_10_007
crossref_primary_10_1155_2022_7818480
crossref_primary_10_1016_j_rineng_2025_106002
crossref_primary_10_2196_26646
crossref_primary_10_1016_j_eswa_2021_116434
crossref_primary_10_1080_17512433_2024_2343875
crossref_primary_10_1109_JBHI_2023_3343911
Cites_doi 10.1197/jamia.M2808
10.1186/s12859-016-1415-9
10.1109/ICTAI.2004.48
10.21105/joss.00296
10.1016/j.artmed.2017.01.004
10.1145/2689746.2689747
10.1093/bib/bbx010
10.1186/s13321-017-0200-8
10.1016/j.jbi.2016.02.009
10.1142/S0218001407005703
10.1016/j.jbi.2015.04.006
10.1038/s41598-017-08079-7
10.1126/science.1127647
10.1136/amiajnl-2013-001813
10.1016/j.ijmedinf.2017.12.027
10.1007/s10115-013-0706-y
10.2200/S00196ED1V01Y200906AIM006
10.1186/s12859-017-1546-7
10.1109/TNN.2009.2015974
10.1371/journal.pone.0085071
10.1007/s40264-014-0262-8
10.1097/PTS.0b013e31821d6f6e
10.1103/PhysRevE.64.061907
10.1136/amiajnl-2011-000612
10.1186/1472-6947-13-65
10.2165/00002018-199920020-00002
10.1136/amiajnl-2013-002512
10.1186/2046-4053-3-56
10.1093/jamia/ocw114
10.1016/j.inffus.2017.12.007
10.1016/j.jbi.2015.11.005
10.1145/170036.170072
10.1136/amiajnl-2013-001612
10.1136/amiajnl-2011-000214
10.1002/pds.615
10.1016/j.patrec.2008.01.030
10.1145/279943.279962
10.1093/nar/gkx1037
10.1136/amiajnl-2012-001089
10.1136/bmjqs-2017-007531
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2019.2932740
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 68
ExternalDocumentID 31395567
10_1109_JBHI_2019_2932740
8786248
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Allen E. Pearce and Allen M. Pearce Professorship
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
6IL
ADZIZ
CGR
CHZPO
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c349t-a2f380ce9199637aa7d575b6bcc8034e0edcd1d8cb6c6b71bb1c6739a88578ce3
IEDL.DBID RIE
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506642000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 06:17:47 EDT 2025
Sun Jun 29 14:27:21 EDT 2025
Thu Jan 02 22:58:53 EST 2025
Sat Nov 29 04:18:15 EST 2025
Tue Nov 18 22:27:45 EST 2025
Wed Aug 27 02:40:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a2f380ce9199637aa7d575b6bcc8034e0edcd1d8cb6c6b71bb1c6739a88578ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8670-9878
0000-0002-7941-8818
0000-0003-0025-6447
PMID 31395567
PQID 2333729330
PQPubID 85417
PageCount 12
ParticipantIDs ieee_primary_8786248
pubmed_primary_31395567
proquest_journals_2333729330
proquest_miscellaneous_2270016045
crossref_primary_10_1109_JBHI_2019_2932740
crossref_citationtrail_10_1109_JBHI_2019_2932740
PublicationCentury 2000
PublicationDate 2020-Jan.
2020-1-00
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref52
ref11
ref10
(ref39) 0
ref17
ref16
ref19
ref18
abadi (ref50) 0
ref51
ref45
hinton (ref46) 2014; 15
ref44
ref43
kingma (ref48) 2014
ref8
ref7
friedman (ref41) 2001
ref9
vincent (ref14) 2010; 11
ref4
ref3
ref6
ref5
zhu (ref27) 2006
ref40
bottou (ref47) 0
ref35
ref34
ref37
ref36
ref31
ref30
asuncion (ref53) 2007
ref33
ref32
goodfellow (ref42) 2016
ref2
ref1
powers (ref49) 2011; 2
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
(ref38) 2018
bennett (ref29) 0
References_xml – start-page: 265
  year: 0
  ident: ref50
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: Proc Symp Oper Syst Des Implementation
– ident: ref9
  doi: 10.1197/jamia.M2808
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref46
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1186/s12859-016-1415-9
– year: 2001
  ident: ref41
  publication-title: The Elements of Statistical Learning
– ident: ref33
  doi: 10.1109/ICTAI.2004.48
– ident: ref51
  doi: 10.21105/joss.00296
– ident: ref17
  doi: 10.1016/j.artmed.2017.01.004
– ident: ref44
  doi: 10.1145/2689746.2689747
– year: 2018
  ident: ref38
  article-title: Questions and answers on FDA's adverse event reporting system (FAERS)
– ident: ref18
  doi: 10.1093/bib/bbx010
– ident: ref25
  doi: 10.1186/s13321-017-0200-8
– ident: ref21
  doi: 10.1016/j.jbi.2016.02.009
– ident: ref15
  doi: 10.1142/S0218001407005703
– ident: ref36
  doi: 10.1016/j.jbi.2015.04.006
– ident: ref20
  doi: 10.1038/s41598-017-08079-7
– ident: ref43
  doi: 10.1126/science.1127647
– year: 0
  ident: ref39
  publication-title: RxNorm API
– ident: ref8
  doi: 10.1136/amiajnl-2013-001813
– ident: ref10
  doi: 10.1016/j.ijmedinf.2017.12.027
– ident: ref28
  doi: 10.1007/s10115-013-0706-y
– ident: ref26
  doi: 10.2200/S00196ED1V01Y200906AIM006
– ident: ref24
  doi: 10.1186/s12859-017-1546-7
– ident: ref30
  doi: 10.1109/TNN.2009.2015974
– ident: ref4
  doi: 10.1371/journal.pone.0085071
– ident: ref6
  doi: 10.1007/s40264-014-0262-8
– year: 2007
  ident: ref53
  article-title: UCI machine learning repository
– ident: ref1
  doi: 10.1097/PTS.0b013e31821d6f6e
– ident: ref52
  doi: 10.1103/PhysRevE.64.061907
– ident: ref11
  doi: 10.1136/amiajnl-2011-000612
– ident: ref2
  doi: 10.1186/1472-6947-13-65
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref14
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: ref35
  doi: 10.2165/00002018-199920020-00002
– ident: ref22
  doi: 10.1136/amiajnl-2013-002512
– ident: ref3
  doi: 10.1186/2046-4053-3-56
– ident: ref5
  doi: 10.1093/jamia/ocw114
– ident: ref45
  doi: 10.1016/j.inffus.2017.12.007
– ident: ref19
  doi: 10.1016/j.jbi.2015.11.005
– ident: ref40
  doi: 10.1145/170036.170072
– ident: ref16
  doi: 10.1136/amiajnl-2013-001612
– ident: ref13
  doi: 10.1136/amiajnl-2011-000214
– volume: 2
  start-page: 37
  year: 2011
  ident: ref49
  article-title: Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation
  publication-title: J Mach Learn Technol
– ident: ref34
  doi: 10.1002/pds.615
– start-page: 368
  year: 0
  ident: ref29
  article-title: Semi-supervised support vector machines
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref31
  doi: 10.1016/j.patrec.2008.01.030
– start-page: 177
  year: 0
  ident: ref47
  article-title: Large-scale machine learning with stochastic gradient descent
  publication-title: Proc 19th Int Conf Comput Statist
– year: 2014
  ident: ref48
  article-title: Adam: A method for stochastic optimization
– ident: ref32
  doi: 10.1145/279943.279962
– ident: ref37
  doi: 10.1093/nar/gkx1037
– year: 2006
  ident: ref27
  article-title: Semi-supervised learning literature survey
– ident: ref12
  doi: 10.1136/amiajnl-2012-001089
– year: 2016
  ident: ref42
  publication-title: Deep Learning
– ident: ref7
  doi: 10.1136/bmjqs-2017-007531
SSID ssj0000816896
Score 2.4280646
Snippet Identifying drug-drug interactions (DDIs) is a critical enabler for reducing adverse drug events and improving patient safety. Generating proper DDI alerts...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Adverse Drug Reaction Reporting Systems
adverse event reports
Algorithms
classification
clinical decision support
Databases, Factual
Decision Support Systems, Clinical
drug-drug interactions
Drug-Related Side Effects and Adverse Reactions - diagnosis
Drug-Related Side Effects and Adverse Reactions - epidemiology
Drug-Related Side Effects and Adverse Reactions - prevention & control
Drugs
Feature extraction
Humans
Information sources
Learning algorithms
Machine learning
Machine learning algorithms
Prediction algorithms
Semi-supervised learning
Semisupervised learning
stacked autoencoder
Supervised Machine Learning
Support vector machines
Workflow
Title Semi-Supervised Learning Algorithm for Identifying High-Priority Drug-Drug Interactions Through Adverse Event Reports
URI https://ieeexplore.ieee.org/document/8786248
https://www.ncbi.nlm.nih.gov/pubmed/31395567
https://www.proquest.com/docview/2333729330
https://www.proquest.com/docview/2270016045
Volume 24
WOSCitedRecordID wos000506642000007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB6SUEpfeqXHNmlQoU-lSmSPbUmPaQ7S0oZAUtg3o2OyXUh2g70O5N9Hkh1DoS30xQgk2cYz47n1AXzMS4umEgU3SMFByaXjxmfIpbZ5TsqjVqlR-Ls8PVXTqT5bg89jLwwRpeIz2o3DlMv3S9fFUNmekrGdQa3DupRV36s1xlMSgESC48rDgAdBLIYkZib03rcvJ19jHZfeDeotOGLiNzWUcFX-bmImVXP87P9e8jk8HUxKtt_zwAtYo8VLePxjSJpvQndO13N-3t3E30JLng1nqs7Y_tVs2cxXv65ZMF1Z37Ob-p5YLP_gZ808Tt-xw6ab8XhhKYDY90K07KLH-GEJ1LkldhRrJ1lv0rev4Ofx0cXBCR_QFrjDQq-4yS9RCUc61iWjNEb6YMrZyjqnBBYkyDufeeVs5SorM2szV0nURqkg9Y7wNWwslgt6CwyNLpXCQhXkCnEZ6CKw9MZYF_YFVTkB8fDxazccRR4RMa7q5JIIXUd61ZFe9UCvCXwat9z053D8a_FmpMu4cCDJBLYfKFwPktrWOWLMXCKGXR_G6SBjMXFiFrTswpqUnQ8cXU7gTc8Z470xmNBlWcl3f37mFjzJo4eegjbbsLFqOnoPj9ztat42O4GRp2onMfI9_RLugw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qFe2LX632tOoKPonbbrJJdvexastVr0ehJ_Qt7FfPg_auJBfB_96dzTYgqOBLWNjdJGRmMt_7A3iXl4brihVUcx8clFxYql3GqVAmz710XMnYKDwR06m8uFBnG_Bh6IXx3sfiM7-Pw5jLdyvbYajsQApsZ5B34C4iZ6VurSGiEiEkIiBXHgY0iGKR0pgZUwdfPo5PsJJL7QcFF1wx9psiisgqfzcyo7I5fvR_r_kYHiajkhz2XPAENvzyKdw_TWnzbejO_fWCnnc3-GNovSPpVNU5Obyar5rF-vs1CcYr6bt2Y-cTwQIQetYscPon-dx0c4oXEkOIfTdES2Y9yg-JsM6tJ0dYPUl6o77dgW_HR7NPY5rwFqjlhVpTnV9yyaxXWJnMhdbCBWPOVMZayXjhmXfWZU5aU9nKiMyYzFaCKy1lkHvr-TPYXK6WfhcI16qUkhey8LZgl4EujJdOa2PDvqAsR8BuP35t02HkiIlxVUenhKka6VUjvepErxG8H7bc9Cdx_GvxNtJlWJhIMoK9WwrXSVbbOuccc5ech11vh-kgZZg60Uu_6sKamJ8PPF2O4HnPGcO9eTCiy7ISL_78zDfwYDw7ndSTk-nXl7CVo78eQzh7sLluOv8K7tkf60XbvI7s_AvuJPDk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semi-Supervised+Learning+Algorithm+for+Identifying+High-Priority+Drug%E2%80%93Drug+Interactions+Through+Adverse+Event+Reports&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Liu%2C+Ning&rft.au=Chen%2C+Cheng-Bang&rft.au=Kumara%2C+Soundar&rft.date=2020-01-01&rft.issn=2168-2194&rft.eissn=2168-2208&rft.volume=24&rft.issue=1&rft.spage=57&rft.epage=68&rft_id=info:doi/10.1109%2FJBHI.2019.2932740&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JBHI_2019_2932740
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon