Penalized spline estimation in varying coefficient models with censored data

We consider P-spline smoothing in a varying coefficient regression model when the response is subject to random right censoring. We introduce two data transformation approaches to construct a synthetic response vector that is used in a penalized least squares optimization problem. We prove the consi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Test (Madrid, Spain) Ročník 27; číslo 4; s. 871 - 895
Hlavní autori: Hendrickx, K., Janssen, P., Verhasselt, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Predmet:
ISSN:1133-0686, 1863-8260
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider P-spline smoothing in a varying coefficient regression model when the response is subject to random right censoring. We introduce two data transformation approaches to construct a synthetic response vector that is used in a penalized least squares optimization problem. We prove the consistency and asymptotic normality of the P-spline estimators for a diverging number of knots and show by simulation studies and real data examples that the combination of a data transformation for censored observations with P-spline smoothing leads to good estimators of the varying coefficient functions.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1133-0686
1863-8260
DOI:10.1007/s11749-017-0574-y