MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification

Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on biomedical engineering Jg. 69; H. 6; S. 2105 - 2118
Hauptverfasser: Autthasan, Phairot, Chaisaen, Rattanaphon, Sudhawiyangkul, Thapanun, Rangpong, Phurin, Kiatthaveephong, Suktipol, Dilokthanakul, Nat, Bhakdisongkhram, Gun, Phan, Huy, Guan, Cuntai, Wilaiprasitporn, Theerawit
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9294, 1558-2531, 1558-2531
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!