MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification

Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 69; číslo 6; s. 2105 - 2118
Hlavní autoři: Autthasan, Phairot, Chaisaen, Rattanaphon, Sudhawiyangkul, Thapanun, Rangpong, Phurin, Kiatthaveephong, Suktipol, Dilokthanakul, Nat, Bhakdisongkhram, Gun, Phan, Huy, Guan, Cuntai, Wilaiprasitporn, Theerawit
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.06.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. Methods: To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. Results: This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. Conclusion: We demonstrate that MIN2Net improves discriminative information in the latent representation. Significance: This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.
AbstractList Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner.OBJECTIVEAdvances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner.To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously.METHODSTo overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously.This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively.RESULTSThis approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively.We demonstrate that MIN2Net improves discriminative information in the latent representation.CONCLUSIONWe demonstrate that MIN2Net improves discriminative information in the latent representation.This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.SIGNIFICANCEThis study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.
Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. We demonstrate that MIN2Net improves discriminative information in the latent representation. This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.
Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which are usually recorded by electroencephalography (EEG) using a non-invasive technique. Despite significant advances in MI-based BCI, EEG rhythms are specific to a subject and various changes over time. These issues point to significant challenges to enhance the classification performance, especially in a subject-independent manner. Methods: To overcome these challenges, we propose MIN2Net, a novel end-to-end multi-task learning to tackle this task. We integrate deep metric learning into a multi-task autoencoder to learn a compact and discriminative latent representation from EEG and perform classification simultaneously. Results: This approach reduces the complexity in pre-processing, results in significant performance improvement on EEG classification. Experimental results in a subject-independent manner show that MIN2Net outperforms the state-of-the-art techniques, achieving an F1-score improvement of 6.72% and 2.23% on the SMR-BCI and OpenBMI datasets, respectively. Conclusion: We demonstrate that MIN2Net improves discriminative information in the latent representation. Significance: This study indicates the possibility and practicality of using this model to develop MI-based BCI applications for new users without calibration.
Author Autthasan, Phairot
Sudhawiyangkul, Thapanun
Dilokthanakul, Nat
Guan, Cuntai
Rangpong, Phurin
Chaisaen, Rattanaphon
Kiatthaveephong, Suktipol
Phan, Huy
Wilaiprasitporn, Theerawit
Bhakdisongkhram, Gun
Author_xml – sequence: 1
  givenname: Phairot
  orcidid: 0000-0002-9566-8382
  surname: Autthasan
  fullname: Autthasan, Phairot
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 2
  givenname: Rattanaphon
  orcidid: 0000-0003-1521-9956
  surname: Chaisaen
  fullname: Chaisaen, Rattanaphon
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 3
  givenname: Thapanun
  orcidid: 0000-0003-2486-9280
  surname: Sudhawiyangkul
  fullname: Sudhawiyangkul, Thapanun
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 4
  givenname: Phurin
  surname: Rangpong
  fullname: Rangpong, Phurin
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 5
  givenname: Suktipol
  orcidid: 0000-0002-1776-2795
  surname: Kiatthaveephong
  fullname: Kiatthaveephong, Suktipol
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 6
  givenname: Nat
  orcidid: 0000-0001-7721-7564
  surname: Dilokthanakul
  fullname: Dilokthanakul, Nat
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
– sequence: 7
  givenname: Gun
  orcidid: 0000-0001-7434-9262
  surname: Bhakdisongkhram
  fullname: Bhakdisongkhram, Gun
  organization: School of Physical Medicine and Rehabilitation, Institute of Medicine, Suranaree University of Technology, Thailand
– sequence: 8
  givenname: Huy
  orcidid: 0000-0003-4096-785X
  surname: Phan
  fullname: Phan, Huy
  organization: School of Electronic Engineering and Computer Science, Queen Mary University of London, U.K
– sequence: 9
  givenname: Cuntai
  orcidid: 0000-0002-0872-3276
  surname: Guan
  fullname: Guan, Cuntai
  organization: School of Computer Science and Engineering, Nanyang Technological University, Singapore
– sequence: 10
  givenname: Theerawit
  orcidid: 0000-0003-4941-4354
  surname: Wilaiprasitporn
  fullname: Wilaiprasitporn, Theerawit
  email: theerawit.w@vistec.ac.th
  organization: Bio-inspired Robotics and Neural Engineering Lab, School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology, Rayong, Thailand
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34932469$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uGyEURlGVqnHSPEBVqRqpm25wgOFvumutSWrJThZ11lOMLxHumHGBWeTti2M3iyy64Qo4B67ud4HOwhAAoQ-UTCklzfXq-7KdMsLotKa1opq_QRMqhMZM1PQMTQihGjes4efoIqVt2XLN5Tt0XvOmZlw2E_RrOb9jd5C_Vm3Y4DzgUqrl2GePVyb9rhZgYvDhsXJDrH6O6y3YjOdhA3soS8jVcsjlZr4zjxCfqra9rWa9Sck7b032Q3iP3jrTJ7g61Uv0cNOuZj_w4v52Pvu2wLY0k7Eh3CrgnAuuuF5bYNJqJ4nTshw6rhV3YAtApWJOCaGYpLJYTlAj1qy-RF-O7-7j8GeElLudTxb63gQYxtQVnKm61pwX9PMrdDuMMZTuCiUVoUrJplCfTtS43sGm20e_M_Gp-ze7AtAjYOOQUgT3glDSHfLpDvl0h3y6Uz7FUa8c6_PznHI0vv-v-fFoegB4-amRQlMp6r9_sZl1
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_TNSRE_2023_3339179
crossref_primary_10_1109_JBHI_2024_3450753
crossref_primary_10_1109_TIM_2022_3227604
crossref_primary_10_1109_TBCAS_2023_3234280
crossref_primary_10_1109_JBHI_2025_3546288
crossref_primary_10_1186_s13040_023_00336_y
crossref_primary_10_1007_s10015_025_01024_2
crossref_primary_10_1016_j_neucom_2024_129239
crossref_primary_10_1016_j_neucom_2025_129911
crossref_primary_10_1109_TNSRE_2024_3457502
crossref_primary_10_1109_TETCI_2024_3425328
crossref_primary_10_1109_TNSRE_2025_3563416
crossref_primary_10_3390_electronics14132670
crossref_primary_10_1109_ACCESS_2024_3406736
crossref_primary_10_1109_JBHI_2023_3337072
crossref_primary_10_3390_s24123755
crossref_primary_10_1109_JBHI_2023_3238421
crossref_primary_10_1016_j_bspc_2023_105359
crossref_primary_10_1088_1361_6560_adcafa
crossref_primary_10_1109_JBHI_2024_3498916
crossref_primary_10_3389_fnins_2023_1292724
crossref_primary_10_1109_JSEN_2022_3171808
crossref_primary_10_3389_fnins_2023_1122661
crossref_primary_10_3390_bioengineering11010030
crossref_primary_10_1109_TNSRE_2023_3255233
crossref_primary_10_1016_j_knosys_2023_110756
crossref_primary_10_1016_j_inffus_2025_103501
crossref_primary_10_1016_j_neunet_2024_106470
crossref_primary_10_1016_j_neuroimage_2022_119666
crossref_primary_10_1109_TBCAS_2022_3215962
crossref_primary_10_3389_fnhum_2024_1421922
crossref_primary_10_1016_j_bspc_2024_106311
crossref_primary_10_1016_j_bspc_2024_106156
crossref_primary_10_1109_TBME_2024_3361716
crossref_primary_10_1109_TNSRE_2023_3347579
crossref_primary_10_1109_JBHI_2024_3504604
crossref_primary_10_1016_j_knosys_2025_113315
crossref_primary_10_1007_s11042_025_20605_8
crossref_primary_10_1140_epjs_s11734_025_01606_y
crossref_primary_10_3390_brainsci13071109
crossref_primary_10_1016_j_physa_2023_129010
crossref_primary_10_1109_TIM_2025_3598395
crossref_primary_10_1016_j_compbiomed_2024_109260
crossref_primary_10_3390_mi13091485
crossref_primary_10_3389_fnins_2024_1508747
crossref_primary_10_1109_TNNLS_2025_3538335
crossref_primary_10_1109_JIOT_2024_3402254
crossref_primary_10_1109_TIM_2024_3381720
crossref_primary_10_1109_JBHI_2025_3525577
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_1016_j_compbiomed_2024_108619
crossref_primary_10_1016_j_neucom_2024_128577
crossref_primary_10_1016_j_measurement_2022_112085
crossref_primary_10_3390_bdcc8120169
crossref_primary_10_1109_TASE_2025_3585778
crossref_primary_10_1007_s11571_025_10291_5
crossref_primary_10_1016_j_eswa_2023_121915
crossref_primary_10_1109_LSP_2024_3465348
crossref_primary_10_1016_j_neuroscience_2024_07_051
crossref_primary_10_3390_brainsci15050460
crossref_primary_10_1109_TBME_2022_3193277
crossref_primary_10_1109_TNSRE_2024_3395133
crossref_primary_10_1088_1741_2552_ad0c61
crossref_primary_10_1109_ACCESS_2024_3459866
crossref_primary_10_1016_j_eswa_2025_128678
crossref_primary_10_1109_TII_2024_3450010
crossref_primary_10_1109_TCDS_2023_3260084
crossref_primary_10_1109_RBME_2023_3296938
crossref_primary_10_1038_s41598_024_73755_4
crossref_primary_10_1016_j_brainres_2023_148673
crossref_primary_10_1145_3757732
crossref_primary_10_3390_bios14050211
crossref_primary_10_1007_s11571_025_10337_8
crossref_primary_10_1016_j_compbiomed_2023_107254
crossref_primary_10_1016_j_eswa_2025_129248
crossref_primary_10_3390_mti7100095
crossref_primary_10_3390_sym16111413
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1109_JBHI_2023_3304646
crossref_primary_10_1109_JBHI_2024_3431230
crossref_primary_10_1007_s11042_024_19850_0
crossref_primary_10_48084_etasr_9945
crossref_primary_10_1016_j_artmed_2023_102738
crossref_primary_10_1109_JSEN_2025_3538100
crossref_primary_10_1109_JSEN_2025_3559438
crossref_primary_10_1109_TCSS_2024_3462823
crossref_primary_10_1016_j_neucom_2024_128889
crossref_primary_10_3389_fninf_2024_1345425
crossref_primary_10_1016_j_dsp_2022_103816
crossref_primary_10_1109_TBME_2022_3218116
crossref_primary_10_1109_JBHI_2024_3472097
crossref_primary_10_1109_JIOT_2022_3195777
crossref_primary_10_1109_TNSRE_2024_3499998
crossref_primary_10_1109_ACCESS_2023_3320561
crossref_primary_10_1109_TIM_2025_3548181
crossref_primary_10_1016_j_softx_2024_101787
crossref_primary_10_1007_s13534_023_00316_5
crossref_primary_10_1080_10255842_2023_2275244
crossref_primary_10_1109_TNSRE_2023_3299355
crossref_primary_10_1109_JSEN_2022_3205956
Cites_doi 10.1093/gigascience/giz002
10.1109/CVPR.2015.7298682
10.1002/hbm.23730
10.1109/10.552239
10.1109/TCDS.2019.2924648
10.3389/fnins.2012.00055
10.1109/TNSRE.2019.2923315
10.1109/CVPR.2017.145
10.3389/fnins.2013.00267
10.3389/fnins.2017.00226
10.1109/TBME.2010.2082539
10.1088/1741-2552/aace8c
10.1016/j.neunet.2020.12.013
10.1109/TNSRE.2016.2646763
10.1016/j.patcog.2017.12.002
10.1109/EMBC44109.2020.9175874
10.1109/TBME.2009.2026181
10.1109/TNNLS.2014.2302898
10.1109/TNNLS.2019.2946869
10.1016/j.cobme.2017.11.004
10.1109/JBHI.2014.2370646
10.1109/SPMB.2017.8257016
10.1162/NECO_a_00592
10.1109/TNSRE.2018.2864306
10.1109/TNSRE.2005.848627
10.1109/JBHI.2018.2832538
10.3389/fnins.2012.00039
10.1109/ACCESS.2019.2919143
10.1109/TPAMI.2021.3070057
10.1126/science.1127647
10.1109/JSEN.2020.3005968
10.1109/TETCI.2018.2829981
10.1109/86.895946
10.1109/JSEN.2019.2958210
10.1109/ACCESS.2020.3002459
10.1109/5.939829
10.1109/TNNLS.2021.3053576
10.1109/TNSRE.2018.2884641
10.1109/TBME.2016.2631620
10.1109/TNNLS.2018.2789927
10.1016/S1388-2457(99)00141-8
10.1109/TCYB.2019.2905157
10.1109/TNSRE.2020.2966826
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TBME.2021.3137184
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2118
ExternalDocumentID 34932469
10_1109_TBME_2021_3137184
9658165
Genre orig-research
Journal Article
GrantInformation_xml – fundername: The Office of the Permanent Secretary of the Ministry of Higher Education, Science, Research, and Innovation, Thailand
  grantid: RGNS63-252
– fundername: National Research Council of Thailand
  grantid: N41A640131
  funderid: 10.13039/501100004704
– fundername: PTT Public Company Limited
  funderid: 10.13039/100012915
– fundername: SCB Public Company Limited
– fundername: Thailand Science Research and Innovation; Thailand Science Research, and Innovation
  grantid: SRI62W1501
  funderid: 10.13039/501100017170
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c349t-a04c7e44454748bce26c8f60f86444f4874fece441672f75572616a04f51a5b23
IEDL.DBID RIE
ISICitedReferencesCount 116
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799622400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sun Sep 28 12:00:07 EDT 2025
Mon Jun 30 08:25:55 EDT 2025
Tue Sep 30 00:37:06 EDT 2025
Sat Nov 29 05:34:28 EST 2025
Tue Nov 18 22:38:10 EST 2025
Wed Aug 27 02:37:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c349t-a04c7e44454748bce26c8f60f86444f4874fece441672f75572616a04f51a5b23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7434-9262
0000-0003-4941-4354
0000-0002-0872-3276
0000-0002-9566-8382
0000-0001-7721-7564
0000-0003-2486-9280
0000-0002-1776-2795
0000-0003-4096-785X
0000-0003-1521-9956
PMID 34932469
PQID 2667017769
PQPubID 85474
PageCount 14
ParticipantIDs proquest_miscellaneous_2612733844
crossref_primary_10_1109_TBME_2021_3137184
crossref_citationtrail_10_1109_TBME_2021_3137184
ieee_primary_9658165
pubmed_primary_34932469
proquest_journals_2667017769
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref10
ref17
ref16
ref19
ge (ref34) 0
ref18
rumelhart (ref40) 1986
ref51
ref45
ref48
ref47
ref41
ref44
ref43
maaten (ref50) 2008; 9
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref37
ref36
prannay (ref35) 2020; 33
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
um (ref49) 0
ref24
ref23
ref26
vincent (ref42) 2010; 11
ref20
ang (ref25) 0
ref22
ref21
ref28
steyrl (ref46) 0
ref27
ref29
hinton (ref11) 2006; 313
References_xml – ident: ref33
  doi: 10.1093/gigascience/giz002
– ident: ref16
  doi: 10.1109/CVPR.2015.7298682
– ident: ref17
  doi: 10.1002/hbm.23730
– ident: ref41
  doi: 10.1109/10.552239
– ident: ref20
  doi: 10.1109/TCDS.2019.2924648
– ident: ref45
  doi: 10.3389/fnins.2012.00055
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref50
  article-title: Visualizing data using t-SNE
  publication-title: J Mach Learn Res
– ident: ref9
  doi: 10.1109/TNSRE.2019.2923315
– ident: ref37
  doi: 10.1109/CVPR.2017.145
– ident: ref48
  doi: 10.3389/fnins.2013.00267
– ident: ref52
  doi: 10.3389/fnins.2017.00226
– ident: ref28
  doi: 10.1109/TBME.2010.2082539
– ident: ref19
  doi: 10.1088/1741-2552/aace8c
– ident: ref10
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref8
  doi: 10.1109/TNSRE.2016.2646763
– ident: ref15
  doi: 10.1016/j.patcog.2017.12.002
– ident: ref32
  doi: 10.1109/EMBC44109.2020.9175874
– start-page: 269
  year: 0
  ident: ref34
  article-title: Deep metric learning with hierarchical triplet loss
  publication-title: Proc Eur Conf Comput Vis
– ident: ref27
  doi: 10.1109/TBME.2009.2026181
– ident: ref2
  doi: 10.1109/TNNLS.2014.2302898
– ident: ref12
  doi: 10.1109/TNNLS.2019.2946869
– ident: ref1
  doi: 10.1016/j.cobme.2017.11.004
– ident: ref36
  doi: 10.1109/CVPR.2015.7298682
– volume: 33
  start-page: 18661
  year: 2020
  ident: ref35
  article-title: Supervised contrastive learning
  publication-title: Neural Inf Process Syst
– ident: ref4
  doi: 10.1109/JBHI.2014.2370646
– ident: ref38
  doi: 10.1109/SPMB.2017.8257016
– ident: ref30
  doi: 10.1162/NECO_a_00592
– ident: ref43
  doi: 10.1109/TNSRE.2018.2864306
– ident: ref13
  doi: 10.1109/TNSRE.2005.848627
– start-page: 216
  year: 0
  ident: ref49
  article-title: Data augmentation of wearable sensor data for parkinson's disease monitoring using convolutional neural networks
  publication-title: Proc 19th ACM Int Conf Multimodal Interact
– ident: ref31
  doi: 10.1109/JBHI.2018.2832538
– ident: ref26
  doi: 10.3389/fnins.2012.00039
– start-page: 318
  year: 1986
  ident: ref40
  publication-title: Learning Internal Representations by Error Propagation
– ident: ref23
  doi: 10.1109/ACCESS.2019.2919143
– ident: ref53
  doi: 10.1109/TPAMI.2021.3070057
– volume: 313
  start-page: 504
  year: 2006
  ident: ref11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– ident: ref6
  doi: 10.1109/JSEN.2020.3005968
– ident: ref44
  doi: 10.1109/TETCI.2018.2829981
– volume: 11
  start-page: 3371
  year: 2010
  ident: ref42
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– start-page: 2390
  year: 0
  ident: ref25
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
  publication-title: Proc IEEE Int Joint Conf Neural Netw (IEEE World Congr Comput Intell
– ident: ref24
  doi: 10.1109/86.895946
– ident: ref3
  doi: 10.1109/JSEN.2019.2958210
– ident: ref39
  doi: 10.1109/ACCESS.2020.3002459
– ident: ref14
  doi: 10.1109/5.939829
– ident: ref29
  doi: 10.1109/TNNLS.2021.3053576
– ident: ref21
  doi: 10.1109/TNSRE.2018.2884641
– start-page: 61-1
  year: 0
  ident: ref46
  article-title: Motor imagery brain-computer interfaces: Random forests vs regularized LDA - Non-linear beats linear
  publication-title: Proc 6th Int Brain- Comput Interface Conf
– ident: ref22
  doi: 10.1109/TBME.2016.2631620
– ident: ref18
  doi: 10.1109/TNNLS.2018.2789927
– ident: ref7
  doi: 10.1016/S1388-2457(99)00141-8
– ident: ref51
  doi: 10.1109/TCYB.2019.2905157
– ident: ref47
  doi: 10.1109/CVPR.2015.7298682
– ident: ref5
  doi: 10.1109/TNSRE.2020.2966826
SSID ssj0014846
Score 2.6698148
Snippet Objective: Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological...
Advances in the motor imagery (MI)-based brain-computer interfaces (BCIs) allow control of several applications by decoding neurophysiological phenomena, which...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2105
SubjectTerms autoencoder (AE)
Brain-computer interfaces (BCIs)
Calibration
Classification
deep metric learning (DML)
EEG
Electroencephalography
Feature extraction
Human-computer interface
Image classification
Interfaces
Learning
Measurement
Mental task performance
motor imagery (MI)
Motor skill learning
multi-task learning
Multitasking
Representations
Task analysis
Training
Title MIN2Net: End-to-End Multi-Task Learning for Subject-Independent Motor Imagery EEG Classification
URI https://ieeexplore.ieee.org/document/9658165
https://www.ncbi.nlm.nih.gov/pubmed/34932469
https://www.proquest.com/docview/2667017769
https://www.proquest.com/docview/2612733844
Volume 69
WOSCitedRecordID wos000799622400032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21FUJw4KOFslAqI3FCmCbOxHa4AUphJXbFYZH2FhzHqRA0Qd0sEv-eseONegAkTklkO4n8xvaMx_MG4LlzBoUwlidYNxyVy7hGejS1bmu0JqttoMz_qJZLvV4Xn_bg5RQL45wLh8_cK38bfPlNb7d-q-zME5WkMt-HfaXkGKs1eQxQj0E5SUoDWBQYPZhpUpyt3i5KsgRFSgZqRnOxz8WTISku6I85X1uOQn6Vv6uaYck5v_t_P3sP7kTVkr0ZZeE-7LnuEG5fIxw8hJuL6Eo_gi-L-VIs3fCalV3Dh57ThYVwXL4ym28sEq9eMNJqGU0vfr-Gz6ekuQNb9GSus_mlJ8H4xcryPQsJNv3Ro4D2A_h8Xq7efeAx3QK31BsDNwla5RA9xRfq2johrW5l0mrSmbAlywZbZ6lCKpVoVZ4rsr4ktWrz1OS1yB7CQdd37hEwYWRhUDc2QYNpgwRI69mdcirIUNoZJLter2zkIvcpMb5XwSZJispjVnnMqojZDF5MTX6MRBz_qnzkAZkqRixmcLKDtopDdVORhqJoWlKymMGzqZgGmfecmM71W18nJTUv00hvPh5FYnr3TpIe__mbT-CW8BETYePmBA6Gq617Cjfsz-Hr5uqUJHmtT4Mk_wY2Ten_
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6Vgmg58GihLBQwEieEqeNMXtwApXTFJuKwSL2ljuOgCkiqbrYS_56x4416ACROSWQ7ifyN7RmP5xuAV8YolFJpLrBuOCYm5CnSo6rTtkatwlo7yvxFUpbp6Wn2ZQveTLEwxhh3-My8tbfOl9_0em23yo4sUUkQRzfgZoQoxRitNfkMMB3DckRAQ1hm6H2YgciOlh-KnGxBGZCJGtJsbLPxhEiqC9qDztcWJJdh5e_Kplt0ju_93-_eh7teuWTvR2l4AFum24M71ygH9-B24Z3p-3BWzEtZmuEdy7uGDz2nC3MBuXypVt-Zp179xkivZTTB2B0bPp_S5g6s6MlgZ_OflgbjF8vzT8yl2LSHjxzeD-Hrcb78eMJ9wgWuqTcGrgTqxCBaki9Ma21krNM2Fm1KWhO2ZNtgazRVCOJEtkkUJWR_xdSqjQIV1TJ8BNtd35nHwKSKM4VpowUqDBokQFrL7xRRQYixnoHY9HqlPRu5TYrxo3JWicgqi1llMas8ZjN4PTW5GKk4_lV53wIyVfRYzOBwA23lB-uqIh0loYkpibMZvJyKaZhZ34nqTL-2dQJS9MIU6c0Ho0hM795I0pM_f_MF7Jwsi0W1mJefn8KutPETbhvnELaHy7V5Brf01XC-unzu5Pk3CR_sXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MIN2Net%3A+End-to-End+Multi-Task+Learning+for+Subject-Independent+Motor+Imagery+EEG+Classification&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Autthasan%2C+Phairot&rft.au=Chaisaen%2C+Rattanaphon&rft.au=Sudhawiyangkul%2C+Thapanun&rft.au=Rangpong%2C+Phurin&rft.date=2022-06-01&rft.eissn=1558-2531&rft.volume=69&rft.issue=6&rft.spage=2105&rft_id=info:doi/10.1109%2FTBME.2021.3137184&rft_id=info%3Apmid%2F34932469&rft.externalDocID=34932469
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon